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Introduction

The Lax-Milgram Lemma was extended by G. Stampacchia to the
following : if a(u, v) is a continuous bilinear form coercive on a (real) Hilbert
space V and if K is a closed convex set in V, then, given a continuous linear
form v— L(v) on V, there exists a unique element u in K such that a(u, v—w)
= Llw—u) Yve K (the Lax-Milgram Lemma corresponds to the case when
K=1").

In a joint work with Stampacchia we studied similar problems
for bilinear forms which are (i) either =0 but not coercive (ii) either defined
on two different Hilbert spaces.

In this paper we give some complements to the result of [11]on (ii).
This will solve, as a particular case—see Section 3.3. below—the following non
Linear boundary value problem: find a function u(x, t), xe 2C R", t=(0, T),
T < oo, such that:

) %ﬁf —dutu=f (A:~aa~212—+ +—aa;—3b) ,
2 uz=0 on ' <, T) (I"=boundary of Q)
,gi‘ >0 on I'x(0,T) 78%: exterior normal derivative)
u - g”:o on [I'x(,T),
v
3 u(x, O =ulx, T).

(The case when instead of the “ periodic problem” (3) we consider the “1initfial
value problem” u(x, 0)=given was solved in [117])

Section 1 gives a general existence theorem; Section 2 gives applications
to “ordinary ” evolution equations and Section 3 gives a general existence

1) This paper develops technical details of part of a lecture given at the Annual
Meeting of the Math. Soc. Japan, Kyoto, May 1966. Other parts of the lecture cor-
responded to a joint work with G. Stampacchia [10] [11].
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and uniqueness theorem (Theorem 3.1) which solves, as a rather particular
case, problem (1) (2) 3).

1. An existence theorem

1.1. Hypothese. Existence result.

Let < and 4 be two Hilbert spaces on C?, with < C .4, the injection
<Y — 4 being continuous and <V being dense in 4. We denote by (,) the
scalar product in 4. If we identify 4 to its anti-dual, and if ¢/ denotes the
anti-dual of ¢, we have

yCcHCY

if feaw’, ve, (f,v) denotes the scalar product of f and v; in case f < 4,
{f,v) coincides with the scalar product in 4, which justifies the notation.
The three main data are the operators .4 and d and the convex set X.

The operator A is given in L(CV; <V’) (i.e. space of continuous linear
mappings from < to &), such that

(1.1 Re(uw, v)=alvid, a>0, Yve .

The operator 0 is an unbounded operator in ¢/, with domain D(d) dense
in ¢Y’; we assume that ¢ is closed and that

{1.2) Re (v, dv) =0 Yve v D).
The set KX is closed and convex in <Y such that
(1.3) HAD@) + .

We can now state:

THEOREM 1.1. Let A, 0, K be given, satisfying (1.1) (1.2) (1.3). There ex-
ists ue KX such that
1.4 Re [(JAu, v—u)+(u, ov)—(f, v—u)] =0 Yve XN D@©).

1.2. ProOOF OF THEOREM 1.1.

1) As a first step we use the elliptic regularization analogously to
[11], Section 7. Let ¢>0. We consider on 9 =<~ D(d) the sesquilinear

form

w(u, v) = (Au, v)+(u, ov)+e(0u, ov)qy .
We provide 9¥ with the Hilbertian norm
(lv &+l ovlig) 2= |visy .
We have, thanks to (1.1) and [1.2):

2) In the case of real Hilbert spaces, one has just to drop the “ Real part” in the
inequalities of the paper.
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) Re n.(v, v) Z al|v [|3+-¢l| 0v |}~ = inf (a, &) v |y ;

therefore, due to the Stampacchia’s theorem [14], there exists a unique ele-
ment u, € X N D(0) such that

1.6) Re 7.(u., v—u) = Re (f, v—u,) Yve L D).

2) In the second step, we prove that we can extract from u, a subsequ-
ence which converges (weakly) to a solution of [I.4). Let v be choosen fixed
in K N D@). It follows from and that

0(” Ue II%V+5“ aua “%V’ é Re TCe(ue: U)_Re (fr U'—us)
= N Aue el vl e levll 0V e el Ot ]| 00 [l
Hl el w1 el vila ®

= Sl e Iy +-C
hence
1.7 Fue |&p+ell du gy = C.
Therefore we can extract a subsequence, say u, y—0, such that
1.8 u,—w weakly in @y,
Since u,< K and since X is weakly closed in <V, it follows that
(1.9) we K.

We deduce from
Re (Au., u)+(u,, ou)-+e| ou, |4, < Re r (u., v)—Re (f, v—u,).
Since (u., ou,) =0, it follows that (taking ¢=17)
(1.10) Re (Au,, u,) < Re m,(u,, v)—Re (f, v—u,).
But
lir;xﬁionf Re (Au,, u,) = Re (Aw, w)
so that implies
Re (Aw, w) < Re n(w, v)—Re (f, v—w)

where 7(w, v) = (Aw, v)+(w, ov). In other words

Re [(Aw, v—w)+(w, ov)—(f, v—w)] =0
and one can take u=w as a solution of [1.4).

3) The C’s denote various constants (which do not depend on &).
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1.3. The set of solutions.

It is not known whether there is uniqueness or not of the solution of the
mequation [1.4). We will give below in Section 3 examples where the uni-
queness holds. For the time being let us notice (this is a variant of Theorem

3.1 of [IT]:
(1.11) The set X of all solutions u € X of is closed and convex.

Let us check that X is convex (it is obviously closed). Let u; and u, be two
elements of X; if 0 <©® <1, we have (after an easy calculation)

Re (AOu,+A—0)u,), v—(0u;+(1—0)u,))

= Re [0(Auy, v—u)+1—0)(Au,, v—1,)+0(1 =) (A(Uy—1u,), Uy—1u,)]
so that

Re [(A(Ou,+A—0)uy), v—(Ou,+1—)u,)+(Ou,+ 1 —O)u,, 0v)

—(f, v—=(Ou,+A—0)u,))] = 01 —0O)a|| ty—u, |3 = 0
hence (1.11) follows.

1.4. Example of operator 0.

Let G(s) be a continuous semi-group [4] [16] in <V’ and in &; in other
words G(s) € L(V'; VYNL(V ; V), GG = G(s+1) and Yv e <V (resp. V')
s—G(s)v is continuous from s=0—CY (resp. <¢/). It follows from interpola-
tion theory in Hilbert spaces [6] that G(s) is a continuous semi-group in 4.
We assume that

1.12) | G M ceses o = 1, s=0.

Let G*(s) be the adjoint semi-group of G(s); it has analogous properties. We
now define:

(1.13) —/ (resp. —/A*)=infinitesimal generator of G (resp. G*).

More precisely, D(A4; <) (resp. D(A; <v’), resp. D(A; 4)) denotes the domain
of A in < (resp. &V’, resp. 4). Same thing for A*.
We now define:

(1.14) =A%  D@)= D(A*; cvr).

ProposiTioN 1.1, If [1.12) holds true, then one has for the choice
of 0.

Proor. Let v be given in <V D(A*; ). Let p, be a regularizing
sequence of C*= functions of ¢, with compact support in >0, p,(t)=0,

goopn(t)dtzl, support of p,=[0,¢,], ¢,—0. We define
0
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(1.15) G*on) - v=| 0°°G*<s>v . 0u(s)ds .

Then G*(p,)v € D(A*; V), (hence in D(A*; %)) and A*G*(p,)v— A*v in Y’ as
n—oo. We have

(1.16) Re (v, A*v) = lim Re (G*(p,)v, A*¥*G*(p,)v).

But G*(s) being a contraction semi group in 4, one has (—/A* is the infinite-
simal generator of G*(s)) Re (G*(p,)v, 4*G*(p,)v)=0 and the desired result

follows from [1.16).

2. The case of equations

2.1. A general result.

THEOREM 2.1. Let A be given satisfying (1.1); let 0 be given by with
(1.13) and let f be given in <v’. There exists one element u and only
one such that

@2.1) ue Y N\DU; vy
2.2) Aut+Au=f.
PRrOOF.
1) Existence.
We apply with & =cV; there exists u <y such that

Re [(Au, v—u)+(u, A*)—(f, v—uw)]=0 Yo e v N\ D(A*; 7).
Then
Re [(L’qu! U)—f‘(uy A*T/)—(f, U)] % Re [(Uzlu: u)_(f: u)] Vv & CVF\ D(A* ’ CV/)

which implies

(2.3) (Au, v)+(u, A*)=(f, v) Vv € < N\ D(A*; <v7)
and
24 (Au, w)y=(f, uw).

It follows from [2.3) that the form v—(u, A*v)=(f—Ju, v) is continuous on
D(A*; cv) provided with the topology of <V, so that u e D(4; V') (hence u
satisfies and (u, A*v)=(Au, v). Therefore

(AutAu—f, )=0  Yve D DU ; V).

But & ~ D(A*; <¢’) is dense in <V and is satisfied.
2) Uniqueness.
Let u be in <¥ ~\ D(A; <V’) satisfying
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Aut+Au=0.
We have to prove that u=0. But
Re (Au, u)+Re (Au, u)=0,
and it will be enough to prove that
Re (Au, u)=0 Yuesy n\D(U; V).
This is Proposition 1.1 (with A* replaced by A).

2.2. Examples.

ExaMPLE 2.1. Let V and H be two Hilbert spaces, with VcH, V-H
continuous, V dense in H. Let V’ be the anti-dual of V;if we identify H to
its anti-dual, we have

VcCHCV.
We define, for T given < oo,

@ =1L,0, T; V) (square integrable functions in (0, T) with values in V),
I =L,0,T; H); then v =L,0,T; V).
Let A(), t= (0, T'), be a family of operators which satisfy:

(2.5) A e L(V; V)

(2.6) t—<{ A(Du, v) 1is measurable Vu,vc V¥

2.7 - Re(A@w,vd>=allv|}y for a.e.t. YveV, a>0.
We define .1 by

(2.8) JAv() = A@v(t) for a.e.t, vew

and A satisfies (1.1).
We define next the semi-group G(s) by

0 if t<s
ftt—s) if s<t<T

This is a continuous contraction semi group in 4 (and <, and <V’). The
adjoint semi-group is defined by

29 G<s>f<t>={ Fecw (or % or ).

f+s) if 0<t<T—s

(210) G*<S)f(t):‘ 0 if T—s<i<T
—S .

We have:

4) {,) denotes the anti-linear scalar product between V’/ and V and the scalar
product in H.
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@11) s evn={fifear, Y ecar, [0=0}
and
212) ar="4.

THEOREM 2.1. gives: For f given itn S/, there exists an element u in <
and only one such that

(2.13) A+ =) a.e.

(214 u(0)=0,

if the family A(t) satisfies [(2.5) [2.6) [2.7). This result was proved, by a dif-
ferent method in and by essentially the same method in [7].

ExaMpLE 2.2. We choose <V, 4, cV/, A as in Example 2.1. We define
now G(s) by '

ft—s+T) if 0<t<s

(2.15) COfD=| ,
St—s) if s<t<T.
In this case it is a group; if s <0,
f(t—s) if 0<t<T+s
G()f () = [ ,
f@+s—T) if TH+s<t<T

and G*(s)=G(—s).
We have

(2.16) ot n={rifea, Fear, qo=nm}

and Theorem 2.1 gives: for f given in CV/, there exists an element u in <V
and only one such that

2.17) A(t)u(t)+ﬁ%2 —f)  ae.
(2.18) 1(0) = u(T).

We obtain the existence and uniqueness of a periodic solution of (2.17), cf.
another proof in [5].

2.3. Remarks.
REMARK 2.1. The solutions u of (2.2) depends continuously on f; one can
state:

(2.19) A+A is an isomorphism form < ~ D(4; V') onto V7.

If _7* denotes the adjoint of .1, we have in the same way
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(2.19 bis) A¥4+A* is an isomorphism form <V~ D(A*; <V’) onto &V’ .

REMARK 2.2. We can now transpose (2.19 bis) to obtain (we do not give
explicit technical details).

(2.20) A+ is an isomorphism from <y onto (¢ N D(A*; cp)) .

By interpolation in Hilbert spaces [6] (and with the notations of [1] [8]) we
get
A+ is an isomorphism from [y ~ D4 ; <v’), V], =@ onto

.21
[CV/: (CV M D(A* 5 CV/))/]I/Z =7.

It is interesting to know if the two spaces @ and ¥ are in duality; this is
related to questions considered in [3] [97]; for parabolic partial differential
operators, this question was considered in [2].

In case of Example 2.1 the spaces @ and ¥ are not in duality. In case
of Example 2.2, D(A, V') = D(A*; cy’) and then @ = ¥”. [In all these examples
one can give a constructive definition of @ and ¥. See [17].]

3. A uniqueness theorem for inequalities

3.1. General result.

THEOREM 3.1. Hypotheses of [Theorem 1.1 We assume moreover that
@3.D G(s) is a group of unitary operators in X ;
(3.2 G(s) X T K Vs.

Then admits a unique solution.
ProoF (of uniqueness).
1) Let p be a C> function on R’ with compact support and even. We

define G(go)v:J+mG(s)vgp(s)ds V¢ continuous with compact support, (and the
analogous definition for G*(¢)). We note that

(33 G +GHpn=0  (po'= %g_

(since G*(s)=G(—s) and p’ is odd, p being even).
We remark now that

34 it p20, [ plds=1, then G¥(pw e DU ; V).

The only thing to check is that G*(p)v € K ; but by hypothesis G*(s)v e X
and then ‘fmG*(s)v - p(s)ds € X since X is convex (convexity theorem).
2) Let now u, and u, be two solutions of (1.4). Therefore:



Remarks on evolution inequalities 339

[Re (Auy, v—uy)+(u,, A¥0)—(f, v—u)]=0 Yve v DUA*; )

3.5), -1z,
We take a regularizing sequence of C* functions, say p, which are even,
and we choose:

v=G*p,)u, in (3.5),, G*(p)u, 1n (3.5),
(which is allowed, thanks to [3.4)).

Adding up, we obtain, after setting
Xy = (Auy, () — )+ (Alky, G*(00)111—1s)
Yy = (uy, G*(on)uz)+(us, G*(pn)uy),

Zn=(f, G*(pn)u—t;+G*(0n)u;—u,),
that
Re (Xn+ Yn“Zn) = 0.
But
2Re Y, = (G(op)+G*(or)u, us)+({(G(o)+G*(on))us, u) =0
by using [(3.3} As n—oo,
Zy— 0 and Xy = — (AU, —us), u;—us)

so that we obtain at the limit

. —Re (A(u,—uy), u;—u,) =0
1. €.
allu,—u, |4 < Re (A, —uy), u,—u,) <0, hence u,=u,.

REMARK 3.1. One can give a complement to Theorem 3.1 when X is a
cone:

THEOREM 3.2. Hypotheses of Theorem 31. We assume moreover that
(3.6) KX is a cone.

Then (1.4) is equivalent to the system

3.7 Re [(Au, v)+u, A*)—(f, v)] =0 Yo e K N DUA*, vy,
(3.8) Re [(Au, u)—(f, u)]=0.

Proor. We have only to prove that the unique solution u of (1.4) satisfies
(3.7) and (3.8).
If w is arbitrarily chosen in 4 ~ D(A*; <), we take in (1.4)

v=1v,=G*"pu+w (notations of the proof of Theorem 3.1).
We get:
Re [(Au, C¥(p)u—u+w)+(u, G*(on)w)+, A*w)—(f, G*(p)u—u+w)] =0
But (cf. (3.3)) Re (u, G¥*(p,)u)=0 and if we let n— oo, we obtain
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Re [(Au, w)+u, A*w)—(f, w)1=0

which proves [3.7).
If we take w=G*(p,)u in and let n— oo, we obtain

On another hand, taking v=0 in leads to the opposite inequality, hence
follows, which completes the proof.

3.2. Example.
We choose <, 4, <V’/, A, G(s) as in Example 2.2, Section 2.2. We now
take:

3.9 K =closed convex set in"V,
and
(3.10) K={lve L, T, V), v(t)=s K for a.e. t}.

We define in this way a closed convex set in ¢ and condition is satisfied.
Theorem 3.1 gives:
There exists an element u and only one in X such that

(3.11) Re jjj(A(t)u(t), v(t)-u(t)>—<u(t), dl:i(tt)

>~< f(), v()—u(®))1dt =0

Voe s such that %@ ey’ and w(0)=u(T).

3.3. The case of partial differential operators.
Let £ be an open set in R*. With notations of Example 2.1, Section 2.2,
we take:

3.12) V=H{(D)= {v]v & L), %’: e L2),i=1, -, n}®
(Sobolev space [13]), with the norm:
» | v L.
1oly=(f Gvi+ 3 55 Pdx) T

we take next
3.13) H=L,5);

the anti dual V’ is not a space of distributions on 2 [12].
To simplify a little bit, let us take only real valued functions (we shall
therefore suppress the Re in (3.11)).

5) Derivatives are taken in the sense of distributions in Q.
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We take

(319 A= A(n 1, ) = — 2 50 (aur, D) Fauls,

where

Ay, 035 € Loo(82 X0, TY)),
ax, H=a>0 a.e.,

3 ax DEL, = alli - +E), >0,  ae..

Then (in the duality between V and V),

n ou 0
A vy= 3 [ aix 055 T drt [ ax, Huvds,

and one has 2.7,
We choose now (see

(3.15) K= {vlve H(2), v=0 a.e. on I'=boundary of 2}.

(This makes sense for £ with an arbitrary boundary; in any case it is simple
to check that we define in this way a closed convex set of H(2) if I is
“ smooth ”.)

In this case X (defined by is a cone and Theorem 3.2 applies.
There exists one element u and only one in £ such that

§ rcawmu, vy~ uw, LS~ fw, w1t 20

(3.16)
e s, 90 e, v =uT)
and
@17 § Tcamu®, s -, uny1a=0

We can interpret in the following way: taking for v a C>~ func-
tion with compact support in 2 x [0, 7], (3,16) implies

0 ou
(3.18) A(x, t, ’a?>”+ Sr=r.

Next (see [11I7]) if we set
ou

0y,

n
= > a;(x, t)—gg—cos (v, x;), v=exterior normal to I,
,7=1 Xj

we see that u must satisfy (formally)

(3.19) u=0 on I'x(©0,T) -2

oy, =
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(3.21 U aavu =0 on I'x(,T) (this follows from [3.17))
A

and

3.21) ulx, O=ulx, T).

REMARK 3.2. We can of course extend the preceeding example to higher
order operators, and to other convex sets K. For the case of initial data
(instead of (3.21)) see [11].

REMARK 3.3. Similar problems for hyperbolic operators were considered
in a lecture at the Leray’s Seminar, December 1965.

University of Paris
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