Remarks on evolution inequalities

By J. L. LIONS¹⁾

(Received May 17, 1966)

Introduction

The Lax-Milgram Lemma was extended by G. Stampacchia [4] to the following: if a(u, v) is a continuous bilinear form *coercive* on a (real) Hilbert space V and if K is a closed convex set in V, then, given a continuous linear form $v \to L(v)$ on V, there exists a unique element u in K such that $a(u, v-u) \ge L(v-u) \ \forall v \in K$ (the Lax-Milgram Lemma corresponds to the case when K = V).

In a joint work with Stampacchia [10] [11] we studied similar problems for bilinear forms which are (i) either ≥ 0 but not coercive (ii) either defined on two different Hilbert spaces.

In this paper we give some complements to the result of [11] on (ii). This will solve, as a particular case—see Section 3.3. below—the following non linear boundary value problem: find a function u(x, t), $x \in \Omega \subset \mathbb{R}^n$, $t \in (0, T)$, $T < \infty$, such that:

(1)
$$\frac{\partial u}{\partial t} - \Delta u + u = f \qquad \left(\Delta = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_n^2} \right),$$

(2)
$$u \ge 0$$
 on $\Gamma \times (0, T)$ $(\Gamma = \text{boundary of } \Omega)$

$$\frac{\partial u}{\partial \nu} \ge 0$$
 on $\Gamma \times (0, T)$ $\left(\frac{\partial}{\partial \nu} = \text{exterior normal derivative}\right)$

$$u \cdot -\frac{\partial u}{\partial \nu} = 0$$
 on $\Gamma \times (0, T)$,

(3)
$$u(x, 0) = u(x, T)$$
.

(The case when instead of the "periodic problem" (3) we consider the "initial value problem" u(x, 0) = given was solved in [11].)

Section 1 gives a general existence theorem; Section 2 gives applications to "ordinary" evolution equations and Section 3 gives a general existence

¹⁾ This paper develops technical details of part of a lecture given at the Annual Meeting of the Math. Soc. Japan, Kyoto, May 1966. Other parts of the lecture corresponded to a joint work with G. Stampacchia [10] [11].

332 J. L. Lions

and uniqueness theorem (Theorem 3.1) which solves, as a rather particular case, problem (1) (2) (3).

1. An existence theorem

1.1. Hypothese. Existence result.

Let $\mathcal{C}V$ and \mathcal{H} be two Hilbert spaces on C^{2} , with $\mathcal{C}V \subset \mathcal{H}$, the injection $\mathcal{C}V \to \mathcal{H}$ being continuous and $\mathcal{C}V$ being dense in \mathcal{H} . We denote by (,) the scalar product in \mathcal{H} . If we identify \mathcal{H} to its anti-dual, and if $\mathcal{C}V'$ denotes the anti-dual of $\mathcal{C}V$, we have

$$Q \subset \mathcal{A} \subset Q'$$
:

if $f \in \mathcal{CV}'$, $v \in \mathcal{CV}$, (f, v) denotes the scalar product of f and v; in case $f \in \mathcal{H}$, (f, v) coincides with the scalar product in \mathcal{H} , which justifies the notation. The three main data are the operators \mathcal{A} and ∂ and the convex set \mathcal{K} .

The operator \mathcal{A} is given in $\mathcal{L}(\mathcal{CV}; \mathcal{CV}')$ (i.e. space of continuous linear mappings from \mathcal{CV} to \mathcal{CV}'), such that

(1.1)
$$\operatorname{Re}(\mathcal{A}v, v) \geq \alpha \|v\|_{\mathcal{C}V}^{2}, \ \alpha > 0, \ \forall v \in \mathcal{C}V.$$

The operator ∂ is an unbounded operator in $\mathbb{C}V'$, with domain $D(\partial)$ dense in $\mathbb{C}V'$; we assume that ∂ is closed and that

$$(1.2) Re(v, \partial v) \ge 0 \forall v \in \mathcal{C}V \cap D(\partial).$$

The set \mathcal{K} is closed and convex in \mathcal{CV} such that

$$\mathcal{K} \cap D(\partial) \neq \phi.$$

We can now state:

THEOREM 1.1. Let \mathcal{A} , ∂ , \mathcal{K} be given, satisfying (1.1) (1.2) (1.3). There exists $u \in \mathcal{K}$ such that

(1.4) Re
$$[(\mathcal{A}u, v-u)+(u, \partial v)-(f, v-u)] \ge 0 \quad \forall v \in \mathcal{K} \cap D(\partial)$$
.

1.2. Proof of Theorem 1.1.

1) As a first step we use the *elliptic regularization* [7] analogously to [11], Section 7. Let $\varepsilon > 0$. We consider on $\mathcal{W} = \mathcal{CV} \cap D(\partial)$ the sesquilinear form

$$\pi_{\varepsilon}(u, v) = (\mathcal{A}u, v) + (u, \partial v) + \varepsilon(\partial u, \partial v)_{cv}$$
.

We provide W with the Hilbertian norm

$$(\|v\|_{CV}^2 + \|\partial v\|_{CV}^2)^{1/2} = \|v\|_{W}$$
.

We have, thanks to (1.1) and (1.2):

²⁾ In the case of *real* Hilbert spaces, one has just to drop the "Real part" in the inequalities of the paper.

(1.5)
$$\operatorname{Re} \pi_{\varepsilon}(v, v) \geq \alpha \|v\|_{CV}^2 + \varepsilon \|\partial v\|_{CV}^2 \geq \inf (\alpha, \varepsilon) \|v\|_{W}^2;$$

therefore, due to the Stampacchia's theorem [14], there exists a unique element $u_{\varepsilon} \in \mathcal{K} \cap D(\partial)$ such that

(1.6)
$$\operatorname{Re} \pi_{\varepsilon}(u_{\varepsilon}, v - u_{\varepsilon}) \ge \operatorname{Re} (f, v - u_{\varepsilon}) \quad \forall v \in \mathcal{K} \cap D(\partial).$$

2) In the second step, we prove that we can extract from u_{ε} a subsequence which converges (weakly) to a solution of (1.4). Let v be chosen fixed in $\mathcal{K} \cap D(\partial)$. It follows from (1.6) and (1.5) that

$$\alpha \| u_{\varepsilon} \|_{CV}^{2} + \varepsilon \| \partial u_{\varepsilon} \|_{CV'}^{2} \leq \operatorname{Re} \pi_{\varepsilon}(u_{\varepsilon}, v) - \operatorname{Re} (f, v - u_{\varepsilon})$$

$$\leq \| \mathcal{A}u_{\varepsilon} \|_{CV'} \| v \|_{CV} + \| u_{\varepsilon} \|_{CV} \| \partial v \|_{CV'} + \varepsilon \| \partial u_{\varepsilon} \|_{CV'} \| \partial v \|_{CV'}$$

$$+ \| f \|_{CV'} \| u_{\varepsilon} \|_{CV} + \| f \|_{CV'} \| v \|_{CV}^{8}$$

$$\leq C \| u_{\varepsilon} \|_{CV} + C\varepsilon \| \partial u \|_{CV'} + C$$

$$\leq \frac{\alpha}{2} \| u_{\varepsilon} \|_{CV}^{2} + \frac{\varepsilon}{2} \| \partial u_{\varepsilon} \|_{CV'}^{2} + C$$

hence

Therefore we can extract a subsequence, say u_{η} , $\eta \rightarrow 0$, such that

$$(1.8) u_n \to w weakly in CV.$$

Since $u_n \in \mathcal{K}$ and since \mathcal{K} is weakly closed in \mathcal{CV} , it follows that

$$(1.9) w \in \mathcal{K}.$$

We deduce from (1.6)

$$\operatorname{Re}(\mathcal{A}u_{\varepsilon}, u_{\varepsilon}) + (u_{\varepsilon}, \partial u_{\varepsilon}) + \varepsilon \|\partial u_{\varepsilon}\|_{CV}^{2} \leq \operatorname{Re}\pi_{\varepsilon}(u_{\varepsilon}, v) - \operatorname{Re}(f, v - u_{\varepsilon}).$$

Since $(u_{\varepsilon}, \partial u_{\varepsilon}) \ge 0$, it follows that (taking $\varepsilon = \eta$)

(1.10)
$$\operatorname{Re}(\mathcal{A}u_{\eta}, u_{\eta}) \leq \operatorname{Re} \pi_{\eta}(u_{\eta}, v) - \operatorname{Re}(f, v - u_{\eta}).$$

But

$$\liminf_{n\to 0} \operatorname{Re}(\mathcal{A}u_{n}, u_{n}) \geq \operatorname{Re}(\mathcal{A}w, w)$$

so that (1.10) implies

$$\operatorname{Re}(Aw, w) \leq \operatorname{Re} \pi(w, v) - \operatorname{Re}(f, v - w)$$

where $\pi(w, v) = (\mathcal{A}w, v) + (w, \partial v)$. In other words

Re
$$\lceil (Aw, v-w) + (w, \partial v) - (f, v-w) \rceil \ge 0$$

and one can take u = w as a solution of (1.4).

⁵⁾ The C's denote various constants (which do not depend on ϵ).

334 J. L. Lions

1.3. The set of solutions.

It is not known whether there is *uniqueness* or not of the solution of the inequation (1.4). We will give below in Section 3 examples where the uniqueness holds. For the time being let us notice (this is a variant of Theorem 3.1 of [11]):

(1.11) The set X of all solutions $u \in \mathcal{K}$ of (1.4) is closed and convex.

Let us check that X is convex (it is obviously closed). Let u_1 and u_2 be two elements of X; if $0 < \mathcal{O} < 1$, we have (after an easy calculation)

$$Re \left(\mathcal{A}(\mathcal{O}u_1 + (1 - \mathcal{O})u_2), v - (\mathcal{O}u_1 + (1 - \mathcal{O})u_2) \right)$$

$$= Re \left[\mathcal{O}(\mathcal{A}u_1, v - u_1) + (1 - \mathcal{O})(\mathcal{A}u_2, v - u_2) + \mathcal{O}(1 - \mathcal{O})(\mathcal{A}(u_2 - u_1), u_2 - u_1) \right]$$

so that

$$\operatorname{Re} \left[\left(\mathcal{A}(\mathcal{O}u_1 + (1 - \mathcal{O})u_2), v - (\mathcal{O}u_1 + (1 - \mathcal{O})u_2) \right) + \left(\mathcal{O}u_1 + (1 - \mathcal{O})u_2, \partial v \right) \right] \\
- \left(f, v - (\mathcal{O}u_1 + (1 - \mathcal{O})u_2) \right) \ge \mathcal{O}(1 - \mathcal{O})\alpha \| u_2 - u_1 \|_{\mathcal{C}V}^2 \ge 0$$

hence (1.11) follows.

1.4. Example of operator ∂ .

Let G(s) be a continuous semi-group [4] [16] in $\mathcal{C}V'$ and in $\mathcal{C}V$; in other words $G(s) \in \mathcal{L}(\mathcal{C}V'; \mathcal{C}V') \cap \mathcal{L}(\mathcal{C}V; \mathcal{C}V)$, G(s)G(t) = G(s+t) and $\forall v \in \mathcal{C}V$ (resp. $\mathcal{C}V'$) $s \to G(s)v$ is continuous from $s \geq 0 \to \mathcal{C}V$ (resp. $\mathcal{C}V'$). It follows from interpolation theory in Hilbert spaces [6] that G(s) is a continuous semi-group in \mathcal{H} . We assume that

(1.12)
$$||G(s)||_{\mathcal{L}(\mathcal{H};\mathcal{H})} \leq 1, \qquad s \geq 0.$$

Let $G^*(s)$ be the adjoint semi-group of G(s); it has analogous properties. We now define:

(1.13)
$$-\Lambda$$
 (resp. $-\Lambda^*$) = infinitesimal generator of G (resp. G^*).

More precisely, $D(\Lambda; \mathcal{C}V)$ (resp. $D(\Lambda; \mathcal{C}V')$, resp. $D(\Lambda; \mathcal{H})$) denotes the domain of Λ in $\mathcal{C}V$ (resp. $\mathcal{C}V'$, resp. \mathcal{H}). Same thing for Λ^* .

We now define:

(1.14)
$$\partial = \Lambda^* \qquad D(\partial) = D(\Lambda^*; \mathcal{O}').$$

PROPOSITION 1.1. If (1.12) holds true, then one has (1.2) for the choice (1.14) of ∂ .

PROOF. Let v be given in $CV \cap D(\Lambda^*; CV')$. Let ρ_n be a regularizing sequence of C^{∞} functions of t, with compact support in t > 0, $\rho_n(t) \ge 0$, $\int_0^{\infty} \rho_n(t) dt = 1$, support of $\rho_n \in [0, \varepsilon_n]$, $\varepsilon_n \to 0$. We define

(1.15)
$$G^*(\rho_n) \cdot v = \int_0^\infty G^*(s)v \cdot \rho_n(s)ds.$$

Then $G^*(\rho_n)v \in D(\Lambda^*; \mathcal{C}V)$, (hence in $D(\Lambda^*; \mathcal{H})$) and $\Lambda^*G^*(\rho_n)v \to \Lambda^*v$ in $\mathcal{C}V'$ as $n \to \infty$. We have

(1.16)
$$\operatorname{Re}(v, \Lambda^* v) = \lim_{n \to \infty} \operatorname{Re}(G^*(\rho_n)v, \Lambda^* G^*(\rho_n)v).$$

But $G^*(s)$ being a contraction semi group in \mathcal{A} , one has $(-\Lambda^*)$ is the infinite-simal generator of $G^*(s)$) Re $(G^*(\rho_n)v, \Lambda^*G^*(\rho_n)v) \ge 0$ and the desired result follows from (1.16).

2. The case of equations

2.1. A general result.

Theorem 2.1. Let \mathcal{A} be given satisfying (1.1); let ∂ be given by (1.14) with (1.12) (1.13) and let f be given in $\mathcal{C}V'$. There exists one element u and only one such that

$$(2.1) u \in {}^{C}V \cap D(\Lambda; {}^{C}V')$$

PROOF.

1) Existence.

We apply Theorem 1.1 with $\mathcal{K} = \mathcal{O}$; there exists $u \in \mathcal{O}$ such that

Re
$$[(Au, v-u)+(u, \Lambda^*v)-(f, v-u)] \ge 0$$
 $\forall v \in \mathcal{C} \setminus D(\Lambda^*; \mathcal{C}').$

Then

Re $[(\mathcal{A}u, v) + (u, \Lambda^*v) - (f, v)] \ge \text{Re}[(\mathcal{A}u, u) - (f, u)] \quad \forall v \in \mathcal{V} \cap D(\Lambda^*; \mathcal{V}')$ which implies

$$(2.3) (\mathcal{A}u, v) + (u, \Lambda^*v) = (f, v) \forall v \in \mathcal{V} \cap D(\Lambda^*; \mathcal{V}')$$

and

$$(2.4) \qquad (\mathcal{A}u, u) = (f, u).$$

It follows from (2.3) that the form $v \to (u, \Lambda^* v) = (f - \mathcal{A}u, v)$ is continuous on $D(\Lambda^*; \mathcal{C}V)$ provided with the topology of $\mathcal{C}V$, so that $u \in D(\Lambda; \mathcal{C}V')$ (hence u satisfies (2.1)) and $(u, \Lambda^* v) = (\Lambda u, v)$. Therefore

$$(\mathcal{A}u + \Lambda u - f, v) = 0$$
 $\forall v \in \mathcal{C}V \cap D(\Lambda^*; \mathcal{C}V').$

But $\mathcal{O} \cap D(\Lambda^*; \mathcal{O}')$ is dense in \mathcal{O} and (2.2) is satisfied.

2) Uniqueness.

Let u be in $CV \cap D(\Lambda; CV')$ satisfying

$$Au + \Lambda u = 0$$
.

We have to prove that u = 0. But

$$\operatorname{Re}(Au, u) + \operatorname{Re}(Au, u) = 0$$
,

and it will be enough to prove that

Re
$$(\Lambda u, u) \ge 0$$
 $\forall u \in \mathcal{V} \cap D(\Lambda; \mathcal{V}')$.

This is Proposition 1.1 (with Λ^* replaced by Λ).

2.2. Examples.

EXAMPLE 2.1. Let V and H be two Hilbert spaces, with $V \subset H$, $V \to H$ continuous, V dense in H. Let V' be the anti-dual of V; if we identify H to its anti-dual, we have

$$V \subset H \subset V'$$
.

We define, for T given $<\infty$,

 $CV = L_2(0, T; V)$ (square integrable functions in (0, T) with values in V), $\mathcal{H} = L_2(0, T; H)$; then $CV' = L_2(0, T; V')$.

Let A(t), $t \in (0, T)$, be a family of operators which satisfy:

$$(2.5) A(t) \in \mathcal{L}(V; V')$$

(2.6)
$$t \rightarrow \langle A(t)u, v \rangle$$
 is measurable $\forall u, v \in V^{4}$

(2.7) Re
$$\langle A(t)v, v \rangle \ge \alpha \|v\|_V^2$$
 for a. e. t. $\forall v \in V, \alpha > 0$.

We define A by

(2.8)
$$\mathcal{A}v(t) = A(t)v(t)$$
 for a. e. t., $v \in \mathcal{C}V$

and \mathcal{A} satisfies (1.1).

We define next the semi-group G(s) by

(2.9)
$$G(s)f(t) = \begin{cases} 0 & \text{if} \quad t < s \\ f(t-s) & \text{if} \quad s < t < T \end{cases}, \quad f \in \mathcal{C} \text{ (or } \mathcal{H} \text{ or } \mathcal{C} \mathcal{C}').$$

This is a continuous contraction semi group in \mathcal{H} (and \mathcal{CV}). The adjoint semi-group is defined by

(2.10)
$$G^*(s)f(t) = \begin{cases} f(t+s) & \text{if } 0 < t < T - s \\ 0 & \text{if } T - s < t < T. \end{cases}$$

We have:

⁴⁾ \langle , \rangle denotes the anti-linear scalar product between V' and V and the scalar product in H.

(2.11)
$$D(\Lambda; \mathcal{C}V') = \left\{ f | f \in \mathcal{C}V', \quad \frac{df}{dt} \in \mathcal{C}V', \quad f(0) = 0 \right\}$$

and

$$\Lambda f = \frac{df}{dt} .$$

THEOREM 2.1. gives: For f given in CV', there exists an element u in CV and only one such that

(2.13)
$$A(t)u(t) + \frac{du}{dt}(t) = f(t) \quad \text{a. e.}$$

$$(2.14) u(0) = 0,$$

if the family A(t) satisfies (2.5) (2.6) (2.7). This result was proved, by a different method in [5] and by essentially the same method in [7].

EXAMPLE 2.2. We choose \mathcal{CV} , \mathcal{H} , \mathcal{CV}' , \mathcal{A} as in Example 2.1. We define now G(s) by

(2.15)
$$G(s)f(t) = \begin{cases} f(t-s+T) & \text{if } 0 < t < s \\ f(t-s) & \text{if } s < t < T. \end{cases}$$

In this case it is a group; if s < 0,

$$G(s)f(t) = \begin{cases} f(t-s) & \text{if } 0 < t < T+s \\ f(t+s-T) & \text{if } T+s < t < T \end{cases}$$

and $G^*(s) = G(-s)$.

We have

(2.16)
$$D(\Lambda; \mathcal{C}V') = \left\{ f | f \in \mathcal{C}V', \quad \frac{df}{dt} \in \mathcal{C}V', \quad f(0) = f(T) \right\}$$

and Theorem 2.1 gives: for f given in CV', there exists an element u in CV and only one such that

(2.17)
$$A(t)u(t) + \frac{du(t)}{dt} = f(t) \quad \text{a. e.}$$

(2.18)
$$u(0) = u(T)$$
.

We obtain the existence and uniqueness of a *periodic* solution of (2.17), cf. another proof in $\lceil 5 \rceil$.

2.3. Remarks.

REMARK 2.1. The solutions u of (2.2) depends continuously on f; one can state:

(2.19) $\mathcal{A}+\Lambda$ is an isomorphism form $\mathcal{C}V \cap D(\Lambda; \mathcal{C}V')$ onto $\mathcal{C}V'$.

If \mathcal{A}^* denotes the adjoint of \mathcal{A} , we have in the same way

338 J. L. Lions

(2.19 bis) $\mathcal{A}^* + \Lambda^*$ is an isomorphism form $\mathcal{C}V \cap D(\Lambda^*; \mathcal{C}V')$ onto $\mathcal{C}V'$.

REMARK 2.2. We can now transpose (2.19 bis) to obtain (we do not give explicit technical details).

(2.20) $\mathcal{A}+\Lambda$ is an isomorphism from $\mathcal{C}V$ onto $(\mathcal{C}V \cap D(\Lambda^*; \mathcal{C}V'))'$.

By interpolation in Hilbert spaces [6] (and with the notations of [1] [8]) we get

(2.21)
$$\mathcal{A} + \Lambda \text{ is an isomorphism from } [\mathcal{C}V \cap D(\Lambda; \mathcal{C}V'), \mathcal{C}V]_{1/2} = \boldsymbol{\Phi} \text{ onto }$$

$$[\mathcal{C}V', (\mathcal{C}V \cap D(\Lambda^*; \mathcal{C}V'))']_{1/2} = \boldsymbol{\Psi} .$$

It is interesting to know if the two spaces Φ and Ψ are in duality; this is related to questions considered in [3] [9]; for parabolic partial differential operators, this question was considered in [2].

In case of Example 2.1 the spaces Φ and Ψ are *not* in duality. In case of Example 2.2, $D(\Lambda, CV') = D(\Lambda^*; CV')$ and then $\Phi = \Psi'$. [In all these examples one can give a constructive definition of Φ and Ψ . See [17].]

3. A uniqueness theorem for inequalities

3.1. General result.

THEOREM 3.1. Hypotheses of Theorem 1.1. We assume moreover that

(3.1)
$$G(s)$$
 is a group of unitary operators in \mathcal{A} ;

$$(3.2) G(s)\mathcal{K} \subset \mathcal{K} \ \forall s.$$

Then (1.4) admits a unique solution.

PROOF (of uniqueness).

1) Let ρ be a C^{∞} function on \mathbb{R}^s , with compact support and *even*. We define $G(\varphi)v = \int_{-\infty}^{+\infty} G(s)v\varphi(s)ds \quad \forall \varphi$ continuous with compact support, (and the analogous definition for $G^*(\varphi)$). We note that

(3.3)
$$G(\rho') + G^*(\rho') = 0 \qquad \left(\rho' = \frac{d\rho}{ds}\right)$$

(since $G^*(s) = G(-s)$ and ρ' is odd, ρ being even).

We remark now that

(3.4) if
$$\rho \geq 0$$
, $\int_{-\infty}^{+\infty} \rho(s) ds = 1$, then $G^*(\rho) v \in \mathcal{K} \cap D(\Lambda^*; CV')$.

The only thing to check is that $G^*(\rho)v \in \mathcal{K}$; but by hypothesis $G^*(s)v \in \mathcal{K}$ and then $\int_{-\infty}^{+\infty} G^*(s)v \cdot \rho(s)ds \in \mathcal{K}$ since \mathcal{K} is convex (convexity theorem).

2) Let now u_1 and u_2 be two solutions of (1.4). Therefore:

$$(3.5)_{j} \qquad \left\{ \begin{array}{ll} \left[\operatorname{Re}\left(\mathcal{A}u_{j},\,v-u_{j}\right)+\left(u_{j},\,\Lambda^{*}v\right)-\left(f,\,v-u_{j}\right)\right] \geq 0 & \forall v \in \mathcal{CV} \cap D(\Lambda^{*}\,;\,\mathcal{CV'}) \\ \\ j=1,\,2\,. \end{array} \right.$$

We take a regularizing sequence of C^{∞} functions, say ρ_n , which are *even*, and we choose:

$$v = G^*(\rho_n)u_2$$
 in $(3.5)_1$, $G^*(\rho_n)u_1$ in $(3.5)_2$

(which is allowed, thanks to (3.4)).

Adding up, we obtain, after setting

$$\begin{split} X_n = (\mathcal{A}u_1, \ G^*(\rho_n)u_2 - u_1) + (\mathcal{A}u_2, \ G^*(\rho_n)u_1 - u_2) \text{,} \\ Y_n = (u_1, \ G^*(\rho'_n)u_2) + (u_2, \ G^*(\rho'_n)u_1) \text{,} \\ Z_n = (f, \ G^*(\rho_n)u_2 - u_1 + G^*(\rho_n)u_1 - u_2) \text{,} \end{split}$$

that

Re
$$(X_n + Y_n - Z_n) \ge 0$$
.

But

2 Re
$$Y_n = ((G(\rho'_n) + G^*(\rho'_n))u_1, u_2) + ((G(\rho'_n) + G^*(\rho'_n))u_2, u_1) = 0$$

by using (3.3). As $n \rightarrow \infty$,

$$Z_n \rightarrow 0$$
 and $X_n \rightarrow -(\mathcal{A}(u_1 - u_2), u_1 - u_2)$

so that we obtain at the limit

$$-\text{Re}(\mathcal{A}(u_1-u_2), u_1-u_2) \ge 0$$

i.e.

$$\alpha \| u_1 - u_2 \|_{CV}^2 \le \text{Re} (\mathcal{A}(u_1 - u_2), u_1 - u_2) \le 0, \quad \text{hence} \quad u_1 = u_2.$$

REMARK 3.1. One can give a complement to Theorem 3.1 when $\mathcal K$ is a cone:

Theorem 3.2. Hypotheses of Theorem 3.1. We assume moreover that (3.6) K is a cone.

Then (1.4) is equivalent to the system

$$(3.7) \operatorname{Re} \left[(\mathcal{A}u, v) + (u, \Lambda^*v) - (f, v) \right] \ge 0 \forall v \in \mathcal{K} \cap D(\Lambda^*, \mathcal{C}V'),$$

(3.8)
$$\operatorname{Re} [(Au, u) - (f, u)] = 0.$$

PROOF. We have only to prove that the unique solution u of (1.4) satisfies (3.7) and (3.8).

If w is arbitrarily chosen in $\mathcal{K} \cap D(\Lambda^*; \mathcal{CV})$, we take in (1.4)

$$v = v_n = G^*(\rho_n)u + w$$
 (notations of the proof of Theorem 3.1).

We get:

Re
$$[(Au, C^*(\rho_n)u - u + w) + (u, G^*(\rho'_n)u) + (u, A^*w) - (f, G^*(\rho_n)u - u + w)] \ge 0$$

But (cf. (3.3)) Re $(u, G^*(\rho'_n)u) = 0$ and if we let $n \to \infty$, we obtain

Re
$$[(\mathcal{A}u, w)+(u, \Lambda^*w)-(f, w)] \ge 0$$

which proves (3.7).

If we take $w = G^*(\rho_n)u$ in (3.7) and let $n \to \infty$, we obtain

Re
$$[(\mathcal{A}u, u)-(f, u)] \ge 0$$
.

On another hand, taking v=0 in (1.4) leads to the opposite inequality, hence (3.8) follows, which completes the proof.

3.2. Example.

We choose CV, \mathcal{A} , CV', \mathcal{A} , G(s) as in Example 2.2, Section 2.2. We now take:

(3.9)
$$K =$$
closed convex set in V ,

and

(3.10)
$$\mathcal{K} = \{v \mid v \in L_2(0, T, V), v(t) \in K \text{ for a. e. } t\}.$$

We define in this way a closed convex set in \mathcal{CV} and condition (3.2) is satisfied. Theorem 3.1 gives:

There exists an element u and only one in \mathcal{X} such that

(3.11)
$$\operatorname{Re} \int_0^T [\langle A(t)u(t), v(t) - u(t) \rangle - \langle u(t), \frac{dv(t)}{dt} \rangle - \langle f(t), v(t) - u(t) \rangle] dt \ge 0$$

$$\forall v \in \mathcal{K} \text{ such that } \frac{dv}{dt} \in \mathcal{C}V' \text{ and } v(0) = v(T).$$

3.3. The case of partial differential operators.

Let Ω be an open set in \mathbb{R}^n . With notations of Example 2.1, Section 2.2, we take:

$$(3.12) V = H^1(\Omega) = \{v \mid v \in L_2(\Omega), \frac{\partial v}{\partial x_i} \in L_2(\Omega), i = 1, \dots, n\}^{5}$$

(Sobolev space [13]), with the norm:

$$||v||_{v} = \left(\int_{\Omega} (|v|^{2} + \sum_{i=1}^{n} \left| \frac{\partial v}{\partial x_{i}} \right|^{2}) dx\right)^{\frac{1}{2}};$$

we take next

$$(3.13) H = L_2(\Omega);$$

the anti dual V' is not a space of distributions on Ω [12].

To simplify a little bit, let us take only real valued functions (we shall therefore suppress the Re in (3.11)).

⁵⁾ Derivatives are taken in the sense of distributions in Q.

We take

(3.14)
$$A(t) = A\left(x, t, \frac{\partial}{\partial x}\right) = -\sum \frac{\partial}{\partial x_i} \left(a_{ij}(x, t) \frac{\partial}{\partial x_i}\right) + a_0(x, t)$$

where

$$a_{0},\,a_{ij}$$
 \in $L_{\infty}(\Omega imes (0,\,T))$, $a_{0}(x,\,t)$ \geqq $lpha > 0$ a. e.,

$$\sum_{i,j=1}^n a_{ij}(x,t)\xi_i\xi_j \ge \alpha(\xi_1^2 + \cdots + \xi_n^2), \ \alpha > 0, \quad \text{a.e.}$$

Then (in the duality between V and V'),

$$\langle A(t)u,v\rangle = \sum_{i,j=1}^{n} \int_{\mathcal{Q}} a_{ij}(x,t) \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{j}} dx + \int_{\mathcal{Q}} a_{0}(x,t) uv dx$$

and one has (2.5) (2.6) (2.7).

We choose now (see [15])

(3.15)
$$K = \{v \mid v \in H^1(\Omega), v \ge 0 \text{ a. e. on } \Gamma = \text{boundary of } \Omega\}$$
.

(This makes sense for Ω with an arbitrary boundary; in any case it is simple to check that we define in this way a closed convex set of $H^1(\Omega)$ if Γ is "smooth".)

In this case \mathcal{K} (defined by (3.10)) is a *cone* and Theorem 3.2 applies. There exists one element u and only one in \mathcal{K} such that

(3.16)
$$\begin{cases} \int_{0}^{T} [\langle A(t)u(t), v(t) \rangle - \langle u(t), \frac{dv(t)}{dt} \rangle - \langle f(t), v(t) \rangle] dt \ge 0 \\ \forall v \in \mathcal{K}, \frac{dv}{dt} \in \mathcal{C}V', v(0) = v(T) \end{cases}$$

and

(3.17)
$$\int_{0}^{T} [\langle A(t)u(t), u(t)\rangle - \langle f(t), u(t)\rangle] dt = 0.$$

We can interpret (3.16) (3.17) in the following way: taking for v a C^{∞} function with compact support in $\Omega \times [0, T]$, (3,16) implies

(3.18)
$$A\left(x, t, \frac{\partial}{\partial x}\right)u + \frac{\partial u}{\partial t} = f.$$

Next (see [11]) if we set

$$\frac{\partial u}{\partial \nu_A} = \sum_{i,j=1}^n a_{ij}(x,t) - \frac{\partial u}{\partial x_j} \cos(\nu, x_i), \quad \nu = \text{exterior normal to } \Gamma,$$

we see that u must satisfy (formally)

(3.19)
$$u \ge 0$$
 on $\Gamma \times (0, T)$, $\frac{\partial u}{\partial \nu_A} \ge 0$ on $\Gamma \times (0, T)$

(3.21)
$$u \cdot \frac{\partial u}{\partial \nu_A} = 0$$
 on $\Gamma \times (0, T)$ (this follows from (3.17))

and

$$(3.21) u(x, 0) = u(x, T).$$

REMARK 3.2. We can of course extend the preceding example to higher order operators, and to other convex sets K. For the case of *initial data* (instead of (3.21)) see [11].

REMARK 3.3. Similar problems for hyperbolic operators were considered in a lecture at the Leray's Seminar, December 1965.

University of Paris

Bibliography

- [1] A.P. Calderon, Intermediate spaces and interpolation, Studia Math. (Ser. Specjalna) Zeszyt 1 (1963), 31-35 (Lecture of 1960).
- [2] S. Kaplan, to appear.
- [3] T. Kato, Fractionnal powers of dissipative operators (I) (II), J. Math. Soc. Japan, 13 (1961), 246-274 and 14 (1962), 242-248.
- [4] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Colloq. Publ. Amer. Math. Soc. 1957.
- [5] J. L. Lions, Equations différentielles opérationnelles et problèmes aux limites, Springer, 1961.
- [6] J. L. Lions, Espaces intermédiaires entre espaces hilbertiens et applications, Bull.
 Math. R. P. R. 2 (50) (1958), 419-432.
- [7] J.L. Lions, Some aspects of operator differential equations, Lectures at Centro Int. Mat. Estivo, Varenna, 1963.
- [8] J. L. Lions, Une construction d'espaces d'interpolation, C. R. Acad. Sci. Paris, 251 (1960), 1853-1855.
- [9] J. L. Lions, Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs, J. Math. Soc. Japan, 14 (1962), 233-241.
- [10] J. L. Lions and G. Stampacchia, Inéquations variationnelles non coercices, C. R. Acad. Sci. Paris, 261 (1965), 25-27.
- [11] J.L. Lions and G. Stampacchia, to appear in Comm. Pure Appl. Math..
- [12] L. Schwartz, Théorie des distributions, Paris, Hermann, 1950, 1951.
- [13] S. L. Sobolev, Certaines applications de l'Analyse Fonctionnelle à la Physique Math., Leningrad, 1950.
- [14] G. Stampacchia, C. R. Acad. Sci. Paris, 258 (1964), 4413-4415.
- [15] G. Stampacchia, Leray's Seminar 1963.
- [16] K. Yosida, Functional Analysis, Springer, 1965.
- [17] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et appications, book to appear in 1967.