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\S 0. Introduction.

A linear Lie group is called elliptic if its Lie algebra contains no matrix
of rank one. A G-structure is called elliptic if $G$ is elliptic. (N. B. $G$ is a linear
subgroup of $GL(n, R).)$ The purpose of this paper is to prove that the glo-
bally defined infinitesimal automorphisms of a G-structure (called G-vector
field) are given by a system of linear elliptic differential equations if and
only if this G-structure is elliptic. (See Lemma for a precise statement.) It
follows easily

THEOREM A. The group of diffeomorphisms of $M$ which leave a given
elliptic G-structure invariant is a finite dimensional Lie group, provided $M$ is
compact.

Theorem A is a generalization of the results of Boothby-Kobayashi-Wang
[1] and Ruh [8]. (In fact, Ruh’s sufficient condition clearly implies that the
G-structure in question is elliptic.) Both Lemma and Theorem A are con-
tained implicitly in Guillemin-Sternberg [3]. Still we feel their explicit
statements with proofs would be worth publishing because of their impor-
tance. Also we shall provide two examples to show that Theorem A is best
possible in a sense, following suggestions of Professor S. Kobayashi and Pro-
fessor S. Sternberg. Also the author wishes to express his thanks to Pro.
fessor T. Nagano and Professor M. Kuranishi.

\S 1. Let $P(M, \pi, G)$ be any G-structure on $M$, and $\mathfrak{g}$ be the Lie algebra
of $G$ . That is, $P$ is a subbundle with structure group $G$ of the frame bundle
of $M$. A (local) diffeomorphism of $M$ is a (local) G-automorphism if and only
if it leaves the G-structure $P(M, \pi, G)$ invariant.

Let $\{x^{1}, \cdots , x^{n}\}$ be a local coordinate system around $z\in M$, defined on an
open neighbourhood $U$ of $M$. Furthermore, we assume that the neighbour-
hood $U$ is so small that it admits a local cross-section $\phi$ from $U$ into $P$ . Let.
$V$ be an open set of $U$ . A local diffeomorphism $f$ from $V$ into $U$ is a local
G-automorphism if and only if there exists a mapping $g$ from $V$ into $G$ such
that

(1) $(df)(\phi(x))=\phi(f(x))\cdot g(x)$
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where $(df)$ means the lift of $f$ to the frame bundle of $M$. The local cross-
section $\phi$ is expressed by $\phi(x)=(x,$ $\sum_{i}\phi_{1}^{\prime}(x)\left(\begin{array}{l}\partial\\--\\\partial x^{i}\end{array}\right)$, $\cdot$ .. , $\sum_{i}\phi_{j}^{i}(x)(\frac{\partial}{\partial x^{i}})_{x}$ , $\cdot$

$\sum_{:}\phi_{n}^{i}(x)(\frac{\partial}{\partial x^{i}})_{x})$ , where $\phi_{j}^{i}(x)(1\leqq i, j\leqq n)$ are differentiable functions on $U$.
By the definition, we have

$(df)\phi(x^{1}, \dot{\alpha}^{\prime}n)=(f(x),$ $\cdots$ $\sum_{\iota.k}\phi_{j}^{l}(x)(-\partial\partial\frac{f^{k}}{X^{i}})_{x}(-\partial\frac{\partial}{X^{k}})_{f(x)}\cdots)$

where $f=$ $(f^{1}, \cdots , f^{n})$ . Let $g_{j^{t}}(x)(1\leqq i, j\leqq n)$ be the ( $i$ , j)-entries of the matrix
$g(x)$ . By (1), we have

$\sum_{i,k}\phi_{j}^{i}(x)(-\partial\partial\frac{f^{k}}{X^{i}})_{x}(\frac{\partial}{\partial x^{k}})_{f(x)}=\sum_{i./}\phi_{l}^{i}(f(x))(-\partial\frac{\partial}{X^{i}})_{f(x)}g_{j^{l}}(x)$ .

Hence we have;

(1)i $\sum_{i}\phi_{j}^{i}(x)(-\partial\partial\frac{f^{k}}{X^{i}})_{x}=\Sigma\phi^{k},(f(x))g_{j}^{\iota}(x)$ .

Since the matrix $(\phi_{j}^{i}(x))_{1\leqq i,j\leqq n}$ is nonsingular, we denote by $(\theta_{j}^{i}(x))_{1=^{i,j\leqq n}}<$ the
inverse matrix of $(\phi_{j}^{i}(x))_{1\leqq i.j\leqq n}$ . Multiplying (1) by $\theta_{k}^{h}(f(x))$ and summing it

up we get $\sum_{i.k}\theta_{k}^{h}(f(x))\phi_{j}^{i}(x)(-\partial\partial\frac{f^{k}}{X^{i}})_{x}=\sum_{l}\delta_{\iota}^{h}g_{j}^{\iota}(x)=g_{j}^{h}(x)$ . Since the matrix

$\langle g_{j}^{\hslash}(x))$ belongs to $G$ , we may write the above equation

(2) $(\sum_{i,k}\theta_{k}^{h}(f(x))\phi_{j}^{i}(x)(-\partial\partial\frac{f^{k}}{X^{i}})_{x})_{\iota\leqq h.j\leqq n}\in G$ .

A vector field on $M$ is a G-vector field of $P$ by definition if and only if

it generates local G-automorphisms. Let $\sum_{i}X^{i}\frac{\partial}{\partial x^{i}}$ be the local expression

on $U$ of an arbitrary vector field ee and $\psi_{t}(|t|<\epsilon)$ be the local one-parameter
group around $z$ which $\mathfrak{X}$ generates. If we take a sufficiently small neigh-
bourhood $V\ni z$ , we may assume that $\psi_{t}(|t|<\epsilon)$ maps $V$ into U. ee is a G-
-vector field if and only if $\psi_{t}$ satisfies the equation (2) for each $t(|t|<\epsilon)$ .
Hence we get

(2) $(\sum_{i.k}\theta_{k}^{h}(\psi_{t}(x))\phi_{j}^{i}(x)(\frac{\partial\psi_{t}^{k}}{\partial x^{i}})_{x})\in G$ for any small $t$ .

The matrix in (2) is the neutral element of $G$ when $t$ equals $0$ . Therefore,
differentiating (2) at $t=0$ with respect to the variable $t$, we get the element
of $\mathfrak{g}$ . I.e.,

$(\frac{\partial}{\partial t}\{\sum_{i.k}\theta_{k}^{h}(\psi_{t}(x))\phi_{j}^{i}(x)(\frac{\partial\psi_{t}^{k}}{\partial x^{i}})_{x}\}|_{t=0})\in \mathfrak{g}$ .

Therefore,
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$(\sum_{t.k.m}(\frac{\partial\theta_{k}^{h}}{\partial x^{i}})_{x}X^{m}\phi_{j}^{\prime}(x)\delta_{i}^{k}+\sum_{i.k}\theta_{k}^{h}(x)\phi_{j}^{l}(x)\frac{\partial X^{k}}{\partial x^{i}})\in \mathfrak{g}$ .
Hence we get

(2) $(\sum_{k}(\theta_{k}^{h}(x)\phi^{i_{\uparrow}}(x)\left(\begin{array}{l}\partial X^{k}\\-\partial_{X^{\overline{i}}}^{-}\end{array}\right)+\phi^{l_{j}}(x)(\frac{\partial\theta_{i}^{h}}{\partial x^{k}})_{x}X^{k}))\in \mathfrak{g}$ .

Let us choose a set of constants $1C^{i}j$ ’... , ${}_{r}C_{i}^{\prime},$ $i,$ ] $=1$ , $\cdot$ .. , $n$ (where $r$ is the
codimension of !il in $\mathfrak{g}\mathfrak{l}(n, R))$ such that

$(a_{j}^{i})\in \mathfrak{q}$ if and only if $\sum_{i..j}{}_{\alpha}C_{j}^{\iota}a_{j}^{J}=0$
, $\alpha=1,$ $\cdots$ , $r$ .

Therefore a G-vector field $\mathfrak{X}$ (locally expressed by $\sum X^{t}\frac{\partial}{\partial_{X^{i}}}$) satisfies the

linear differential equation with unknown functions $X^{1},$
$\cdots,$

$X^{n}$ ;

(3)
$\sum_{i,k,j.h}{}_{\alpha}C_{h}^{j}(\theta_{k}^{h}(x)\phi_{f}^{t}(x)(\frac{\partial X^{k}}{\partial x^{i}})_{x}+\phi_{j}^{i}(x)-\frac{\partial\theta_{i}^{h}(x)}{\partial x^{k}}X^{k})=0$ ,

$\alpha=1,$ $\prime r$ .
Let $D$ be the linear differential operator which corresponds to (3). For any
n-tuple $\xi=$ $(\xi_{1}, \cdots , \xi_{n})\neq 0$ , we denote by $S(x, \xi)_{k}^{\alpha}(\alpha=1, r;k=1, n)$

$S(x, \xi)_{k}^{\alpha}=\sum_{h.i.j}{}_{\alpha}C_{h}^{j}\theta_{k}^{h}(x)\phi_{j}^{i}(x)\xi_{i}$ .

The matrix $(S(x, \xi)_{k}^{\alpha})$ is the symbol of $D$ with respect to $\xi$ at $x\in V$ . Let
$D^{*}$ be the adjoint operator of $D$ with respect to the usual inner product
$\langle(x^{i}), (y^{i})\rangle=\sum_{\iota}x^{i}y^{\iota}$ . It is well known that the symbol $(\hat{S}(x, \xi)_{q}^{p})$ ( $n\times n$ matrix)

of the 2nd order linear differential operator $D^{*}D$ with respect to $\xi$ at $x$ is
given by ${}^{t}(S(x, \xi)_{k}^{a})(S(x, \xi)_{k}^{\alpha})$ .

Now we shall prove,
LEMMA. The 2nd order linear differential operator $D^{*}D$ is elliptic $if$ and

only if $P(M, \pi, G)$ is elliptic $i$ . $e$ . $\zeta i$ contains no element of rank one.
PROOF. Only-if part; Suppose the equation $(\hat{S}(x, \xi)_{q}^{p})\mathfrak{a}=0$ holds for some

$x,$ $\xi$ and $tI=(a^{i})_{1\leqq i\leqq n}$ . Therefore $\langle(\hat{S}(x, \xi)_{q}^{p})\mathfrak{a}, \mathfrak{a}\rangle=0$ . By the definition we get,
$\langle(\hat{S}(x, \xi)_{q}^{p})(\ddagger \mathfrak{a}\rangle=\langle{}^{t}(S(x, \xi)_{k}^{\alpha})(S(x, \xi)_{k}^{\alpha})\mathfrak{a}, \mathfrak{a}\rangle=\langle(S(x, \xi)_{k}^{a})\mathfrak{a}, (S(x, \xi)_{k}^{\alpha})\mathfrak{a}\rangle$ . Hence
$(S(x, \xi)_{k}^{\alpha})\mathfrak{a}=0,$ $i$ . $e.\sum_{h,i,jp},{}_{\alpha}C_{h}^{j}\theta_{p}^{h}(\mathfrak{r})\phi_{j}^{i}(x)\xi_{i}a^{p}=0,$

$\alpha=1,2,$ $\cdots$ , $r$. Defining $\overline{\xi}_{J}$ (resp.

$a^{h}),$ $1\leqq 1,$ $h\leqq n$ by $\overline{\xi}_{f}=\sum_{i}\phi_{j}^{i}(x)\xi_{i}$ , (resp. $\overline{a}^{h}=\sum_{p}\theta_{p}^{h}(x)a^{p}$), we get $\sum_{h.j}C^{j}\overline{\xi}_{j}\overline{a}^{h}=0$ .

By the definition of the constants ${}_{\alpha}C_{k^{\prime}}$ , the matrix $(\overline{\xi}_{j}\overline{a}^{h})_{1\leqq j,h\leqq n}$ lies in $\mathfrak{g}$ . Now
a matrix $(\neq 0)$ is of rank one if and only if it can be written as $(\eta_{j}b^{i})$ . Since
the matrix $(\phi_{j}^{t}(x))$ is non-singular, $(\overline{\xi}_{1}, \cdots , \overline{\xi}_{n})$ is not zero. Therefore $(\overline{a}^{1} , \overline{a}^{n})$

must be zero if $\mathfrak{g}$ contains no matrix of rank one. Hence $\mathfrak{a}=(a^{1}, \cdots a^{n})$ is
zero, proving that $D^{*}D$ is elliptic. Conversely suppose $D^{*}D$ is elliptic. Sup-
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pose $\mathfrak{g}$ contains a matrix $(\xi_{i}^{\prime}a^{\prime j})$ of rank one, then $\mathfrak{a}^{\prime}=(a^{\gamma j})_{1\Rightarrow j\leqq n}<$ is a solution
of $(S(x, \xi^{\prime})_{k}^{\alpha})\mathfrak{a}^{\prime}=0$ for any $x\in V$ (here $\xi^{\prime}=(\xi_{1}^{\prime},$ $\cdots$ $\xi_{n}^{\prime})\neq 0$). Therefore the
symbol $(\hat{S}(x, \xi^{\prime})_{q}^{p})$ is singular for $\xi^{\prime}\neq 0$ and for any $x\in V$ . This is a contra-
diction. Q. E. D.

Using the well known fact about elliptic differential operators, we get;
$CoROLLARY$ . If $M$ is compact and if $P(M, \pi, G)$ is elliptic then the vector

space of globally defined G-vector field is finite dimensional.
By Theorem of R. S. Palais [2], [6], and by Corollary above, we have

proved Theorem A.

\S 2. In this section we shall give two examples to show that Theorem
A is best possible in a sense.

This example is due to Guillemin-Sternberg [3].
EXAMPLE 1. If $G$ is not elliptic, then the automorphism group of any

totally flat G-structure $P$ over n-dim enclidian space $M(n>0)$ , is not a Lie
transformation group in the sense of Gleason-Palais [7]. Here a G-structure
$P(M, \pi, G)$ is called flat, as usual, if $M$ has an atlas whose charts give rise

to local sections of $P$ . That is, the local section $(x^{i})\rightarrow(\frac{\partial}{\partial x^{i}})$ of the frame

bundle defined by each chart is that of $P$ also. Such a chart will be called
admissible. $P(M, \pi, G)$ is called totally flat if we can take a global admissible
chart.

Now we give a proof of the assertion above. A vector field ee on $M$ is a
G-vector field of $P$ if and only if the matrix $(\partial X^{i}/\partial x^{j})$ in terms of any
global admissible chart is contained in the Lie algebra $0$ of $G$ at each point.
Since $G$ is not elliptic, we may assume $g$ contains either the matrix

$(^{\frac{1}{0}}0|^{\underline{0\cdots 0}}0)$ or the matrix $(^{\frac{0}{01}}\dot{0}|^{\underline{0\cdots 0}}0)$ .

In the first case, for any smooth function $f(x^{1})$ , a vector field $f(x^{1})\frac{\partial}{\partial x^{1}}$

is a G-vector field by the above remark.
And in the second case, for any smooth function $f(x^{1})$ , a vector field

$ f(x^{1})-\frac{\partial}{X^{2}}\partial$ is a G-vector field. Therefore the vector space of the G-vector

field of $P$ is of infinite dimension. Hence our assertion has been proved.
EXAMPLE 2. Now we shall give the famous non flat example. Let $M^{2n+1}$

be an (orientable) $(2n+1)$ -dimensional manifold, on which a l-form $\omega$ with $ d\omega$

of maximal rank is given (so-called contact structure). Then the linear dif-
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ferential system $w=0$ naturally gives a G-structure. Since $\omega\wedge d\omega$ is not
zero, $\omega=0$ is not integrable. Thus that G-structure is non flat. It is easy
to see that any G-vector field $\mathfrak{X}$ is the infinitesimal automorphism of the
contact structure, $i$ . $e$ .

$\theta(\mathfrak{X})\omega=f\omega$ $f$ : smooth function,

(here $\theta(\mathfrak{X})$ means the Lie derivative with respect to $\mathfrak{X}$) and vice versa. It is
well-known that the vector space of the infinitesimal automorphism of a con-
tact structure is isomorphic to the vector space (of infinite dimension) of the
smooth functions on $M^{2n+1}[4]$ . Therefore the automorphism group of this
G-structure is not a Lie transformation group.

University of Tokyo
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