On the automorphism group of a G-structure

By Takushiro OCHIAI

(Received Jan. 27, 1966)

§0. Introduction.

A linear Lie group is called *elliptic* if its Lie algebra contains no matrix of rank one. A G-structure is called *elliptic* if G is *elliptic*. (N. B. G is a linear subgroup of $GL(n, \mathbf{R})$.) The purpose of this paper is to prove that the globally defined infinitesimal automorphisms of a G-structure (called G-vector field) are given by a system of linear elliptic differential equations if and only if this G-structure is elliptic. (See Lemma for a precise statement.) It follows easily

THEOREM A. The group of diffeomorphisms of M which leave a given elliptic G-structure invariant is a finite dimensional Lie group, provided M is compact.

Theorem A is a generalization of the results of Boothby-Kobayashi-Wang [1] and Ruh [8]. (In fact, Ruh's sufficient condition clearly implies that the G-structure in question is elliptic.) Both Lemma and Theorem A are contained implicitly in Guillemin-Sternberg [3]. Still we feel their explicit statements with proofs would be worth publishing because of their importance. Also we shall provide two examples to show that Theorem A is best possible in a sense, following suggestions of Professor S. Kobayashi and Professor S. Sternberg. Also the author wishes to express his thanks to Professor T. Nagano and Professor M. Kuranishi.

§1. Let $P(M, \pi, G)$ be any G-structure on M, and g be the Lie algebra of G. That is, P is a subbundle with structure group G of the frame bundle of M. A (local) diffeomorphism of M is a (local) G-automorphism if and only if it leaves the G-structure $P(M, \pi, G)$ invariant.

Let $\{x^1, \dots, x^n\}$ be a local coordinate system around $z \in M$, defined on an open neighbourhood U of M. Furthermore, we assume that the neighbourhood U is so small that it admits a local cross-section ϕ from U into P. Let V be an open set of U. A local diffeomorphism f from V into U is a local G-automorphism if and only if there exists a mapping g from V into G such that

(1)
$$(df)(\phi(x)) = \phi(f(x)) \cdot g(x)$$

Т. Осніаі

where (df) means the lift of f to the frame bundle of M. The local crosssection ϕ is expressed by $\phi(x) = \left(x, \sum_{i} \phi_{i}^{i}(x) \left(-\frac{\partial}{\partial x^{i}}\right)_{x}, \cdots, \sum_{i} \phi_{j}^{i}(x) \left(\frac{\partial}{\partial x^{i}}\right)_{x}, \cdots, \sum_{i} \phi_{n}^{i}(x) \left(\frac{\partial}{\partial x^{i}}\right)_{x}\right)$, where $\phi_{j}^{i}(x)$ $(1 \le i, j \le n)$ are differentiable functions on U. By the definition, we have

$$(df)\phi(x^1,\cdots,x^n) = \left(f(x),\cdots,\sum_{i,k}\phi_j^i(x)\left(\frac{\partial f^k}{\partial x^i}\right)_x \left(\frac{\partial}{\partial x^k}\right)_{f(x)},\cdots\right)$$

where $f = (f^1, \dots, f^n)$. Let $g_j(x)$ $(1 \le i, j \le n)$ be the (i, j)-entries of the matrix g(x). By (1), we have

$$\sum_{i,k} \phi_j^i(x) \Big(\frac{\partial f^k}{\partial x^i}\Big)_x \Big(\frac{\partial}{\partial x^k}\Big)_{f(x)} = \sum_{i,l} \phi_l^i(f(x)) \Big(\frac{\partial}{\partial x^i}\Big)_{f(x)} g_j^i(x) \,.$$

Hence we have;

(1)'
$$\sum_{i} \phi_{j}^{i}(x) \left(\frac{\partial f^{k}}{\partial x^{i}}\right)_{x} = \sum \phi_{l}^{k}(f(x)) g_{j}^{l}(x) \, .$$

Since the matrix $(\phi_j^i(x))_{1 \le i,j \le n}$ is nonsingular, we denote by $(\theta_j^i(x))_{1 \le i,j \le n}$ the inverse matrix of $(\phi_j^i(x))_{1 \le i,j \le n}$. Multiplying (1)' by $\theta_k^h(f(x))$ and summing it up we get $\sum_{i,k} \theta_k^h(f(x))\phi_j^i(x) \left(-\frac{\partial f^k}{\partial x^i}\right)_x = \sum_i \partial_i^h g_j^i(x) = g_j^h(x)$. Since the matrix $(g_j^h(x))$ belongs to G, we may write the above equation

(2)
$$\left(\sum_{i,k} \theta_k^h(f(x))\phi_j^i(x) \left(\frac{\partial f^k}{\partial x^i}\right)_x\right)_{1 \le h, j \le n} \in G.$$

A vector field on M is a G-vector field of P by definition if and only if it generates local G-automorphisms. Let $\sum_{i} X^{i} \frac{\partial}{\partial x^{i}}$ be the local expression on U of an arbitrary vector field \mathfrak{X} and $\psi_{t}(|t| < \varepsilon)$ be the local one-parameter group around z which \mathfrak{X} generates. If we take a sufficiently small neighbourhood $V \ni z$, we may assume that $\psi_{t}(|t| < \varepsilon)$ maps V into U. \mathfrak{X} is a Gvector field if and only if ψ_{t} satisfies the equation (2) for each $t(|t| < \varepsilon)$. Hence we get

(2)'
$$\left(\sum_{i,k} \theta_k^h(\psi_t(x))\phi_j^i(x)\left(\frac{\partial \psi_t^k}{\partial x^i}\right)_x\right) \in G \text{ for any small } t.$$

The matrix in (2)' is the neutral element of G when t equals 0. Therefore, differentiating (2)' at t=0 with respect to the variable t, we get the element of g. I.e.,

$$\left(\frac{\partial}{\partial t}\left\{\sum_{i,k}\theta_k^h(\psi_t(x))\phi_j^i(x)\left(\frac{\partial\psi_t^k}{\partial x^i}\right)_x\right\}\Big|_{t=0}\right) \in \mathfrak{g}.$$

Therefore,

Automorphism group of a G-structure

$$\left(\sum_{i,k,m} \left(\frac{\partial \theta_k^h}{\partial x^i}\right)_x X^m \phi_j^i(x) \delta_i^k + \sum_{i,k} \theta_k^h(x) \phi_j^i(x) \frac{\partial X^k}{\partial x^i}\right) \in \mathfrak{g}.$$

Hence we get

(2)"
$$\left(\sum_{i,k} \left(\theta_k^h(x)\phi_j^i(x)\left(\frac{\partial X^k}{\partial x^i}\right)_x + \phi_j^i(x)\left(\frac{\partial \theta_k^h}{\partial x^k}\right)_x X^k\right)\right) \in \mathfrak{g}.$$

Let us choose a set of constants $_{1}C_{j}^{i}$, \cdots , $_{r}C_{j}^{i}$, $i, j = 1, \cdots, n$ (where r is the codimension of a in $\mathfrak{gl}(n, \mathbb{R})$) such that

$$(a_i^i) \in \mathfrak{g}$$
 if and only if $\sum_{i,j} \alpha C_j^i a_i^j = 0, \quad \alpha = 1, \cdots, r$.

Therefore a G-vector field \mathfrak{X} (locally expressed by $\sum X^i \frac{\partial}{\partial x^i}$) satisfies the linear differential equation with unknown functions X^1, \dots, X^n ;

(3)
$$\sum_{\substack{i,k\\j,h}\\j,h} \alpha C_h^j \Big(\theta_k^h(x) \phi_j^\iota(x) \Big(\frac{\partial X^k}{\partial x^i} \Big)_x + \phi_j^i(x) \frac{\partial \theta_i^h(x)}{\partial x^k} X^k \Big) = 0,$$
$$\alpha = 1, \cdots, r$$

Let *D* be the linear differential operator which corresponds to (3). For any *n*-tuple $\xi = (\xi_1, \dots, \xi_n) \neq 0$, we denote by $S(x, \xi)_k^{\alpha}$ ($\alpha = 1, \dots, r$; $k = 1, \dots, n$)

$$S(x, \xi)_k^{\alpha} = \sum_{h,i,j} {}_{\alpha} C_h^{j} \theta_k^h(x) \phi_j^i(x) \xi_i$$

The matrix $(S(x, \xi)_k^{\alpha})$ is the symbol of D with respect to ξ at $x \in V$. Let D^* be the adjoint operator of D with respect to the usual inner product $\langle (x^i), (y^i) \rangle = \sum_i x^i y^i$. It is well known that the symbol $(\hat{S}(x, \xi)_q^p)$ $(n \times n \text{ matrix})$ of the 2nd order linear differential operator D^*D with respect to ξ at x is given by ${}^t(S(x, \xi)_k^{\alpha})(S(x, \xi)_k^{\alpha})$.

Now we shall prove,

LEMMA. The 2nd order linear differential operator D^*D is elliptic if and only if $P(M, \pi, G)$ is elliptic i.e. g contains no element of rank one.

PROOF. Only-if part; Suppose the equation $(\hat{S}(x, \xi)_q^p) a = 0$ holds for some x, ξ and $a = (a^i)_{1 \le i \le n}$. Therefore $\langle (\hat{S}(x, \xi)_q^p) a, a \rangle = 0$. By the definition we get, $\langle (\hat{S}(x, \xi)_q^p) a, a \rangle = \langle i(S(x, \xi)_k^a) (S(x, \xi)_k^a) a, a \rangle = \langle (S(x, \xi)_k^a) a, (S(x, \xi)_k^a) a \rangle$. Hence $(S(x, \xi)_k^a) a = 0, \text{ i. e. } \sum_{\substack{h,i,j,p \\ h \le h}} \alpha C_h^i \partial_p^h(x) \phi_j^i(x) \xi_i a^p = 0, \alpha = 1, 2, \cdots, r$. Defining ξ_j (resp. $\bar{a}^h), 1 \le j, h \le n$ by $\xi_j = \sum_i \phi_j^i(x) \xi_i$, (resp. $\bar{a}^h = \sum_p \theta_p^h(x) a^p$), we get $\sum_{\substack{h,j \\ h,j}} \alpha C_h^j \xi_j \bar{a}^h = 0$. By the definition of the constants αC_k^i , the matrix $(\xi_j \bar{a}^h)_{1 \le j,h \le n}$ lies in g. Now a matrix $(\neq 0)$ is of rank one if and only if it can be written as $(\eta_j b^i)$. Since the matrix $(\phi_j^i(x))$ is non-singular, (ξ_1, \cdots, ξ_n) is not zero. Therefore $(\bar{a}^1, \cdots, \bar{a}^n)$ must be zero if g contains no matrix of rank one. Hence $a = (a^1, \cdots, a^n)$ is zero, proving that D^*D is elliptic. Conversely suppose D^*D is elliptic.

pose g contains a matrix $(\xi'_i a'^j)$ of rank one, then $a' = (a'^j)_{1 \le j \le n}$ is a solution of $(S(x, \xi')_k^a)a' = 0$ for any $x \in V$ (here $\xi' = (\xi'_1, \dots, \xi'_n) \ne 0$). Therefore the symbol $(\hat{S}(x, \xi')_q^p)$ is singular for $\xi' \ne 0$ and for any $x \in V$. This is a contradiction. Q. E. D.

Using the well known fact about elliptic differential operators, we get;

COROLLARY. If M is compact and if $P(M, \pi, G)$ is elliptic then the vector space of globally defined G-vector field is finite dimensional.

By Theorem of R.S. Palais [2], [6], and by Corollary above, we have proved Theorem A.

§2. In this section we shall give two examples to show that Theorem A is best possible in a sense.

This example is due to Guillemin-Sternberg [3].

EXAMPLE 1. If G is not elliptic, then the automorphism group of any totally flat G-structure P over n-dim enclidian space M(n>0), is not a Lie transformation group in the sense of Gleason-Palais [7]. Here a G-structure $P(M, \pi, G)$ is called flat, as usual, if M has an atlas whose charts give rise to local sections of P. That is, the local section $(x^i) \rightarrow \left(\frac{\partial}{\partial x^i}\right)$ of the frame bundle defined by each chart is that of P also. Such a chart will be called admissible. $P(M, \pi, G)$ is called totally flat if we can take a global admissible chart.

Now we give a proof of the assertion above. A vector field \mathfrak{X} on M is a G-vector field of P if and only if the matrix $(\partial X^i/\partial x^j)$ in terms of any global admissible chart is contained in the Lie algebra \mathfrak{g} of G at each point. Since G is not elliptic, we may assume \mathfrak{g} contains either the matrix

$$\begin{pmatrix} 1 & 0 \cdots & 0 \\ \hline 0 & \\ \vdots & 0 \\ 0 & \\ \end{pmatrix} \quad \text{or the matrix} \quad \begin{pmatrix} 0 & 0 \cdots & 0 \\ \hline 1 & \\ 0 & \\ \vdots & 0 \\ 0 & \\ \end{pmatrix}.$$

In the first case, for any smooth function $f(x^1)$, a vector field $f(x^1) - \frac{\partial}{\partial x^1}$ is a *G*-vector field by the above remark.

And in the second case, for any smooth function $f(x^1)$, a vector field $f(x^1) - \frac{\partial}{\partial x^2}$ is a G-vector field. Therefore the vector space of the G-vector field of P is of infinite dimension. Hence our assertion has been proved.

EXAMPLE 2. Now we shall give the famous non flat example. Let M^{2n+1} be an (orientable) (2n+1)-dimensional manifold, on which a 1-form ω with $d\omega$ of maximal rank is given (so-called contact structure). Then the linear dif-

192

ferential system $\omega = 0$ naturally gives a G-structure. Since $\omega \wedge d\omega$ is not zero, $\omega = 0$ is not integrable. Thus that G-structure is non flat. It is easy to see that any G-vector field \mathfrak{X} is the infinitesimal automorphism of the contact structure, i.e.

 $\theta(\mathfrak{X})\omega = f\omega$ f: smooth function,

(here $\theta(\mathfrak{X})$ means the Lie derivative with respect to \mathfrak{X}) and vice versa. It is well-known that the vector space of the infinitesimal automorphism of a contact structure is isomorphic to the vector space (of infinite dimension) of the smooth functions on M^{2n+1} [4]. Therefore the automorphism group of this *G*-structure is not a Lie transformation group.

University of Tokyo

Bibliography

- [1] W. M. Boothby, S. Kobayashi and H. C. Wang, A note on mappings and automorphisms of almost complex manifolds, Ann. of Math., 79 (1963), 329-334.
- [2] H. Chu and S. Kobayashi, The automorphism group of a geometric structure. Trans. Amer. Math. Soc., 111 (1964), 141-150.
- [3] V. Guillemin and S. Sternberg, Deformation theory of pseudo-group structures, to appear in the Mem. of Amer. Math. Soc..
- [4] P. Liberman, Sur les automorphismes infinitésimaux des structures symplectiques et des structures de contact, Colloque de géometrie différentielle globale. (1958), 37-59.
- [5] P. Libermann, C.R. Acad. Sci. Paris, 246 (1958), pp. 4, 531 & 1365.
- [6] R.S. Palais, A global formulation of the Lie theory of transformation groups, Mem. of Amer. Math. Soc., #22, 1957.
- [7] R.S. Palais and A.M. Gleason, On a class of transformation groups, Amer. J. Math., 79 (1957), 631-648.
- [8] E. A. Ruh, On the automorphism group of a G-structure, Comment. Math. Helv..
 39 (1964), 189-204.