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A normal space $Z$ with ind $Z=0$, $\dim Z=1$ , $IndZ=2$
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This paper gives a normal (Hausdorff) space $Z$ for which three basic
dimension functions are different from each other: ind $Z=0,$ $\dim Z=1$ and
$IndZ=2$ . As for the definition of three dimension functions see J. Nagata
[7, p. 9]. The idea developed by P. Vopenka [9] as well as the one by C. H.
Dowker [1] are the main tool in our construction.

Let $\omega_{1}$ be the first uncountable ordinal, $J=\{\alpha:0\leqq\alpha<\omega_{1}\}$ and $ J^{*}=\{\alpha$ : $0$

$\leqq\alpha\leqq\omega_{1}\}$ , where $J$ and $J^{*}$ have the usual interval topology. Let $I$ be the
unit interval $[0,1]$ . By Dowker [1] there exist subsets $I_{\alpha},$ $\alpha<\omega_{1}$ , of $I$ such
that i) $I_{a}\subset I_{\beta}$ if $\alpha<\beta$ , ii) $\dim I_{\alpha}=0$ for each $\alpha$ , iii) $\cup I_{\alpha}=I$ and iv) each $I_{\alpha}$

is dense in $I$ . By Nagami [5] there exist a separable metric space $C$ with
$\dim C=0$ and an open continuous mapping $f$ of $C$ onto $I$. Let $M$ be a dis-
crete space whose power $|M|$ is $\mathfrak{f}$ . Consider the disjoint sum $T$ of 1 and
$C\times M\times I$ and introduce into $T$ the topology due to Vopenka [9] as follows:

i) An open set of $C\times M\times I$ with the usual product topology is open in
$T$ .

ii) lf $U1s$ an open set in $I$ and if $K$ is a finite subset of $M$, then
$U\cup(f^{-1}(U)\times(M-K)\times I)$ is open in $T$.

Then $T$ with the above basic open sets is a Hausdorff space. Set

$T_{\alpha}=I_{\alpha}\cup(f^{-1}(I_{\alpha})\times M\times I_{\alpha}),$ $\alpha<\omega_{1}$ .

The point set $Z$ is the sum of all $\{\alpha\}\times T_{\alpha},$ $\alpha<\omega_{1}$ . The topology of $Z$ is the
relative topology of the product space $J^{*}\times T$ . We identify $T$ with $\{\omega_{1}\}\times T$ .
$\pi^{\prime}$ is the projection of $J^{*}\times T$ onto $T$ . Set $\pi=\pi^{\prime}$ Z. $\rho^{\prime}$ is the projection of
$J^{*}\times T$ onto $J^{*}$ . Set $\rho=\rho^{\prime}|Z$. If $E$ is a subset of $Z$ and $J^{\prime}$ is a subset of $J$,

then $[E]_{J}$ , denotes the intersection of $E$ and $\rho^{-1}(J^{\prime})$ . If $x$ is a point of $I$ and
$\epsilon$ is a positive number, then $S_{\overline{\Leftrightarrow}}(x)$ denotes an open $\epsilon$ -sphere in $I$ with the
center $x$ .

LEMMA 1. Let $X$ be a non-empty metric space. Then there exist subsets
$X_{\alpha},$ $\alpha<\omega_{1}$ such that i) $X_{\alpha}\subset X_{\beta}$ if $\alpha<\beta$ , ii) $\dim X_{\alpha}=0$ and iii) V $X_{\alpha}=X$. If
$X_{a}$ satisfy this condition let $Y$ be the subspace of $J\times X$ which is the sum of
all $\{\alpha\}\times X_{\alpha},$ $\alpha<\omega_{1}$ . Then $Y$ is a normal space such that

i) ind $Y=0$ ,
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ii) $IndY=\dim Y=\dim X$.
The first half of the lemma is Nagami [6, Theorem 2]. The last half is

proved by the analogous argument in Dowker [1]. It is to be noticed that
the special case of this lemma where $X$ is separable metric was proved by
Yu. M. Smirnov [8].

The following lemma was proved by Vopenka [9, Proposition 1.3] for
the case when $X$ is compact. Our proof is nothing but an extraction of his.
The author is kind enough for English-reading mathematicians.

LEMMA 2. Let $X$ be a normal space and $Y$ a non-empty closed set of $X$

which satisfy the following conditions:
i) For any open neighborhood $U$ of $Y$ there exists an open and closed

neighborhood $V$ of $Y$ with $V\subset U$.
ii) There exists a retraction $\varphi$ of $X$ onto $Y$

iii) $IndY\leqq m$ .
iv) If $F$ is a closed set of $X$ with $ F_{\cap}Y=\phi$ , then $IndF\leqq n$ . Then

$IndX\leqq m+n$ .
PROOF. We prove this by induction on $IndY$ . Since the proof for the

starting case when $IndY=0$ is completely similar to general case, we merely
prove the lemma under the assumption that the lemma is true when $IndY<m$ .

Let now $IndY\leqq m$ . Let $H$ be a closed set of $X$ and $W$ be an open set
of $X$ with $H\subset W$ . Take arelatively open set $G$ of $Y$ with $H_{\cap}Y\subset G\subset\overline{G}\subset W_{\cap}Y$

and with $Ind(\overline{G}-G)\leqq m-1$ . Set $X^{\prime}=\varphi^{-1}(\overline{G}-G)$ and $Y^{\prime}=\overline{G}-G$ . Then it can
easily be seen that the condition of the lemma is satisfied if $X,$ $Y$ and $m$ are
replaced by $X^{\prime},$ $Y^{\prime}$ and $m-1$ respectively. Hence by induction assumption
$IndX‘\leqq m+n-1$ . Let $V$ be an open and closed neighborhood of $Y$ with

$ V\cap((\varphi^{-1}(\overline{G})-W)\cup(H-\varphi^{-1}(G)))=\phi$ .

Let $D_{1}$ be an open set of $X-V$ such that
i) $H-V\subset D_{1}\subset\overline{D}_{1}\subset W-V$

ii) $Ind(D_{1}-D_{1})\leqq n-1$ .
Set $D_{2}=V\cap\varphi^{-1}(G)$ . Then $H\cap V\subset D_{2}\subset\overline{D}_{2}\subset W\cap V$ . Since $\overline{D}_{2}-D_{2}\subset X^{\prime}$ ,

$Ind(D_{2}-D_{2})\leqq m+n-1$ . Set $D=D_{1}\cup D_{?}$ . Then $\overline{D}-D$ is the disjoint union
of $\overline{D}_{1}-D_{7}$ and $D_{2}-D_{2}$ . Hence

[nd $(\overline{D}-D)\leqq\max(n-1, m+n-1)=m+n-1$ .

Moreover $H\subset D\subset\overline{D}\subset W$ . Therefore $IndX\leqq m+n$ and the proof is finished.
The following is the special case of Morita [3, Footnote, p. 164] or Nagami

[4, Theorem 3], since a regular space with the Lindel\"of property has the
star-finite property by Morita [2].

LEMMA 3. If $X$ is a normal space with the Lindelof property, then $\dim X$

$\leqq indX$.



160 K. NAGAMI

Now let us prove that $Z$ is the desired one by several steps.
I) To prove the normality of $Z$ let $F$ and $H$ be a pair of disjoint closed

sets of $Z$. Take an arbitrary point $x$ of $I$. Both $F$ and $H$ cannot be cofinal
on $\pi^{-1}(x)$ at the same time. Suppose that $H$ is not cofinal on $\pi^{-1}(x)$ . Then
there exists $\alpha(x)$ such that $[\pi^{-1}(x)]_{\alpha(x)}\neq\phi$ and

$[\pi^{-1}(x)]_{\subset\alpha(x)\omega_{1})\cap}H=\phi$ .
For every $\beta$ with $\alpha(x)<\beta<\omega_{1}$ let $\epsilon(\beta)$ be the largest positive number for
which there exist $\gamma$ with $\alpha(x)\leqq\gamma<\beta$ and a finite subset $K_{\beta}$ of $M$ such that

$[\pi^{-1}(S_{e(\rho)}(x)\cup(f^{-1}(S_{e(\beta)}(x))\times(M-K_{\beta})\times I))]_{(r,\beta l\cap}H=\phi$ .
Then it is easy to see that

$\epsilon(x)=\inf\{\epsilon(\beta);\alpha(x)<\beta<\omega_{1}\}$

is positive. Set
$K_{x}=\{\lambda:\lambda\in M, [\pi^{-1}(f^{-1}(S_{\epsilon(x)}(x))\times\{\lambda\}\times I)]_{(\alpha(x),\omega_{1})\cap}H\neq\phi\}$ .

To prove $K_{x}$ is a finite set assume the contrary. Then there exist a count-
ably infinite subset $\{\lambda_{1}, \lambda_{2}, \}$ of $K_{x}$ and a sequence $\alpha(x)<\alpha_{1}\leqq\alpha_{2}\leqq\ldots$ such
that

$[\pi^{-1}(f^{-1}(S_{\epsilon(x)}(x))\times\{\lambda_{l}\}\times I)]_{\alpha\iota\cap}H\neq\phi$ .
Let $\alpha_{0}=\lim\alpha_{i}$ . Then for any $\delta$ with $\alpha(x)\leqq\delta<\alpha_{0}$ and for any finite subset
$K$ of $M$,

$[\pi^{-1}(f^{-1}(S_{\epsilon(x)}(x))\times(M-K)\times I)]_{(\delta,\alpha_{0}j}\cap H\neq\phi$ ,

which is a contradiction. Thus $K_{x}$ is finite and

$[\pi^{-1}(S_{e(x)}(x)\cup(f^{-1}(S_{\approx,.(x)}(x))\times(M-K_{x})\times I))]_{(\alpha(x),\omega_{1})}$

does not meet $H$.
II) By I) for every $x\in I$ we have a positive number $\epsilon(x)$ , an ordinal

$\alpha(x)<\omega_{1}$ and a finite subset $K_{x}$ of $M$ such that $[\pi^{-1}(x)]_{\alpha(x)}\neq\phi$ and

$\{[\pi^{-1}(S_{e(x)}(x)\cup(f^{-1}(S_{\epsilon(x)}(x))\times(M-K_{x})\times I))]_{(\alpha(x),\omega_{I)}} : x\in I\}$

refines $\{Z-F, Z-H\}$ . Take a finite subset $\{x_{1}, , x_{n}\}$ of $I$ such that

$\mathfrak{U}=\{S_{\epsilon(x_{i^{)}}}(x_{i}):i=1, n\}$

covers 1. Set
$K=\cup\{K_{x_{i}} : i=1, \cdots n\}$ .

Then $K$ is a finite subset of $M$. Set

$\beta_{0}=\sup\{\alpha(x_{i}):i=1, n\}$ .
Let

$\mathfrak{V}=\dagger V_{1},$ $\cdots$ $V_{m}$ }

be a finite open (in $I$) covering of $I$ which is a $\Delta$-refinement of $\mathfrak{U}$ . We divide
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$Z$ into disjoint three parts $Z_{1},$ $Z_{2},$ $Z_{3}$ each of which is open in $Z$ as follows:

$Z_{1}=[\pi^{-1}(I\cup(C\times(M-K)\times I))]_{(\beta 0,\omega_{1})}$ ,

$Z_{2}=[\pi^{-1}(C\times K\times I)]_{(\beta 0,\omega_{1})}$ ,

$Z_{3}=[Z]_{[0,\rho_{0}]}$ ,

$Z=Z_{1}\cup Z_{2}\cup Z_{3}$ .
By construction

$\overline{\mathfrak{V}}=\{[\pi^{-1}(V_{i}\cup(f^{-1}(V_{i})\times(M-K)\times I))]_{(\beta_{0},\omega 1)} : i=1, \cdots , m\}$

$\Delta$ -refines $\{Z-F, Z-H\}$ . Let $D_{1}$ and $G_{1}$ be respectively stars of $F$ and $H$ with
respect to 8. Then $D_{1}\cap G_{1}=\phi,$ $D_{1}\supset F_{\cap}Z_{1}$ and $G_{1}\supset H_{\cap}Z_{1}$ . Since

$[\pi^{-1}(C\times K\times I)]_{(\beta 0,\omega_{1})}$

is normal by Lemma 1, there exist open sets $D_{2}$ and $G_{2}$ of $Z_{2}$ such that
$D_{2}\cap G_{2}=\phi,$ $D_{2}\supset F_{\cap}Z_{2}$ and $G_{2}\supset H_{\cap}Z_{2}$ .

III) Let us prove the normality of $Z_{3}$ . Let $\mathfrak{W}$ be an arbitrary $op^{3}.n$

covering of $Z_{3}$ . Consider an arbitrary ordinal $\alpha$ with $0\leqq\alpha\leqq\beta_{0}$ . By perfect
separability of $I$ there exist a sequence of open sets $A_{1},$ $A_{2},$ $\cdots$ of $I$, a sequence
of ordinals $\beta_{1},$ $\beta_{2},$ $\cdots$ with $\beta_{i}<\alpha,$ $i=1,2,$ $\cdots$ and a sequence of finite subsets
$K_{1},$ $K_{2},$ $\cdots$ of $M$ such that $\cup A_{i}=I$ and

$\mathfrak{W}_{1}=\{[\pi^{-1}(A_{i}\cup(f^{-1}(A_{i})\times(M-K_{i})\times I))]_{(\beta_{i},\alpha J}:i=1,2, \}$

refines $\mathfrak{W}$ . Set

$M_{1}=\bigcup_{i=1}^{\infty}K_{i}$ .

Then $M_{1}$ is countable. Since $C\times M_{1}\times I$ is perfectly separable, we can find
a countable open collection $\mathfrak{W}_{2}$ of $Z_{3}$ such that i) $\mathfrak{W}_{2}$ refines $\mathfrak{W}$ and ii) $\mathfrak{W}_{2}$

covers $[\pi^{-1}(C\times M_{1}\times I)]_{\alpha}$ . Thus we have a countable open collection $\mathfrak{W}_{1}\vee \mathfrak{W}_{2}$

of $Z_{3}$ which covers $[Z]_{\alpha}$ and refines $\mathfrak{W}$ . Since $[0, \beta_{0}]$ contains only a count-
able number of ordinals, $\mathfrak{W}$ can be refined by a countable open covering of
$Z_{3}$ , which shows that $Z_{3}$ has the Lindelof property. Since $Z_{3}$ is evidently
regular, $Z_{3}$ is normal by Morita [2]. There exist open sets $D_{3}$ and $G_{3}$ of $Z_{8}$

such that $D_{s\cap}G_{3}=\phi,$ $D_{3}\supset F_{\cap}Z_{3}$ and $G_{3}\supset H_{\cap}Z_{3}$ . Set

$D=D_{1}\cup D_{2}\cup D_{a}$ ,

$G=G_{1}\cup G_{2}\cup G_{3}$ .
Then $D$ and $G$ are open sets of $Z$ such that $D\cap G=\phi,$ $D\supset F$ and $G\supset H$.
Thus the normality of $Z$ is established.

IV) It is evident that ind $Z=0$ .
V) Let us show $\dim Z=1$ . $\dim Z\geqq 1$ , because $\pi^{-1}(I)$ is a closed subset

of $Z$ and by Lemma 1 we already know that $\dim\pi^{-1}(I)=1$ . Since $T-I$ is
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the sum of disjoint open metric subsets and hence $Z-\pi^{-1}(I)$ is a normal
space with $\dim(Z-\pi^{-1}(I))=1$ by Lemma 1, $\dim Z\leqq\max(\dim\pi^{-1}(I),$ $\dim(Z$

$-\pi^{-1}(I)))=1$ . Thus we have $\dim Z=1$ .
VI) Next task is to shew $IndZ\leqq 2$ . For any $\lambda\in M$,

$Ind\pi^{-1}(C\times\{\text{{\it \‘{A}}}\}\times I)=1$

by Lemma 1. Here is a closed subset $\pi^{-1}(I)$ of $Z$ with $Ind\pi^{-1}(I)=1$ . If $A$

is any closed subset of $Z$ with $ A\cap\pi^{-1}(I)=\phi$ , then $IndA\leqq 1$ . If we can show
the condition of Lemma 2 is satisfied, then we have $IndZ\leqq 2$ . Let $U$ be an
arbitrary open set of $Z$ with $U\supset\pi^{-1}(I)$ . Set $H=Z-U$. By the same argu-
ment for $H$ as in I) there exist a finite subset $K$ of $M$ and an ordinal $\xi<\omega_{1}$

such that
$V_{1}=[\pi^{-1}(I\cup(C\times(M-K)\times I))]_{(\xi,\omega_{1})}\subset U$ .

$V_{1}$ is open and closed in $Z$. Since we already knew in III) that $[Z]_{\ddagger 0_{\backslash }^{\xi}3}$ is a
normal space with the Lindel\"of property,

$\dim[Z]_{[0.\xi]}\leqq ind[Z]_{[0.\xi]}=0$ ,

which implies
$\dim[Z]_{[0.\xi]}=0$ .

Hence there exists an open and closed subset $V_{2}$ of $[Z]_{\ddagger 0_{b}^{g_{\rfloor}}}$. such that

$[\pi^{-1}(I)]_{[0,\xi]}\subset V_{2}\subset[U]_{[0,\xi]}$ .

If we set $V=Vl\cup V_{2}$ , then $V$ is an open and closed set of $Z$ with $\pi^{-1}(I)$

$\subset V\subset U$.
We define $\psi:T\rightarrow I$ as follows:

$\psi(x)=x$ , if $x\in l$ ,

$\psi((c, \lambda, x))=f(c)$ , if $(c, \lambda, x)\in C\times M\times I$ .

Then $\psi$ is a retraction of $T$ onto $I$. Define $\varphi:Z\rightarrow\pi^{-1}(I)$ as follows:

$\varphi((\alpha, t))=(\alpha, \psi(t))$ , where $\alpha\in J$ and $t\in T_{\alpha}$

Then $\varphi$ is a retraction of $Z$ onto $\pi^{-1}(I)$ . By Lemma 2

$IndZ\leqq 2$

VII) Let us show $IndZ\geqq 2$ . Let $0$ and 1 be the terminal points of $I$.
It is to be noticed that there are $0$ and 1 which are the first and the second
ordinals of $J$. But there might not be serious confusion. $\pi^{-1}(0)$ and $\pi^{-1}(1)$

are disjoint closed sets of $Z$. We prove that any closed set separating these
two sets has to have $Ind\geqq 1$ , which in turn will imply $IndZ\geqq 2$ . Let $P$ be
an open set ofZwith $\pi^{-1}(0)\subset P\subset\overline{P}\subset Z-\pi^{-1}(l)$ . Set $B=\overline{P}-P$ and $Z-\tilde{P}=Q$ .
We want to show $IndB\geqq 1$ . Set
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$C_{P^{-}}--$ { $x:x\in I,$ $P$ is cofinal on $\pi^{-1}(x)$ } ,

$C_{Q}=$ { $x:x\in I,$ $Q$ is cofinal on $\pi^{-1}(x)$ },

$E_{B}=$ { $x:x\in I,$ $B$ is equifinal on $\pi^{-1}(x)$ }.

VIII) Suppose that $ C_{P}\cap C_{Q}\neq\phi$ . Take $h\in C_{P}\cap C_{Q}$ . Since $0\not\in C_{Q}$ and
$1\not\in C\circ,$ $0<h<1$ . For any point $p\in\pi^{-1}(h)\cap P$ there exists a positive integer
$i(p)$ such that

i) $1/i(p)<\min\{h, 1-h\}$ ,

ii) $[\pi^{-1}(S_{1/i(p)}(h))]_{\beta()}p\subset P$ .
Then there exists $i$ such that

$P_{1}=\{p:i(p)=i\}$

is cofinal. For every point $q\in\pi^{-1}(h)\cap Q$ there exists a positive integer $i(q)$

such that
i) $1/i(q)<\min\{h, 1-h\}$ ,

ii) $[\pi^{-1}(S_{1/i(q)}(h))]_{\rho(}q)\subset Q$ .
Then there exists $j$ such that

$Q_{1}=\{q:i(q)=j\}$

is cofinal. Let
$k=\max\{i, j\}$ .

Then
$B_{1}=\{z:z\in\pi^{-1}(h), [\pi^{-1}(S_{1/k}(h))]_{\rho(z)}\subset B\}$

is cofinal. Moreover by the closedness of $B,$ $\rho(B_{1})$ is closed in $J$. Hence

$B_{2}=\cup\{[\pi^{-1}([h-1/(2k), h+1/(2k)])]_{\rho(z)} : z\in B_{1}\}$

is a closed subset of $B$ . By Lemma 1 $IndB_{2}=1$ . Hence

$IndB\geqq IndB_{2}=1$ .
IX) It is to be noticed that the above observation contains the assertion:

Both $C_{P}$ and $C_{Q}$ are open in $I$. Since $E_{B}=I-(C_{P}\cup C_{Q}),$ $E_{B}$ is closed in $I$.
X) Suppose that $E_{B}$ is not nowhere dense in $I$. Then by the closedness

of $E_{B},$ $E_{B}$ contains a closed interval $I^{\prime}\subset I$. To prove $\rho(\pi^{-1}(I^{\prime})\cap P)$ is not
cofinal assume the contrary. Then there exists a positive number $\epsilon$ such
that

$\rho(\{p:p\in\pi^{-1}(I^{\prime})\cap P, [\pi^{-1}(S_{\epsilon}(\pi(p)))]_{\beta(p)}\subset P\})$

is cofinal. Then next there exists a closed sub-interval $I^{\prime\prime}$ of $I^{\prime}$ whose length
is $\epsilon/4$ such that

$\{\alpha:[\pi^{-1}(I^{\prime\prime})]_{\alpha}\subset P\}$

is cofinal. We have now $I^{\prime\prime}\subset C_{P}$ and hence $ I^{\prime/}\cap E_{B}=\phi$ , a contradiction. Thus
$\rho(\pi^{-1}(J^{\gamma})\cap P)$ is not cofinal. By the same reason $\rho(\pi^{-1}(I^{\prime})\cap Q)$ is not cofinal.
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Hence there exists $\eta\in J$ such that

$B_{8}=[\pi^{-1}(I^{\prime})]_{(\eta,\omega_{1})}\subset B$ .
Since $B_{3}$ is closed and $IndB_{8}=1$ by Lemma 1, $IndB\geqq 1$ .

XI) Let us consider the last case when $ C_{p\cap}C_{Q}=\phi$ and $E_{B}$ is nowhere
dense in $I$. Set

$a=\sup C_{P}$ ,

$b=\inf C_{Q}$ .

Since $C_{P}$ and $C_{Q}$ are disjoint open sets, $0<a<1$ and $0<b<1$ . If $a<b$ , then
$E_{B}$ contains the interval $[a, b]$ , a contradiction. Hence $b\leqq a$ and $a\in E_{B}$ .

Let $a_{1},$ $a_{2},$ $\cdots$ be a monotonically increasing sequence of $I$ such that i)

$\sup a_{i}=a$ and ii) every $a_{i}\in C_{P}$ . Let $b_{1},$ $b_{2},$ $\cdots$ be a monotonically decreasing
sequence of $I$ such that i) $\inf b_{i}=a$ and ii) every $b_{i}\in C_{Q}$ . Such a sequence
exists because we are now considering the case when $E_{B}$ is nowhere dense.
Let $c$ be a point of $f^{-1}(a)$ . Let $\eta_{1}$ be an ordinal $<\omega_{1}$ such that $[\pi^{-1}(a)]_{\eta 1}\neq\phi$ .
Set

$J_{1}=\{\alpha;\eta_{1}<\alpha<\omega_{1}, [\pi^{-1}(a)]_{\alpha}\in\overline{\pi^{-1}(I)\cap P}\cap\overline{\pi^{-1}(I)\cap Q}\}$ .

To see that $J_{1}$ is cofinal in $J$ let $\alpha_{0}$ be an arbitrary ordinal with $\eta_{1}<\alpha_{0}$ .
Then there exist a monotonically increasing sequence $\alpha_{0}<\alpha_{1}<\beta_{1}<\alpha_{2}<\beta_{2}<\cdots$ ,

a sequence of points $p_{i}\in\pi^{-1}(a_{i})\cap P$ and a sequence of points $q_{i}\in\pi^{-1}(b_{i})\cap Q$

such that i) $\rho(p_{\ell})=\alpha_{i}$ for every $i$ and ii) $\rho(q_{i})=\beta_{i}$ for every $i$ . Then $\sup\alpha_{l}$

$\in J_{1}$ . It is almost evident that $J_{1}$ is closed in $J$.
XII) For every point $p\in\pi^{-1}(I)\cap P$ there exists a finite subset $K_{p}$ of $M$

such that
$[\pi^{-1}(f^{-1}(\pi(p))\times(M-K_{p})\times I)]_{\rho(p)}\subset P$ .

For every point $q\in\pi^{-1}(I)\cap Q$ there exists a finite subset $K_{q}$ of $M$ such that

$[\pi^{-1}(f^{-1}(\pi(q))\times(M-K_{q})\times I)]_{\rho(q)}\subset Q$ .
Set

$M_{1}=\cup\{K_{p} : p\in\pi^{-1}(I)\cap P\}$ ,

$M_{2}=\cup\{K_{q} : q\in\pi^{-1}(I)\cap Q\}$ .
Since $|\pi^{-1}(I)|=c$ , $M_{1}|\leqq c$ and $M_{2}|\leqq c$ . Hence

$ M-(M_{1}\cup M_{2})\neq\phi$ .
Take an arbitrary element $\mu$ from $M-(M_{1}\cup M_{2})$ , an arbitrary ordinal $\nu$ from

$J_{1}$ and an arbitrary point $x$ from $I_{\gamma}$ . Then $t=(c, \mu, x)$ is a point of $T-I$.
We want to show that

$[\pi^{-1}(t)]_{\gamma}\in\overline{P}\cap\overline{Q}$ .

Let $U$ be an arbitrary open neighborhood of $c$ in $C,$ $\epsilon$ an arbitrary positive
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number and $\xi$ an arbitrary ordinal with $\eta_{1}\leqq\xi<\gamma$ . Consider a basic neigh-
borhood

$V=[\pi^{-1}(U\times\{\mu\}\times S_{\epsilon}(x))]_{(\xi,\gamma l}$

of the point $[\pi^{-1}(t)]_{\gamma}$ in $Z$ and let us prove that $V$ meets both $P$ and $Q$ .
Since $f(U)$ is an open neighborhood of $a$ ,

$W=[\pi^{-1}(f(U))]_{(\xi,7J}$

is a relatively open neighborhood of $[\pi^{-1}(a)]_{\gamma}$ in $\pi^{-1}(I)$ . Hence $W$ meets both
$P$ and $Q$ . Take $p_{0}$ from $W\cap P$ and $q_{0}$ from $W\cap Q$ . Then $ f^{-1}(\pi(p_{0}))\cap U\neq\phi$

and $f^{-1}(\pi(q_{0}))$ A $ U\neq\phi$ . Since $I_{\beta(po)}$ and $I_{\rho(qo)}$ are dense in $I,$ $V$ meets both $P$

and $Q$ . Hence $[\pi^{-1}(t)]_{\gamma}\subset\overline{P}\cap\overline{Q}=B$ . Since $x$ was an arbitrary point of $I_{\gamma}$ ,

$[\pi^{-1}(\{c\}\times\{\mu\}\times I)],.\subset B$ .
Therefore

$B_{4}=[\pi^{-1}(\{c\}\times\{\mu\}\times I)]_{J_{1}}\subset B$ .
Since $B_{4}$ is closed in $Z$,

$IndB\geqq IndB_{4}=1$ .
Thus the proof is completely finished.

Finally the author thanks very much Prof. Yoshio Sasaki for his kindness
to translate Russian literatures cited in this paper.
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References

[1] C. H. Dowker, Local dimension of normal spaces, Quart. J. Math. Oxford Ser.
(2), 6 (1955), 101-120.

[2] K. Morita, Star finite coverings and the star finite property, Math. Japon., 1
(1948), 60-68.

[3] K. Morita, On closed mappings and dimension, Proc. Japan Acad., 32 (1956),
161-165.

[4] K. Nagami, Some theorems in dimension theory for non-separable spaces, J.
Math. Soc. Japan, 9 (1957), 80-92.

[5] K. Nagami, A note on Hausdorff spaces with the star-finite property III, Proc.
Japan Acad., 37 (1961), 356-357.

[6] K. Nagami, Monotone sequence of $0$-dimensional subsets of metric spaces, for-
thcoming.

[7] J. Nagata, Modern dimension theory, Groningen-Amsterdam, 1965.
[8] Yu. M. Smirnov, An exampls of $0$-dimensional normal space having infinite

covering dimension, Dokl. Acad. Nauk SSSR, 123 (1958), 40-42.
[9] P\v{e}tr Vopenka, On the dimension of compact spaces, Czechoslovak Math. J., 8

(1958), 319-327.


	A normal space $Z$ with ...
	References


