J. Math. Soc. Japan
Vol. 18, No. 2, 1966

A normal space Z with ind Z=0, dim Z=1, Ind Z=2

By Keio NAGAMI
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This paper gives a normal (Hausdorff) space Z for which three basic
dimension functions are different from each other: ind Z=0, dimZ=1 and
Ind Z=2. As for the definition of three dimension functions see ]. Nagata
[7, p. 9]. The idea developed by P. Vopenka as well as the one by C. H.
Dowker [1] are the main tool in our construction.

Let w, be the first uncountable ordinal, J={a: 0L a < w,} and j¥={a:0
<a=w,}, where J and J* have the usual interval topology. Let [/ be the
unit interval [0,17. By Dowker there exist subsets [,, a < w,, of I such
that i) I,C Ip if a <, ii) dim [,=0 for each a, iii) YI,=1I and iv) each [,
is dense in /. By Nagami there exist a separable metric space C with
dim C=0 and an open continuous mapping f of C onto /. Let M be a dis-
crete space whose power |M| is §. Consider the disjoint sum 7 of / and
C X M x I and introduce into T the topology due to Vopenka as follows:

i) An open set of Cx M x I with the usual product topology is open in
T.

ii) If U is an open set in [ and if K is a finite subset of M, then
UV WU)X(M—K)xI) is open in T.

Then T with the above basic open sets is a Hausdorff space. Set

Ta:IaU(f_l(Ia) X M X Ia): a<w.

The point set Z is the sum of all {a} X T,, « <w,. The topology of Z is the
relative topology of the product space j* x T. We identify T with {w,} X T.
n’ is the projection of /* X T onto T. Set w=u=x’|Z. p’ is the projection of
J¥XT onto J*. Set p=p’|Z. If E is a subset of Z and J’ is a subset of J,
then [E7], denotes the intersection of E and p=}(J"). If xis a point of / and
¢ is a positive number, then S.(x) denotes an open e¢-sphere in [ with the
center x.

LEMMA 1. Let X be a non-empty metric space. Then there exist subsets
Xo a <o, such that i) X,C X, if a< B, ii) dim X, =0 and iii) Y X,=X. If
Xq satisfy this condition let 'Y be the subspace of J X X which is the sum of
all {a} X X, a <w,. Then Y is a normal space such that

i) indY =0.
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ii) IndY =dim Y =dim X.

The first half of the lemma is Nagami [6, Theorem 2]. The last half is
proved by the analogous argument in Dowker [1] It is to be noticed that
the special case of this lemma where X is separable metric was proved by
Yu. M. Smirnov [&]

The following lemma was proved by Vopenka [9, Proposition 1.3] for
the case when X is compact. Our proof is nothing but an extraction of his.
The author is kind enough for English-reading mathematicians.

LEMMA 2. Let X be a normal space and Y a non-empty closed set of X
which satisfy the following conditions:

i) For any open neighborhood U of Y there exists an open and closed
neighborhood V of Y with V c U.

ii) There exists a retraction ¢ of X onto Y

itiy IndY <m.

iv) If F is a closed set of X with FNY =¢, then Ind F<n. Then
Ind X<m-+n.

Proor. We prove this by induction on Ind Y. Since the proof for the
starting case when Ind Y =0 is completely similar to general case, we merely
prove the lemma under the assumption that the lemma is true when Ind Y <m.

Let now IndY <m. Let H be a closed set of X and W be an open set
of X with HC W. Take a relatively open set G of Y with Hn"YCGCGeWNY
and with Ind(G—G)<m—1. Set X'=¢(G—G)and Y'=G—G. Then it can
easily be seen that the condition of the lemma is satisfied if X, Y and m are
replaced by X’, Y’ and m—1 respectively. Hence by induction assumption
Ind X’ <m+n—1. Let V be an open and closed neighborhood of Y with

VAo (G =WV H—p G =¢.

Let D, be an open set of X—V such that

) H-VcD,cD,cW-V

ii) Ind(D,—D,)<n—1.

Set D,=V ¢ XG). Then HAVc D,cD,cWnV. Since D,—D,CX,
Ind(D,—D,))<m+n—1. Set D=D,UD, Then D—D is the disjoint union
of D,—D, and D,—D, Hence

nd D—D)< max (n—1, m+n—D)=m-+n—1.

Moreover H-c Dc Dc W. Therefore Ind X <m-n and the proof is finished.
The following is the special case of Morita [3, Footnote, p. 1647] or Nagami
{4, Theorem 37, since a regular space with the Lindel6f property has the
star-finite property by Morita [2].
LeMmMA 3. If X is a normal space with the Lindeldf property, then dim X
<ind X.
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Now let us prove that Z is the desired one by several steps.

I) To prove the normality of Z let F and H be a pair of disjoint closed
sets of Z. Take an arbitrary point x of /. Both F and H cannot be cofinal
on z#~!(x) at the same time. Suppose that H is not cofinal on z~'(x). Then
there exists a(x) such that [77'(x)].wm ¢ and

[ﬂ—l(x)] Lalx),w1) N H: ¢ .

For every 8 with a(x)< B<w, let ¢(8) be the largest positive number for
which there exist y with a(x)<y < and a finite subset Kz of M such that
L7 (Secer() I (f T (Seepr(0) X (M—Kg) X IV ]apsNH=¢.

Then it is easy to see that
e(x) =inf {e(B): a(®) < B < w,}
is positive. Set
Kx: {'Z : '2 e M, [ﬂ_l(f—l(ss(x)(x)) X {2} X I)](a(z),wpﬂ Hi‘: ¢} .
To prove K, is a finite set assume the contrary. Then there exist a count-

ably infinite subset {4, 4,, ---} of K, and a sequence a(¥)<a;=Za,= -+ such
that

L2 (Secar(0) X {4} X DayNH = ¢

Let ay=1lim ;. Then for any ¢ with a(x)<0d < a, and for any finite subset
K of M,

Lz (7 (Sear(x) X (M—K) X D]o,e "NH¥ ¢
which is a contradiction. Thus K, is finite and
L (Seean(®) Y (F 71 (Secarr(2)) X (M —K2) X D) eacar,om
does not meet H.
[I) By I) for every x= I we have a positive number ¢(x), an ordinal
a(x)< w, and a finite subset K, of M such that [77'(x)]aw = ¢ and
{L7 ™ (Seca() I (F 7 (Seerr(x) X (M —K ) X I)camy,wp - X € 1}

refines {Z—F, Z—H}. Take a finite subset {x,, ---, x,} of I such that

U= {Se(xi)(xi) tt=1, -, n}
covers I. Set

K=\V{K,, :i=1, - ,n}.
Then K is a finite subset of M. Set

Bo=sup {a(x):1=1, -+, n}.
Let
B= {VI: "ty Vm}

be a finite open (in I) covering of I which is a 4-refinement of 1. We divide
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Z into disjoint three parts Z,, Z,, Z, each of which is open in Z as follows:
Zl = [ﬂ_l(IU(C X (M_“K) X I))](,Bo,wp ’
Z,=[r{CxX KX I)](ﬁo,wp ’

Zy= [Z][o,ﬂgl ’
=7,V Z,IZ,.
By construction

B= [z (V,VF (V)X M—K) X I)]gpop:i=1, -+, m}
d-refines {Z—F,Z—H}. Let D, and G, be respectively stars of F and H with
respect to B. Then D,NG,=¢, D,DFNZ, and G,DHNZ,. Since

[n—l(C X K X I)_—_I(,Bo,an)

is normal by [Lemma 1, there exist open sets D, and G, of Z, such that
D,NGy,=¢, D,DFNZ, and G, DHNZ,.

III) Let us prove the normality of Z,, Let 28 be an arbitrary op:zn
covering of Z,. Consider an arbitrary ordinal a« with 0=<a < 8, By perfect
separability of I there exist a sequence of open sets A, A,, --- of I, a sequence
of ordinals B,, 8., -+ with 8;<a,i=1,2, ---, and a sequence of finite subsets
K, K,, --- of M such that \JUA;=1 and

98, = ({74 (FHAY X (M=K X D) g i1 =1, 2, -}
refines ¥B. Set

M1: GKZ.
i=1

Then M, is countable. Since C X M, X I is perfectly separable, we can find
a countable open collection B, of Z, such that i) B, refines W and ii) Iy,
covers [#7YC X M, x I)].. Thus we have a countable open collection I8, v 28,
of Z, which covers [Z], and refines 28. Since [0, 8,] contains only a count-
able number of ordinals, 28 can be refined by a countable open covering of
Z,, which shows that Z, has the Lindelof property. Since Z, is evidently
regular, Z, is normal by Morita [2] There exist open sets D; and G; of Z,
such that Dy,NG;=¢, D, DFNZ, and G, DHNZ,. Set

D=D,VUD,JD,,
G - Gl U GZ U G3 .
Then D and G are open sets of Z such that DnG=¢, DDOF and GDH.
Thus the normality of Z is established.
IV) It is evident that ind Z=0.

V) Let us show dimZ=1. dimZ=1, because z~1(]) is a closed subset
of Z and by we already know that dimz~!(J)=1. Since T—I is
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the sum of disjoint open metric subsets and hence Z—z~!(J) is a normal
space with dim (Z—z"'(I))=1 by [Lemma 1, dim Z < max (dim z=*(]), dim (Z
—n}(I)))=1. Thus we have dim Z=1.
VI) Next task is to show IndZ<2. For any 1€ M,
Ind 2 }(Cx (A} xI)=1
by Lemma 1. Here is a closed subset #~(J) of Z with Indz7}(I)=1. If A
is any closed subset of Z with A\ n~'(I)=¢, then Ind A< 1. If we can show
the condition of is satisfied, then we have Ind Z<2. Let U be an
arbitrary open set of Z with UD = '(I). Set H=Z—U. By the same argu-

ment for H as in [) there exist a finite subset K of M and an ordinal § <,
such that

Vi=[rUJCXM—K) X D)]e,wpU.

V, is open and closed in Z. Since we already knew in III) that [Z 1, 1S a
normal space with the Lindel6f property,

dim [Z ;57 = ind [Z Jne = 0,
which implies
dlm [Z]EO'&‘J == 0 .

Hence there exists an open and closed subset V, of [Z ], such that
(27 D) eo,es C Vo C LU Jioyen -

If we set V=V,UV, then V is an open and closed set of Z with #~'(J)
cvcl.
We define ¢: T—1I as follows:

Px)=x, if xel,
e, 4, x)=1(), if (c, L, x)eCXMXxI.
Then ¢ is a retraction of T onto I. Define ¢:Z— z7(J]) as follows:
o((a, ) =(a, ¢@), where a=] and teT,.
Then ¢ is a retraction of Z onto z~(/). By Lemma 2
IndZ<2.

VII) Let us show IndZ=2. Let 0 and 1 be the terminal points of I.
It is to be noticed that there are 0 and 1 which are the first and the second
ordinals of /. But there might not be serious confusion. =z~*0) and =~!(1)
are disjoint closed sets of Z. We prove that any closed set separating these
two sets has to have Ind =1, which in turn will imply IndZ=2. Let P be
an open set of Z with 7¥(0)c Pc Pc Z—="*(1). Set B=P—P and Z—P=0Q.
We want to show Ind B=1. Set
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Cp={x:xe1, P is cofinal on =~ (x)},
Co={x:x€1,Q is cofinal on = '(x)},
Ey={x:x<1, B is equifinal on 7m7(x)}.

VIII) Suppose that Cpn\Cox¢@. Take heCpn\Cq Since 0&C, and
le&Cs, 0<h<1. For any point pe n~'(h) P there exists a positive integer
i(p) such that

1) 1/i(p)<min {h, 1—h},

i) [77 Sy o T P.

Then there exists ¢ such that

Py={p:u(p=1i}
is cofinal. For every point ge 77 (h) "\ @ there exists a positive integer i(g)
such that

1) 1/i(g) < min {h, 1—h},

i) [ (S Jo C Q.

Then there exists j such that
Q:={q: g =7}
is cofinal. Let
k=max {1, j} .
Then
Bi={z:zezx'(h), [z (S1x(M)]oey C B}

is cofinal. Moreover by the closedness of B, p(B)) is closed in J. Hence
B, =\I{[z"([h—1/@2k), h+1/CR)Dsw: z € By}
is a closed subset of B. By Ind B,=1. Hence
Ind B=Ind B,=1.

[X) It is to be noticed that the above observation contains the assertion:
Both Cp and C, are open in I. Since Ez=I1—(Cp\JICy), Ep is closed in I.

X) Suppose that Ey is not nowhere dense in . Then by the closedness
of Ep, Ep contains a closed interval I’CI. To prove p(z~*(I")n P) is not
cofinal assume the contrary. Then there exists a positive number ¢ such
that

pp:pex*UINP, [ (SLa(D))]oem © P})

is cofinal. Then next there exists a closed sub-interval I of I’ whose length
is ¢/4 such that
{a:[z7(I")].C P}

is cofinal. We have now I” C Cp and hence I” N Ez=¢, a contradiction. Thus
o(@=(i")~\ P) is not cofinal. By the same reason p(z~*({’) Q) is not cofinal.
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Hence there exists 7 &/ such that
BR - [n_l([/):[(wy,nn) CB.

Since B, is closed and Ind B;=1 by Lemma 1|, Ind B>1.
XI) Let us consider the last case when Cpn\Cy=¢ and Ep is nowhere
dense in 7. Set
a=supCp,

b=inf Cy.

Since Cp and C, are disjoint open sets, 0<a<land0<b<1. If a<b, then
E; contains the interval [a, b], a contradiction. Hence 6= a and a < Ej;.

Let a,, a,, -~ be a monotonically increasing sequence of / such that i)
sup ¢; =a and ii) every a; = Cp. Let by, b,, --- be a monotonically decreasing
sequence of I such that i) inf b,=a and ii) every b, C, Such a sequence
exists because we are now considering the case when Ep is nowhere dense.
Let ¢ be a point of f~%(a). Let 7, be an ordinal < w, such that [z~*(a)],, # ¢.
Set

SLi={ap<a<eo, [#@QlesnaDNAPATHDNQ} -

To see that J, is cofinal in J let «, be an arbitrary ordinal with 7, < a,.
Then there exist a monotonically increasing sequence a,<a;<S;<a,< f,< -,
a sequence of points p;, € 77(a;) P and a sequence of points ¢, =7 (b)NQ
such that i) p(p;)=a; for every i and ii) p(g;)=pB; for every i. Then sup a,
e/J,. Itis almost evident that J, is closed in J.

XI) For every point pe n~1(I)\ P there exists a finite subset K, of M
such that

[~ m(@) X (M—Kp) X D)o T P .

For every point g€ n7!(I) N\ @ there exists a finite subset K, of M such that

[z (T (@(@) X M—Kp) X D1y TQ -
Set
M,=V{K,:perd)n P},

M,=V{K,:qge ()N Q}.
Since |z ) |=¢, |M,|<c¢ and |M,|<c. Hence
M'—‘(MlK/'Mg)$¢.

Take an arbitrary element g from M—(M,\J M,), an arbitrary ordinal » from
J: and an arbitrary point x from [I,. Then ¢t=(c, g, x) is a point of T—I.
We want to show that
[z e PNQ.

Let U be an arbitrary open neighborhood of ¢ in C, ¢ an arbitrary positive
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number and & an arbitrary ordinal with 7, <&<y. Consider a basic neigh-
borhood

V=[7"2(U X {¢} X S(x))]ee,r1

of the point [#~%(®)], in Z and let us prove that V meets both P and Q.
Since f(U) is an open neighborhood of g,

W = [z (f({U)Jee,n

is a relatively open neighborhood of [z~*(a)], in z~!(J). Hence W meets both
P and Q. Take p, from W P and ¢, from W Q. Then f~x(p)HNU=x¢
and f Y wlg) NU=x¢. Since Iy, and Ip,, are dense in J, V meets both P
and Q. Hence [z'()]l;C P~Q=B. Since x was an arbitrary point of I,

Ca—({c} X {p} X D1y C B.
Therefore

B,=[z"'({c} x {¢} x )1;,C B.
Since B, is closed in Z,
Ind B=Ind B,=1.

Thus the proof is completely finished.
Finally the author thanks very much Prof. Yoshio Sasaki for his kindness
to translate Russian literatures cited in this paper.
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