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\S 1. Introduction.

1. It is well known as Hartogs-Osgood’s theorem that for a relatively
compact domain $D$ in $C^{n}(n\geqq 2)$ with the connected boundary $\partial D$ every holo-
morphic function in a connected neighborhood of $\partial D$ is continuable to $D$ .
In [21], Rothstein gave an analogous continuation theorem of analytic sets in
domains in $C^{n}$ with suitable convexity conditions. In this paper, we attempt
to generalize his results to the case of analytic sets in complex spaces1).

As in the proof of Hartogs-Osgood’s theorem [7], we consider a real-
valued function $v$ such that for any $p$ an analytic set $M$ in $\{v>v(p)\}$ is con-
tinuable to a neighborhood of $p$ (local continuability) and assert $\inf\Lambda=-\infty$

for the set $\Lambda$ of all 2 satisfying that $M$ is continuable to $\{v>\lambda\}$ (global con-
tinuability). For the study of local continuability, Rothstein restricted himself
to the case of $gradv\neq 0$ . His results are insufficient for the study of the
global continuability of analytic sets in complex spaces. With some impro-
vements in his arguments, we shall first prove the following local continuation
theorem.

If an open set $D$ in a complex space $X$ is $*$ -strongly s-concave at $p$ in $X$

(see Definition 2.8), every purely $(s+1)$ -dimensional analytic set in $D$ is con-
tinuable to a neighborhood of $p$ .

The first four sections are devoted to the proof of this theorem. In \S 2,
we define several kinds of convex functions and convex open sets in a complex
space and give some elementary properties and the relations of these con-
vexities. In \S 3, we state the definition of the continuation of analytic sets
in order to avoid misuse and ambiguity of terminology. As in case of holo-
morphic functions, we need the theorem of identity for irreducible analytic
sets. Using this, we give some general properties on the continuation of
analytic sets (\S 3, 2 and 3’). The proof of the above local continuation
theorem can be reduced to the study of a special complex space $X$ which is

1) In this paper, a complex space means $\beta$-Raum ” in the sense of Grauert-
Remmert [10] and is always assumed to be $\sigma$ -compact.
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mapped into a polydisc
$G^{\prime}=\{|z_{1}|<\rho_{1\prime}\ldots |z_{n}|<\rho_{n}\}$

in $C^{n}$ by a proper nowhere degenerate holomorphic mapping $\psi$ and its open
subset $D=\psi^{-1}(G)$ with

$G=\{\delta<|z_{1}|<\rho_{1}, |z_{2}|<\rho_{2}, \cdots’|z_{n}|<\rho_{n}\}$

$U\{|z_{1}|<\rho_{1},$ $|z_{2}-a_{2}|<\epsilon_{2},$ $\cdots’|z_{s+1}-a_{s+1}|$

$<\epsilon_{s+1},$ $|z_{s+2}|<\rho_{s+2},$ $\cdots$ $|z_{n}|<\rho_{n}$ }.

We investigate the continuability of analytic sets in $D$ to $X$ in \S 4 and ac-
complish the proof of the above theorem in \S 5.

2. Using these arguments, we can generalize the local continuation
theorem of holomorphic functions given in the previous paper [7] to the case
of complex spaces as follows:

Let $D$ be an open set in a complex space and $*$-strongly s-concave at $p$ in
X. If $X$ is normal and $\dim_{p}X\geqq s+1$ , or $dih_{p}X\geqq s+1$ , every holomorphic
function in $D$ is continuable to a neighborhood of $p$ .

Moreover, we can prove similar continuation theorems of vector-valued
holomorphic functions by the author [6], meromorphic functions using E. E.
Levi’s continuity theorem and its improvement by H. Kneser and holomorphic
mappings into a Stein space by Kerner’s Lemma ([13]) or into a relatively
compact weakly l-convex open set in a K-complete space by the method of
Andreotti-Stoll [3] in \S 6, 1 and 2.

Rothstein treated the continuation of Cousin-II distributions in his paper
[20]. With a Cousin-II distribution $\mathfrak{U}$ on a complex manifold we can associate
two holomorphic distributions $\mathfrak{U}^{n}$ and $\mathfrak{U}^{a}$ , which are identified with the coherent
analytic sheaves of principal ideals of holomorphic functions. The study of
the continuability of 11 is reduced to that of principal analytic sets, disre-
garding the vanishing order of holomorphic functions. We prove the following
proposition:

If $X$ is a complex manifold and an open set $D$ in $X$ is $*$ -strongly $(\dim_{p}X$

$-2)$-concave at $p$ , every Cousin-II distribution on $D$ is continuable to a neigh-
borhood of $p$ (\S 6, 3’).

It is desirable that we shall have the local boundary conditions for the
continuability of coherent analytic sheaves over complex spaces.

3. For the global continuability, we get the following theorem:
Let $X$ be a complex space, $v$ a $*$-strongly s-convex function on $X$ (see Defi-

nition 2.5) and $B$ an open subset of $X$ satisfying that 1o for any $\lambda\overline{B}\cap\{v>\lambda\}$

$\subset\subset Xi$ . $e.\overline{B}\cap\{v>\lambda\}$ is relatively compact in $X$ and 2 for $p\in\partial B$ and any
locally analytic set $M$ with $\dim_{p}M\geqq s+1M-B$ intersects $\{v>v(p)\}$ . Then
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every purely $(s+1)$-dimensional analytic set in a neighborhood $U$ of $\partial B$ is $con$ .
tinuable to $UUB$ .

For example, if a finite-dimensional complex space $X$ is K-complete, there
exists a $*$-strongly l-convex function on $X$ and every relatively compact
weakly l-convex open set $B$ (see Definition 2.8) has the desired properties.
Therefore, for these $X$ and $B$, every analytic set $M$ in $X-B$ is continuable
to $X$ if $M$ has no irreducible component of dimension at most one.

We have also the analogous continuation theorems of holomorphic map-
pings, meromorphic functions and Cousin-II distributions under the suitable
conditions corresponding to the above local boundary condition (\S 7).

According to Kasahara [12], we call a sheaf uz to be hard if the theorem
of identity holds for each sections of $\mathcal{A}$ (Definition 8.1). Holomorphic func-
tions, holomorphic mappings and meromorphic functions etc. give examples
of hard sheaves. In \S 8, putting together our results and Kasahara’s methods
([7] and [12]), we get the following generalization of Hartogs-Osgood’s theorem
for these sheaves.

Let $X$ be a purely n-dimensional normal complex space and $v$ a $*$-strongly
$(n-1)$ -convex function on $X$ which satisfies that each connected component of
the set $\{\lambda\leqq v\leqq\mu\}$ is compact for any 2, $\mu(\lambda<\mu)$ and is represented as $ v=v^{\prime}\tau$

by a nowhere degenerate holomorphic mapping $\tau$ of $X$ into a purely n-dimen-
sional complex manifold Y. If for an open set $D$ in $X$ and a compact subset
$K$ of $D,$ $D-K$ is connected, every holomorphic function and meromorphic func-
tion etc. in $D-K$ are continuable to $D$ .

In case that $X$ is not normal, we have some similar results by considering
the normalization (Theorem 8.5).

\S 2. Convex functions and convex open sets in a complex space.

1. Let $X$ be a complex manifold of dimension $n$ and $v$ a real-valued
differentiable function of class $c^{2}$ on $X$. At a point $p$ in $X$ the number of

positive or negative proper values of the Hermitian matrix $((\frac{\partial^{2}v}{\partial z_{i}\partial\overline{z}_{j}})_{p})_{1\leqq i,j\leqq n}$

is invariant under an arbitrary holomorphic change of local coordinates at $p$ ,

because we have

$\frac{\partial^{2}v}{\partial w_{i}\partial\overline{w}_{j}}=\sum_{k,l}\frac{\partial^{2}v}{\partial z_{k}\partial\overline{z}_{l}}(\frac{\partial z_{k}}{\partial w_{i}})(\overline{\frac{\partial z_{\iota}}{\partial w_{j}}})$ (1)

by Cauchy-Riemann’s equations $\frac{\partial\overline{z}_{k}}{\partial w_{i}}=(\overline{\frac{\partial z_{k}}{\partial\overline{w}_{i}}})=0$ for another system of local

coordinates $w_{1},$ $\cdots$ , $w_{n}$ at $p$ .
DEFINITION 2.1. $v$ is said to be strongly s-convex at $p(1\leqq s\leqq n)$ if
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$((\frac{\partial^{2}v}{\partial z_{i}\partial\overline{z}_{j}})_{p})_{1\leqq i,j\leqq n}$ has at least $n-s+1$ positive proper values and to be

strongly s-convex on an open set $D$ if $v$ is strongly s-convex at each point
of $D$ .

A strongly l-convex function is said to be strongly plurisubharmonic.
Obviously, a strongly plurisubharmonic function is plurisubharmonic.

A differentiable function of class $c^{2}$ is strongly s-convex at $p$ if and only

if $((\frac{\partial^{2}v}{\partial z_{i}\partial\overline{z}_{j}})_{p})_{s\leqq i,j\leqq n}$ is positive definite or $v$ is strongly plurisubharmonic on

$\{z_{1}=\ldots=z_{s-1}=0\}$ for a suitable system of local coordinates $z_{1},$ $\cdots$ , $z_{n}$ at
$p(p=(0))$ . We give the following lemmas on strongly s-convex functions for
later uses.

LEMMA 2.2. Let $v$ be a differentiable function of class $C^{2}$ in a neighbor-

hood of the origin in $C^{n}$ for which $((\frac{\partial^{2}v}{\partial z_{i}\partial\overline{z}_{j}})_{o})_{s\leqq i,j\leqq n}$ is positive definite. Then

we can take a neighborhood $U$ of the origin and a positive real number $\delta$ such
that for any holomorphic functions $w_{1},$ $\cdots$ $w_{n}$ on $U$ with $|w_{i}-z_{i}|\leqq\delta(1\leqq i\leqq n)$

$\{w_{1}, , w_{n}\}$ is a system of local coordinates at $q$ and $((\frac{\partial^{2}v}{\partial w_{i}\partial\overline{w}_{j}})_{q})_{s\leqq i,j\leqq n}$ is

positive definite for any $q$ in a suitable neighborhood $V$ of the origin $(V\subset U)$ .
PROOF. By Cauchy’s inequality, for any domains $U^{\prime}$ and $U^{\prime\prime}$ with $U^{\prime}$

$\subset\subset U^{\prime\prime}\subset\subset U$ there exists a positive real number $\eta$ such that $|\frac{\partial f}{\partial z_{i}}|\leqq\eta\sup_{z\in U^{\prime}}|f(z)|$

on $U^{\prime}(1\leqq i\leqq n)$ for any holomorphic function $f$ on $U$. Thus, holomorphic

functions $w_{1},$ $\cdots$ , $w_{n}$ sufficiently near to $z_{1},$ $\cdots$ , $z_{n}$ satisfy $(\frac{\partial(w_{1},\cdot.\cdot.\cdot.’ w_{n})}{\partial(z_{1},,z_{n})})_{0}\neq 0$

and hence they constitute a system of local coordinates in a neighborhood of
the origin. On the other hand, the proper values of a Hermitian matrix vary
continuously with its components. The last assertion follows from the re-
lation (1).

LEMMA 2.3. Under the same assumption as above, we take a function
$v^{\prime}={\rm Re} f+\kappa(|z_{s}|^{2}+\cdots+|z_{n}|^{2})+u(z_{1}, \cdots z_{n})$ (rc $>0$) (2)

satisfying the conditions $v(p)=v^{\prime}(p)$ and $v^{\prime}\leqq v$ in a neighborhood $U$ of the
origin, where ${\rm Re} f$ denotes the real part of the holomorphic function

$f=v(p)+2\times(\sum_{i}(\frac{\partial v}{\partial z_{i}})_{o}z_{i})+\sum_{1\leqq i,j\leqq n}(\frac{\partial^{2}v}{\partial z_{i}\partial z_{j}})_{o}z_{i}z_{j}$ (3)

and $u$ is a differentiable function of class $C^{2}$ on $U$ with $u(0, \cdots , 0, z_{s}, \cdots , z_{n})=0$ .
PROOF. Using the above holomorphic function $f$, we have the Taylor

expansion



Continuation of analytic sets 55.

$v(z)={\rm Re} f+_{1}\leqq l,j\leq n$

where $\eta=o(|z|^{2})$ means $\eta/|z_{1}|^{2}+\cdots+|z_{n}|^{2}\rightarrow 0$ as $z\rightarrow 0$ . As is well known,

$\sum_{s\leqq i,j\leqq n}(\frac{\partial^{2}v}{\partial_{Z_{i}}\partial\overline{z}_{j}})_{0}z_{i}z_{j}\geqq\delta(|z_{s}|^{2}+\cdots+|Z_{n}||^{2})$

with the minimum $\delta$ of proper values of $((\frac{\partial^{2}v}{\partial z_{i}\partial\overline{z}_{j}})_{o})_{s\leqq i,j\leqq n}$ . Taking a suffi-

ciently small neighborhood $U$ of the origin, we have

$v(z)\geqq{\rm Re} f+\sum_{1-\mathscr{D}.j\leqq n}((\frac{\partial^{2}v}{\partial z_{i}\partial\overline{z}_{j}})_{0})z_{j}z_{j}-\epsilon(|z_{1}|^{2}+\cdots+|z_{n}|^{2})$

$\geqq{\rm Re} f+\delta(|z_{s}|^{2}+\cdots+|z_{n}|^{2})+\sum_{\min(i,j)\leqq s-1}(\frac{\partial^{2}v}{\partial z_{i}\partial\overline{z}_{j}})_{o}z_{i}z_{j}$

$-\epsilon(|z_{1}|^{2}+\cdots+|z_{n}|^{2})$ $(0<\epsilon<\delta)$

on $U$. If we take $\kappa=\delta-\epsilon$ and

$u(z):=\sum_{\min(i,j)\leqq s-1}(\frac{\partial^{2}v}{\partial z_{i}\partial\overline{z}_{j}})_{o}z_{\iota}\overline{z}_{j}-\epsilon(|z_{1}|^{2}+\cdots+|z_{s-1}|^{2})$ ,

the function $v^{\prime}$ defined by (2) has the desired properties. $q$ . $e$ . $d$ .
REMARK. As is easily seen, the above $f$ defined by (3) is invariant under

an arbitrary linear transformation of coordinates in $C^{n}$ .
2. DEFINITION 2.4. A real-valued function $v$ on a complex space $X$ is

said to be strongly s-convex at $p$ in $X(s\geqq 1)$ if there exist a biholomorphic
mapping $\varphi$ of a neighborhood $U$ of $p$ onto an analytic subset of a domain $D$

in $C^{n}$ and a strongly s-convex function $\tilde{v}$ on $D$ such that $\tilde{v}\varphi=v$ on $U$ .
REMARK. For a strongly s-convex function on a complex manifold in the

sense of Definition 2.1, the restriction of $v$ to a regular submanifold $Y$ of $X$

is also strongly s-convex on $Y$ . Therefore, Definition 2.4 is consistent with
Definition 2.1 in case of complex manifolds.

DEFINITION 2.5. We shall say $v$ to be $*$ -strongly s-convex at $p$ if in Defini-
tion 2.4 we can take a nowhere degenerate holomorphic mapping of $U$ into $D$

instead of the above biholomorphic mapping $\varphi$ .
EXAMPLES 2.6. (i) $v=|z_{s}|^{2}+\cdots+|z_{n}|^{2}+u(z_{1}$ , $\cdot$ .. , $z_{s-1})$ is a strongly s-con-

vex function on $C^{n}$ , where $u(z)$ is an arbitrary differentiable function on $C^{n}$

in variables $z_{1},$ $\cdots$ $z_{s-1}$ only.
(ii) If $v$ is a strongly (or $*$-strongly) s-convex function on a complex

space $X$, the restriction $v|Y$ of $v$ to an arbitrary complex subspace $Y$ of $X$

is also strongly (or $*$-strongly) s-convex on $Y$ .
(iii) Let $\tau$ be a holomorphic mapping of a complex space $X$ into another

complex space $Y$ and $va*$-strongly s-convex function on $Y$ . If $r=\dim_{p}\tau^{-1}\tau(p)$ ,
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$ v\tau$ is $*$-strongly $(r+s)$-convex at $p$ .
Indeed, we can take a nowhere degenerate holomorphic mapping $\varphi^{\prime}$ of a

neighborhood $U$ of $p$ into a domain $D^{\prime}$ in $C^{n\prime}$ and a strongly $(r+s)$-convex
function $v^{\prime}$ on $D^{\prime}$ with $v=v^{\prime}\varphi^{\prime}$ on $U^{\prime}$ as follows. By Definition 2.5, $v$ is
represented as $ v=\tilde{v}\varphi$ for a suitable nowhere degenerate holomorphic mapping
$\varphi$ of a neighborhood $U$ of $p$ into a domain $D$ in $C^{n}$ and a strongly s-convex
function $\tilde{v}$ on $D$ . Since $\dim_{p}(\varphi\tau)^{-1}(\varphi\tau)(p)=\dim_{p}\tau^{-1}\tau(p)=r$ , we can find $r$

holomorphic functions $\varphi_{n+1}^{\prime},$ $\cdots$ , $\varphi_{n+r}^{\prime}$ in a neighborhood $U^{\prime}$ of $p(U^{\prime}\subset U)$ such
that the mapping $\varphi^{\prime}=\varphi\tau\times$ $(\varphi_{n+1}^{\prime}, \cdots , \varphi_{n+r}^{\prime})$ of $U^{\prime}$ into $C^{n+r}$ is nowhere degenerate
on $U^{\prime}$ . Now we define the canonical extension $y/of\tilde{v}$ putting $v^{\prime}(p_{1}, p_{2})=\tilde{v}(p_{1})$

for any $(p_{1}, p_{2})\in D\times C^{n}$, which is strongly $(r+s)$-convex on $D^{\prime}=D\times C^{n}$ . These
$\varphi^{\prime},$

$v^{\prime}$ and $D^{\prime}$ have the desired properties.
PROPOSITION 2.7 (Maximum Principle). $A*$ -strongly s-convex function $v$

on a complex space $X$ cannot take its maximum at any interior point $p$ of $X$

with $\dim_{p}X\geqq s$ .
PROOF. Assume that $X$ is of dimension at least $s$ at $p$ . According to

Definition 2.5, we take a nowhere degenerate holomorphic mapping $\varphi$ of a
neighborhood $U$ of $p$ into $D$ in $C^{n}$ and a strongly s-convex function $\tilde{v}$ on $D$

with $ v=\tilde{v}\varphi$ . Making $U$ and $D$ sufficiently small, we may assume that $\varphi$ maps
$U$ properly onto an analytic set in $D$ (cf. Remmert [17]). By the assumption,
we have $\dim_{p}X=\dim_{\varphi(p)}\varphi(U)\geqq s$ . On the other hand, $\tilde{v}$ is strongly pluri-
subharmonic on $L=\{z_{1}=\ldots=z_{s-1}=0\}$ for suitable local coordinates $z_{1},$

$\cdots$ , $z_{n}$

$(\varphi(p)=(O))$ and hence on the analytic subset $\varphi(U)\cap L$ . Since $\dim_{\varphi(p)}\varphi(U)\cap L$

$\geqq s-(s-1)=1$ and $\tilde{v}$ is not constant on any irreducible component of $\varphi(U)\cap L$ ,
$\tilde{v}$ cannot take its maximum on $\varphi(U)\cap L$ at the origin by the maximum
principle of a plurisubharmonic functions (cf. [9] and [7] Lemma 3 p. 185).

Consequently, $v$ cannot take its maximum on $U$ at $p$ . $q$ . $e$ . $d$ .
Now we define several types of open sets in a complex space $X$.
DEFINITION 2.8. For a positive integer $s$ , an open set $D$ in $X$ is said

to be
1, strongly s-convex (or s-concave) at a point $p$ in $X$ if we can take a

strongly s-convex function on a neighborhood $U$ of $p$ such that $D\cap U=$

$\{v<v(p)\}$ (or $D\cap U=\{v>v(p)\}$ , respectively),
$2^{o},$ $*$ -strongly s-convex (or s-concave) at $p$ if in 1o we can take $a*$-strongly

s-convex function on $U$ instead of the above $v$ ,
$3^{o}$ , analytically s-convex (or s-concave) at $p$ if there exist $s$ holomorphic

functions $f_{1},$ $\cdots$ , $f_{s}$ in a neighborhood $U$ of $p$ such that for the level set

$L_{p}(f_{1}, \cdots f_{s})=\{q\in U:f_{1}(q)=f_{1}(p), \cdots f_{s}(q)=f_{s}(p)\}$

$L_{p}(f_{1}, \cdots f_{s})\cap\overline{D}=\{p\}$ (or $L_{p}(f_{1},$ $f_{s})-\{p\}\subseteqq D$),
4, Rothstein s-convex (or s-concave) at $p$ if any locally analytic set $M$ with
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$\dim_{p}M\geqq s$ intersects $\overline{D}^{c}$ (or $D$), and
5’, weakly s-convex (or s-concave) at $p$ if the above $M$ intersects always

$D^{c}-\{p\}$ (or $\overline{D}-\{p\}$ ).

If an open set $D$ in $X$ is strongly ($*$-strongly or Rothstein etc.) s-convex
at each boundary point of $D$ , we call it a strongly ( $*$-strongly or Rothstein
etc.) s-convex set.

PROPOSITION 2.9. Among the above open sets we have the following
relations;

strongly s-convex\rightarrow *-strongly $s- convex\rightarrow Rothstein$ s-convex
$\rightarrow weakly$ s-convex

and
$*$-strongly $s- convex\rightarrow analyticallys- convex\rightarrow Rothstein(s+1)$ -convex.

The analogous implications are also valid for concave open sets.
PROOF. For brevity, we denote “ strongly s-convex ”, $’’*$ -strongly $s^{\prime}$ -con-

vex ‘’ and “ analytically $S^{\prime\prime}$ -convex” etc. by the symbols $1_{s^{\circ}},$ $2_{s^{O,}}$ and $3_{s^{o}},$ , etc..
$1_{s^{\circ}}\rightarrow 2_{s^{\circ}}$ and $4_{s^{\circ}}\rightarrow 5_{s^{\circ}}$ are trivial.
$2_{s^{\circ}}\rightarrow 4_{s^{o}}$ . Assume $D$ is $*$-strongly s-convex at $p$ . Then there exists a

$*$-strongly s-convex function $v$ on a neighborhood $U$ of $p$ such that $U\cap D$

$=\{v<v(p)\}$ . For an arbitrary locally analytic set $M$ with $\dim_{p}M\geqq s$ the
restriction $v|M$ of $v$ to $M$ cannot take its maximum at $p$ by Proposition 2.7.
This shows $ M_{\cap}\overline{D}\neq\phi$ .

$2_{s^{o}}\rightarrow 3_{s^{o}}$ . Under the same assumption as above, the $*$-strongly s-convex
function $v$ with $D\cap U=\{v<v(p)\}$ may be represented as $ v=\tilde{v}\varphi$ for a nowhere
degenerate holomorphic mapping $\varphi$ of $U$ into a domain $\tilde{D}$ in $C^{n}$ and a strongly
s-convex function $\tilde{v}$ satisfies the assumption of Lemma 2.3 for a suitable
system of coordinates $z_{1},$

$\cdots$ , $z_{n}$ in $\tilde{D}(\varphi(p)=(O))$ . Applying Lemma 2.3 to $\tilde{v}$ ,

we take the function $f$ defined by (3) and $\tilde{v}^{\prime}$ defined by (2) in some neigh-
borhood $W$ of $\varphi(p)(W\subseteqq\tilde{D})$ and we have

$\tilde{v}\geqq\tilde{v}^{\prime}=\kappa(|z_{s}|^{2}+\cdots+|z_{n}|^{2})>v(p)$

on $W\cap\{z_{1}=\ldots=z_{s-1}=f-v(p)=0\}-\{(0)\}$ . Then, the holomorphic functions
$f_{1}=z_{1}\varphi,$ $\cdots$ , $f_{s-1}=z_{s-1}\varphi,$ $ f_{s}=f\varphi$ satisfy the condition $L_{p}(f_{1}, \cdots , f_{s})\cap\overline{D}\cap V=\{p\}$

for a neighborhood $V$ of $p$ with $V\subseteqq U$ and $\varphi(V)\subseteqq W$ . Therefore, $D$ is ana-
lytically s-convex at $p$ .

$3_{s^{o}}\rightarrow 4_{s^{o}+1}$ . Assume $D$ is analytically s-convex at $p$ . Then there exist holo-
morphic functions $f_{1},$ $\cdots$ , $f_{s}$ in a neighborhood $V$ of $p$ such that $L_{p}(f_{1}, \cdots , f_{s})$

$\cap\overline{D}\cap V=\{p\}$ . For any locally analytic set $M$ with $\dim_{p}M\geqq s+1$ , we have
$\dim_{p}M_{\cap}L_{p}(f_{1}, \cdots , f_{s})\geqq(s+1)-s=1$ . Therefore $M\cap L_{p}(f_{1}, \cdots , f_{s})$ contains at
least one point different from $p$ and hence $ M\cap\overline{D}^{c}\neq\phi$ . $q.e$ . $d$ .
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\S 3. General consideration on the continuation of analytic sets.

1. For the description of the continuability conditions of analytic sets,
it is convenient to introduce the notion of analytic set germs on an arbitrary
set. For a set $M$ in a complex space $X$ we shall say $M$ to be analytic at a
point $p$ of $X$ if there exists a neighborhood $U$ of $p$ such that $U\cap M$ is an
analytic subset of $U$ and to be analytic on a set $E(\subseteqq X)$ if $M$ is analytic at
each point of $E$ . An analytic set on $E$ is also analytic in some neighborhood
of $E$ . A locally analytic set $M$ is nothing but an analytic set on $M$ itself.
For two analytic sets $M$ and $N$ on $E$ , if there exists a neighborhood $D$ of $E$

such that both $M$ and $N$ are analytic in $D$ and $M_{\cap}D=N\cap D$ , we shall say
$M$ and $N$ define the same germ on $E$ , or $M$ is equal to $N$ on $E$ , and denote
this by $M|E=N|E$ or simply $M|p=N|p$ in case of $E=\{p\}$ . If $E$ is open,
we may consider $M|E=M_{\cap}E$ . Without ambiguity, we can define the inter-
section $M_{\cap}N$ and the inclusion $M\subseteqq N$ of two analytic sets $M$ and $N$ on $E$ .
Moreover, if a family $\{M_{a}\}$ of analytic sets on $E$ is locally finite, namely, for
each point $p$ of $E$ there exists a neighborhood $U$ of $p$ such that $ M_{\alpha}\cap U\neq\phi$

for only finitely many $\alpha$ , the union $\bigcup_{a}M_{\alpha}$ is also an analytic set on $E$ which

is uniquely determined independently on the choice of representatives.
If an analytic set on $E$ cannot be decomposed into the union $M=M_{1}UM_{2}$

with $M_{i}|E\neq M|E(i=1,2)$ , we call $M$ to be irreducible on $E$ . By an irredu-
cible component of $M|E$ we mean a maximal element of those analytic subsets
of $M|E$ which are irreducible on $E$ . As is well known, we can decompose an
analytic set in an open set into the locally finite union of its irreducible
components and an analytic set at a point into the finite union of them.

For an analytic set $M$ in an open set $D$ and its normalization $(\tilde{M}, \mu)$ with
the projection $\mu$ , it is well known that each irreducible component $M_{i}$ of $M$

determines exactly one connected component $\mu^{-1}(M_{i})$ of $\tilde{M}$. In particular, $M$

is irreducible if and only if $\tilde{M}$ is connected. We can generalize this to the case
of an analytic set on a locally closed set as follows.

Take an analytic set $M$ on a locally closed set $E$ and an open set $D$ such
that $E$ is closed in $D$ and $M$ is considered as an analytic set in $D$ . Then
$M|E$ is irreducible if and only if $\mu^{-1}(M_{\cap}E)$ is a connected subset of $\tilde{M}$,

where $(\tilde{M}, \mu)$ is the normalization of the analytic set $M$ in $D$ .
Indeed, if $M$ is reducible on $E$ , we can decompose it as $M\cap D^{\prime}=M_{1}UM_{2}$

for non-empty two analytic sets $M_{1}$ and $M_{2}$ in an open set $D^{\prime}(E\subseteqq D^{\prime}\subseteqq D)$

satisfying that $M_{1}$ and $M_{2}$ do not include any irreducible component in common.
Easily we see $\mu^{-1}(M_{\cap}E)=\mu^{-1}(M_{1}\cap E)U\mu^{-1}(M_{z\cap}E)$ and $\mu^{-1}(M_{1}\cap E)\cap\mu^{-1}(M_{2}$

$\cap E)=\phi$ . Since each $\mu^{-1}(M_{i}\cap E)$ is closed in $\tilde{M}$, this shows $\mu^{-1}(M_{\cap}E)$ is
disconnected. Conversely, if $\mu^{-1}(M_{\cap}E)$ is disconnected in $\tilde{M}$ we can find two



Continuation of analytic sets 59

non-empty disjoint closed sets $F_{1}$ and $F_{2}$ with $\mu^{-1}(M_{\cap}E)=F_{1}UF_{2}$ and two
disjoint open sets $0_{1}$ and $0_{2}$ in $\tilde{M}$ with $o_{1}UO_{2}=\tilde{M}$ and $F_{i}\subseteqq O_{i}(i=1,2)$ . For
each point $p$ in $E$ , we take a neighborhood $V(p)$ of $p(V(p)\subseteqq D)$ such that
$\mu^{-1}(V(p))\subseteqq O_{1}UO_{2}$ if $p\in M$ and $ V(p)\cap M=\phi$ if $p\not\in M$. Then for a neigh-

borhood $W=\bigcup_{\overline{\sim}}V(p)pE$ of $E$ we have $\overline{M\cap W}=\mu^{-1}(W)=(\mu^{-1}(W)\cap O_{1})U(\mu^{-1}(W\rangle$

$\cap O_{2})$ and hence $M=M_{1}UM_{2}$ , where $M_{i}$ $:=\mu(\mu^{-1}(W)\cap O_{i})(i=1,2)$ are analytic
sets in $W$ . Since $\mu^{-1}(W)\cap O_{i}\supseteqq F_{i}(i=1,2)$ , we can conclude $M_{i}|E\neq M|E$

$(i=1,2)$ . Consequently, $M$ is reducible on $E$ .
The following lemma plays an important role in this section.
LEMMA 3.1 (Theorem of identity for analytic sets). Let $M$ and $M^{\prime}$ be two

purely k-dimensional analytic sets on a set E. If $M|p$ includes an irreducible
component of $M^{\prime}|p$ for a point $p$ in $E\cap M^{\prime}$ and $M^{\prime}$ is irreducible in $E,$ $M|E$

includes $M^{\prime}|E$ .
PROOF. By definition, $M\cap D$ and $M^{\prime}\cap D$ are analytic sets in $D$ for a

suitable neighborhood $D$ of $E$ . As is well known in case that $D$ is open, an
irreducible component $N$ of $M^{\prime}\cap D$ including an irreducible component of
$M^{\prime}|p(p\in M^{\prime}\cap D)$ is an irreducible component of $M$ in $D$ (Abhyankar [1] (34,

14), p. 296). By $N^{\prime}$ we denote the union of all irreducible components of
$M^{\prime}\cap D$ with the exception of $N$. From the assumption of the irreducibility
of $M^{\prime}|E$ , we conclude $M^{\prime}|E=N|EUN^{\prime}|E=N|E\subseteqq M|E$ . $q$ . $e$ . $d$ .

2. DEFINITION 3.2. Let $X$ be a complex space and $E$ a subset of $X$. We
shall call an analytic set $M$ on $E$ to be continuable to a set $E^{\prime}$ if there exists
an analytic set $M^{\prime}$ on $EUE^{\prime}$ with $M^{\prime}|E=M|E$ . Then $M^{\prime}|E^{\prime}$ is called a
continuation of $M$ to $E^{\prime}$ .

If $\overline{M_{\cap}E}\cap(E^{\prime}-E)=\phi,$ $M$ is obviously continuable to $E^{\prime}$ . Indeed, we can
take a neighborhood $U$ of $E^{\prime}-E$ with $ U_{\cap}M_{\cap}E=\phi$ and a neighborhood $D$

of $E$ such that $M_{\cap}D$ is analytic in $D$ . Then $M_{\cap}D$ is analytic in the neigh-

borhood $D^{\prime}=DUU$ of $EUE^{\prime}$ and $(M_{\cap}D)|E^{\prime}$ is a continuation of $M$ to $E^{\prime}$ .
An analytic set $M$ on $E$ can be decomposed as the locally finite union

$M=\bigcup_{k}M^{k}$ of purely k-dimensional analytic sets $M^{k}$ on $E$ and hence $M$ is

continuable to $E^{\prime}$ if and only if each $M^{k}$ is continuable to $E^{\prime}$ . For the study
of the continuability of analytic sets, there is no loss of generality if we
restricted ourselves to pure-dimensional analytic sets and any continuation of
a purely k-dimensional analytic set is assumed to be of pure-dimension $k$ .

In the rest of this section, we study the continuability of analytic sets
in an open set $D$ to another open set $D^{\prime}(D\subseteqq D^{\prime})$ or to a boundary point $p$ of
$D$ . We assume all analytic sets to be of pure-dimension $k(\geqq 1)$ .

PROPOSITION 3.3. Suppose an analytic set $M$ in $D$ is continuable to $D$ ‘.
Then there exists one and only one continuation $M^{*}$ of $M$ to $D^{\prime}$ satisfying that
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each irreducible component of $M^{*}$ intersects $D$ .
We shall call it the irredundant continuation of $M$ to $D^{\prime}$ .
PROOF. Existence. By the assumption, there exists a continuation $M^{\prime}$ of

$M$ to $D^{\prime}$ . We take the union of all irreducible components $M_{i}$ of $M^{\prime}$ with
$ M_{j}\cap D\neq\phi$ . Obviously, $M^{*}$ is analytic in $D^{\prime}$ and $M^{*}\cap D\subseteqq M^{\prime}\cap D=M$. On
the other hand, any point $q$ in $M$ is contained in some irreducible component
of $M^{\prime}$ . Thus $M^{*}\cap D=M$. Namely, $M^{*}$ is a continuation of $M$ to $D^{\prime}$ and
satisfies the desired condition.

Uniqueness. Let $M_{1}^{*}$ and $M_{2}^{*}$ be two continuations of $M$ with the above
condition. For each irreducible component $N$ of $M_{1}^{*}$ we have $M_{2^{*}}\cap D=M_{1}^{*}$

$\cap D\supseteqq N\cap D\neq\phi$ and therefore $M_{2}^{*}$ includes an irreducible component of $N|q$

for some $q$ in $N_{\cap}D$ by the assumption of dimension. According to Lemma
3.1, $N$ is included in $M_{2^{*}}$ . Thus $M_{1}^{*}\subseteqq M_{2}^{*}$ and similarly $M_{2}^{*}\subseteqq M_{r}^{*}$ . $q$ . $e$ . $d$ .

COROLLARY 3.4. Suppose that any analytic set in $D^{\prime}$ intersects D. Then
a continuation of any analytic set in $D$ to $D^{\prime}$ is unique if it exists.

PROOF. In this case, any continuation is the irredundant continuation.
Therefore it is uniquely determined. $q$ . $e$ . $d$ .

Conversely, if there exists an analytic set $N$ in $D^{\prime}$ with $ N\cap D=\phi$ , for a
continuation $M^{\prime}$ of $M$ in $D$ to $D^{\prime}$ $M^{\prime}$ UN is also a continuation of $M$ to $D^{\prime}$

which is not equal to $M^{\prime}$ . We cannot assert the uniqueness of the continua-
tion of any analytic set in $D$ to $D^{\prime}$ .

COROLLARY 3.5. If $D$ is Rothstein k-concave at $p$ , any analytic set in $D$

has at most one continuation of it to $p$ .
PROOF. It suffices to show that for two analytic sets $M$ and $N$ at $p,$ $M$

$\cap D=N\cap D$ implies $M|p=N|p$ . To this end, we take a neighborhood $V$ of
$p$ such that both $M$ and $N$ are analytic in $V$ and each irreducible component
M. of $M$ and $N$ in $V$ contains $p$ . Then by the assumption each $M_{l}$ intersects
$D$ . Both $M_{\cap}V$ and $N\cap V$ are the irredundant continuations of $M_{\cap}D=N$

$\cap D$ to $V$ . According to Proposition 3.3, we conclude $M_{\cap}V=N\cap V$ .
$q$ . $e$ . $d$ .

PROPOSITION 3.6. If an analytic set $M$ in $D$ satisfies the conditions 1o
there exists an analy $tic$ set $M^{\prime}$ in $D^{\prime}$ with $M^{\prime}\cap D\supseteqq M$ and 2 any irreducible
component of $M^{\prime}$ including some irreducible component of $M|q(q\in M_{\cap}D)$ is
irreducible in $D$ , then $M$ is continuable to $D^{\prime}$ .

PROOF. Take an analytic set $M^{\prime}$ with the conditions 1o and $2^{o}$ . We
consider the union $M^{*}$ of all irreducible components $M_{i}^{\prime}$ of $M^{\prime}$ satisfying that
each $M_{i}^{\prime}$ includes an irreducible component of $M|q$ for some $q\in D\cap M$. We
want to show the analytic set $M^{*}$ is a continuation of $M$. For a point $q$ in
$M$ each irreducible component of $M|q$ is also an irreducible component of
$M^{\prime}|q$ by the assumption that $M$ and $M^{\prime}$ are purely k-dimensional. Hence we
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can take the irreducible component of $M^{\prime}$ including an irreducible component
of $M|q$, which is also an irreducible component of $M^{*}$ by the definition. Thus
we get $M^{*}\cap D\supseteqq M$. On the other hand, each irreducible component $M_{i^{\prime}}$ of
$M^{*}$ is irreducible in $D$ by the condition 2 and includes an irreducible com-
ponent of $M|q(q\in M_{\cap}D)$ which is also an irreducible component $M_{i}^{\prime}|q$ . By
Lemma 3.1, we see $M_{i^{\prime}}\cap D\subseteqq M$. This asserts $M^{*}\cap D\subseteqq M$ and consequently
$M^{*}\cap D=M$. q. e. d.

REMARK. As a partial converse of this proposition we can assert that if
every analytic set on a set $E$ is continuable to $E^{\prime}(E\subseteqq E^{\prime})$ , then every irre-
ducible analytic set on $E^{\prime}$ is irreducible on $E$ .

Indeed, if some irreducible analytic set $M^{\prime}$ in $E^{\gamma}$ is decomposed as $M=M_{1}$

$UM_{2}$ on $E$ with $M_{i}|E\neq M|E(i=1,2)$ , the analytic set $M_{1}$ on $E$ is not con-
tinuable to $E^{\prime}$ . For, any analytic set $M_{1}^{\prime}$ on $E^{\prime}$ with $M_{1}^{\prime}|E\supseteqq M|E$ must include
the total set $M|E^{\prime}$ by Lemma 3.1. We cannot take any $M_{1}^{\prime}$ with $M_{1}^{\prime}|E=M_{1}|E$ .

3. Even if an analytic set $M$ in $D$ is continuable to each point in a sub-
set $E$ of $\partial D$ , we cannot necessarily assert that $M$ is continuable to $E$ (Stoll
[23] p. 213). But we can prove

PROPOSITION 3.7. Let $D$ be an open set in $X$ and $E$ be a closed subset of
$\partial D$ . If $D$ is Rothstein k-concave at any point of $E$ and an analytic set $M$ in
$D$ is continuable to each point of $E$ , then $M$ is continuable to $E$ (cf. Rothstein
[21] Hilfssatz 5.1 p. 126).

PROOF. By definition, for any $p$ in $E$ there exists an analytic set $M(p)$

in a neighborhood $U(p)$ of $p$ with $M(p)\cap D=M\cap U(p)$ . Then we can take
two locally finite open coverings 1I $=\{U_{i}\}$ and $\mathfrak{U}^{\prime}=\{U_{i}^{\prime}\}$ of $E$ such that $U_{i}^{f}\Subset U_{i}$

for any $i$ and each $U_{i}$ is included in some $U(p)(p\in E)$ , say $p=p_{i}$ . We denote
the analytic set $M(p_{i})\cap U_{i}^{\prime}$ by $M_{i^{\prime}}$ . We want to show the set $M^{\prime}=\bigcup_{i}M_{i}^{\prime}$ is a
continuation of $M$ to $E$ . Obviously, $M^{\prime}\cap D=M$. It suffices to show $M^{\prime}$ is
analytic on $E$ . Take an arbitrary point $q$ of $E$ . Rewriting the indices of $U_{i}$ ,

we may assume $q\in U_{1}^{\prime}\cap\cap\overline{U}_{i^{\prime}}$ and $q\not\in U\overline{U}_{i}^{\prime}$ . Then we can find a neigh-
$2\leqq i\leqq l$ $\iota>\iota$

borhood $V(q)$ of $q$ satisfying that $V(q)\subseteqq U_{1}^{\prime}\cap\cap U_{i},$ $ V(q)\cap U_{i}^{\prime}=\phi$ for any
$2\leqq i\leqq l$

$i(>1)$ and furthermore each irreducible component of $M(p_{i})\cap V(q)(1\leqq i\leqq l)$

contains $q$. Since $D$ is Rothstein k-concave at $q$, each irreducible component
of $M(p_{i})\cap V(q)(1\leqq i\leqq l)$ intersects $D$ . According to Lemma 3.1, the condition
$M(p_{i})\cap D=M=M(p_{j})\cap D$ on $U(p_{i})\cap U(p_{j})$ implies $M(p_{i})\cap V(q)=M(p_{j})\cap V(q)$

for any $i,$ $j(1\leqq i, j\leqq l)$ . Therefore, we obtain

$M^{\prime}\cap V(q)=(\bigcup_{j}M_{j^{\prime}})\cap V(q)\subseteqq\bigcup_{1\leqq i\leqq l}M(p_{j})\cap V(q)$

$=M(p_{1})\cap V(q)\subseteqq M^{\prime}\cap V(q)$ .
The set $M^{\prime}\cap V(q)=M(p_{1})\cap V(q)$ is analytic in $V(q)$ . This completes the proof.

$q$ . $e$ . $d$ .
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\S 4. Some properties of special complex spaces.

1. Before we state general continuation theorems, we give some properties
of holomorphic functions and analytic sets in special complex spaces.

We take domains;

$G^{\prime}=\{|z_{1}|<\rho_{1}, \cdots |z_{k}|<\rho_{k}\}$

$G$ (or precisely $G_{a}$) $=\{\delta<|z_{1}|<\rho_{1}, |z_{2}|<\rho_{2}, \cdots , |z_{k}|<\rho_{k}\}$

$U\{|z_{1}|<\rho_{1}, |z_{i}-a_{l}|<\epsilon_{i} ; 2\leqq i\leqq k\}$

in $C^{k}$, where $\rho_{j}>0(1\leqq i\leqq k),$ $\rho_{1}>\delta>0,$ $\epsilon_{i}>0(2\leqq i\leqq k),$ $a=(a_{2}, \cdots , a_{k})$ and
they are chosen as $G\subseteqq G^{\prime}$ .

We give the following fundamental lemma, which is an improvement of
[7] Lemma 5 p. 192.

LEMMA 4.1. Suppose $M$ is a thin analytic subset of $G^{\prime}$ . Then any curve
$\gamma(t)(0\leqq t\leqq 1)$ in $G^{\prime}-M$ with the end points $\gamma(0),$ $\gamma(1)$ in $G-M$ is homotopic in
$G^{\prime}-M$ to a curve contained in $G-M$.

PROOF. Firstly, for an arbitrarily fixed point $b=$ $(b_{1}, \cdots , b_{k})\in G-M$ the
given curve $\gamma(t)$ may be assumed to satisfy $r(0)=r(1)=b$ . To see this, we
take a curve $\alpha$ joining $\gamma(0)$ with $b$ and $\beta$ joining $\gamma(1)$ with $b$ in $G-M$. If
$\alpha^{-1}\gamma\beta$ is homotopic to $\gamma^{\prime}$ in $G-M,$ $\gamma$ is homotopic to $\alpha\gamma^{\prime}\beta^{-1}$ , which is contained
in $G-M$. Thus it suffices to prove Lemma 4.1 for the curve $\gamma(t)$ with $\gamma(0)$

$=\gamma(1)=b$ .
Moreover, $M$ may be assumed to be a principal analytic set in $G^{\prime}$ defined

as zeros of a holomorphic function $f$ in $G^{\prime}$ . Indeed, since $G^{\prime}$ is a domain of
holomorphy, we can take a holomorphic function $f(z_{1}, \cdots , z_{k})$ in $G^{\prime}$ with $f\exists\equiv 0$

and $M\subseteqq\{f=0\}$ . By the above argument, the given curve $\gamma(t)$ satisfies $\gamma(0)$

$=\gamma(1)\not\in\{f=0\}$ . We cover $\gamma(t)$ by finitely many simply connected subdomains
$U_{1}$ , $\cdot$ .. , $U_{t}$ of $G^{\prime}$ with $ U_{i}\cap M=\phi$ and $U_{i}\cap U_{i+1}\neq\phi(1\leqq i\leqq t-1)$ . Since each
$U_{i}-\{f=0\}$ is a connected open subset of $G^{\prime}$ , it is easy to take a curve con-
tained in $G^{\prime}-\{f=0\}$ homotopic to $\gamma(t)$ . Without loss of generality, we may
assume $M=\{f=0\}$ .

The holomorphic function $f$ is expanded in the Hartogs series

$f(z_{1}, \cdots z_{k})=\sum_{\nu=0}\alpha_{\nu}(z_{2}, \cdots z_{k})z_{1}^{\nu}$

in $G^{\prime}$ , where $\alpha_{\nu}(z_{2}$ , $\cdot$ .. , $z_{k})$ are holomorphic on $\tilde{G}=\{|z_{2}|<\rho_{2}, \cdot.. , |z_{k}|<\rho_{k}\}$ .
The assumption of $f\not\equiv O$ implies some $\alpha_{\nu_{0}}$

$(z_{2}, \cdots , z_{k})$ does not vanish identically.
Then we see easily the canonical projection $\pi$ of $M$ into the $(z_{2}, \cdots , z_{k})$ -space
is nowhere degenerate on $M_{\cap}\{\alpha_{\nu 0}(z_{2}, \cdots , z_{k})\neq 0\}$ . By $S$ , we denote the union
of the singular locus of $M$ and the set of all regular points of $M$ at which
the Jacobian of $\pi$ vanishes. The set $S$ is a thin analytic subset of $M_{\cap}\{\alpha_{\nu_{\theta}}$
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$\neq 0\}$ and $\pi$ is locally biholomorphic on $M_{\cap}\{\alpha_{\nu_{0}}\neq 0\}-S$ .
Next, we shall show the given curve $\gamma(t)=(\gamma_{1}(t), \cdots , \gamma_{k}(t))$ may be assumed

to have the properties (i) $\gamma(0)=\gamma(1)$ and $|\gamma_{i}(0)-a_{i}|<\epsilon_{i}(2\leqq i\leqq k)$ (ii) $M_{\cap}\{z_{2}$

$-\gamma_{2}(t)=\ldots=z_{k}-\gamma_{k}(t)=0\}$ is a discrete set and (iii) for some $\rho^{\prime}$ with $\rho_{1}>\rho^{\prime}$

$>\delta\{|z_{1}|\leqq\rho^{\prime}\}\cap M_{\cap}\{z_{2}-\gamma_{2}(t)=\ldots=z_{k}-\gamma_{k}(t)=0\}\cap\pi^{-1}\pi(S)=\phi$ . According to
Grauert [8] (Satz 10 p. 251) $\pi(S)$ cannot cover any non-empty open subset of
$\tilde{G}$ . We can find a point $b=$ $(b_{1}, \cdots , b_{k})$ in $G$ with $|b_{i}-a_{i}|<\epsilon_{i}(2\leqq i\leqq k)$ and
$b\not\in\pi^{-1}\pi(S)$ . We may assume the given curve $\gamma(t)$ satisfies $\gamma(0)=\gamma(1)=b$ by
the above argument and hence the prorerty (i). Moreover, as in the proof of
the first part, $\gamma(t)$ is homotopic in $G^{\prime}-M$ to a curve contained in $\{\alpha_{\nu_{0}}\neq 0\}$

$\cap(G^{\prime}-M)$ . We may consider the curve $\gamma(t)$ to satisfy this condition and
hence the property (ii). Now for the given curve $\gamma(t)=(\gamma_{1}(t), \cdots , \gamma_{k}(t))$ we
take a real number $\rho^{\prime}$ with $\rho_{1}>\rho^{\prime}>\sup_{0\leqq t\leqq 1}|\gamma_{1}(t)|(\rho^{\prime}>\delta)$ and a relatively com-

pact subdomain $D$ of $\tilde{G}\cap\{\alpha_{\nu_{0}}\neq 0\}$ including $\pi(\{\gamma(t);0\leqq t\leqq 1\})$ . Since every
point $p$ of $M_{\cap}\{\alpha_{\nu_{0}}\neq 0\}$ has a neighborhood $U$ of $p$ such that $U\cap\pi^{-1}\pi(S)$ is
a thin analytic set, the set $\pi^{-1}\pi(S)\cap(\{|z_{1}|\leqq\rho^{\prime}\}\times D)$ is included in a finite
union of locally thin analytic subsets of $G^{\prime}$ . We can find easily a curve $\gamma^{\prime}$

in $(\{|z_{1}|<\rho^{\prime}\}\times D)-M$ homotopic to $\gamma$ with $\gamma^{\prime}(t)\not\in\pi^{-1}\pi(S)$ . This shows the
given curve may be assumed to have the property (iii).

For the curve with the above properties the proof of Lemma 4.1 is similar
to [7] Lemma 5. Take the set ET of parameters $(0\leqq\tau\leqq 1)$ such that there
exists a curve $\gamma^{\tau}(t)=(\gamma f(t), \cdots , \gamma_{k}^{\tau}(t))$ in $G^{\prime}-M$ homotopic to $\gamma(t)$ with the above
properties $(i)\sim(iii)$ and moreover (iv) for some sequence $\tau_{0}=0,$ $\tau_{1},$

$\cdots$ , $\tau_{2r}$

$=\tau(\tau_{j}\leqq\tau_{j+1})\gamma^{\tau}(t)\in G-M$ if $\tau_{2j}\leqq t\leqq\tau_{2j+1}(0\leqq j\leqq r-1)$ and $\pi\gamma^{\tau}(t)=\pi\gamma(\tau)$ if
$\tau_{2j-1}\leqq t\leqq\tau_{2j}(1\leqq j\leqq r)$ and $\gamma^{\tau}(t)=\gamma(t)$ if $ t\geqq\tau$ . Suppose $\tau_{0}=s$up $g;<1$ . By
the assumption (ii) $\{|z_{1}|\leqq\rho^{\prime}\}\cap M_{\cap}\pi^{-1}\pi(\gamma(\tau_{0}))$ has only finitely many points.
We denote them by $p_{\iota}=$ $(c_{l}, \gamma_{2}(\tau_{0})$ , , $\gamma_{k}(\tau_{0}))(1\leqq l\leqq s)$ . According to the
assumption (iii), in a suitable neighborhood of each $p_{\iota},$ $M$ is represented as

$M:z_{1}=\psi^{(l)}(z_{2}, \cdots z_{k})$

where $\psi^{(l)}$ is a holomorphic function in a neighborhood of $\pi(\gamma(\tau_{0}))$ . Then we
can take a neighborhood $T=\{t;|t-\tau_{0}|<\epsilon\}$ of $\tau_{0}$ and sufficiently small open
discs $B_{\iota}$ with centers $c_{l}(1\leqq l\leqq s)$ in the $z_{1}$ -space such that (a) $B_{l}\cap B_{m}$

$=\phi(l\neq m),$ $(b)\{(z_{1}, \gamma_{2}(t), \cdots \gamma_{k}(t));|z_{1}|<\rho^{\prime}, z_{1}\not\in B_{\iota}, t\in T\}\cap M=\phi$ for any $l$ ,
(c) $\gamma_{1}(t)\not\in B_{\iota}$ for any $l$ and $t\in T$, and (d) $\overline{B}_{l}\subseteqq\{|z_{1}|<\rho_{1}\}$ for any 1, $\overline{B}_{\iota}\subseteqq\{\delta$

$<|z_{1}|<\rho_{1}\}$ if $|c_{\iota}|>\delta$ and $\overline{B}_{l}\subseteqq\{|z_{1}|<\rho^{\prime}\}$ if $|c_{\iota}|<\rho^{\prime}$ . By the definition of $\tau_{0}$

we can find a curve $\gamma^{\tau}(t)$ with the above properties $(i)\sim(iv)$ for some $\tau\in T$ .
After a suitable deformation $\gamma^{\tau}(t)$ may be assumed to satisfy $\gamma_{1}^{\tau}(t)\not\in\bigcup_{1\leqq l\leqq s}B_{l}$

for any $t\in[\tau_{2j-1}, \tau_{2j}](1\leqq j\leqq r)$ and $|\gamma_{1}(\tau_{j})|>\delta(0\leqq j\leqq 2r)$ . Moreover, we
can reparametrize so that $|\gamma_{1}(\tau_{j})|<\rho^{\prime}$ for any $t\in[\tau_{2j-1}, \tau_{2j}]$ by the addition
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of some $\tau_{j}$ .
Now we define a new curve $\gamma^{\tau^{l}}(t)$ homotopic to $\gamma(t)$ for some $\tau^{\prime}\in(\tau_{0},$

$\tau_{0}$

$+\epsilon)$ as follows. We join the curve segment $\gamma^{\tau}(t)(0\leqq t\leqq\tau_{1})$ with the segments

$(\gamma_{1}(\tau_{1}), \gamma_{2}(t),$ $\cdots$ $\gamma_{k}(t))$ $\tau\leqq t\leqq\tau^{\prime}$ ,

$(\gamma_{1}^{\tau}(t), \gamma_{2}(\tau^{\prime}),$ $\cdots$ $\gamma_{k}(\tau^{\prime}))$ $\tau_{1}\leqq t\leqq\tau_{2}$ ,

$(\gamma f(\tau_{2}), \gamma_{2}(t),$ $\cdots$ , $\gamma_{k}(t))$ $\tau^{\prime}\geqq t\geqq\tau$ decreasingly,
$(\gamma_{1}^{\tau}(t), \gamma_{2}^{\tau}(t),$ $\cdots$ $\gamma_{k}^{\tau}(t))$ $\tau_{2}\leqq t\leqq\tau_{3}$ ,

$(\gamma_{1}^{\tau}(t), \gamma_{2}^{\tau}(t),$ $\cdots$ $\gamma_{k}^{\tau}(t))$ $\tau_{2r-2}\leqq t\leqq\tau_{2r-1\prime}$

$(\gamma_{1}^{\tau}(\tau_{2r-1}), \gamma_{2}(t),$ $\cdots$ $\gamma_{k}(t))$ $\tau\leqq t\leqq\tau^{\prime}$ ,

$(\gamma_{1}^{\tau}(t), \gamma_{2}(\tau^{\prime}),$ $\gamma_{k}(\tau^{\prime}))$ $\tau_{2r-1}\leqq t\leqq\tau^{\prime}$

and $\gamma(t)t\geqq\tau^{\prime}$ . Then we can parametrize the obtained curve so as to satisfy
$\tau^{\prime}\in 9^{\prime}$. This contradicts the definition of $\tau_{0}$ . Thus $\tau_{0}=1$ .

For $\tau^{\prime}\in 9^{\prime}$ sufficiently near to 1, the curve $\gamma^{\tau^{\prime}}$ is contained in $G-M$.
This shows Lemma 4.1. $q.e$ . $d$ .

2. LEMMA 4.2. Let $X$ be a complex space and $\psi$ a proper nowhere de-
generate holomorphic mapping of $X$ onto $G^{\prime}$ . If $X$ is irreducible, then $\psi^{-1}(G)$

is irreducible and therefore connected.
PROOF. By the assumption, $\psi$ is locally biholomorphic on $X-E$ , where $E$

denotes the thin analytic subset $\psi^{-1}\psi(S)$ of $X$ for the union $S$ of the singular
locus of $X$ and the set of those regular points of $X$ at which the Jacobian
of $\psi$ vanishes. From the irreducibility of $X$, the set $X-E$ is connected and
hence any point $p$ and $q$ in $\psi^{-1}(G)-E$ can be joined by a curve $\alpha(t)$ contained
in $X-E$ . Applying Lemma 4.1 to the analytic set $\psi(S)$ , we can find a curve
$\gamma^{\prime}$ contained in $G-\psi(S)$ which is homotopic to $\gamma=\psi\alpha$ in $G‘-\psi(S)$ . Obviously,
the lift of $\gamma^{\prime}$ to $X-E$ is a curve in $\psi^{-1}(G)-E$ joining $p$ and $q$. This shows
the connectivity of $\psi^{-1}(G)-E$ and hence the irreducibility of $\psi^{-1}(G)$ . $q$ . $e$ . $d$ .

PROPOSITION 4.3. In the same situation as above, if $X$ is normal, every
holomorphic function on $\psi^{-1}(G)$ is continuable to the whole space $X$.

PROOF. We may assume $X$ is irreducible. As in the proof of Lemma
4.2, we note $\psi$ is locally biholomorphic on $X-E$ for a thin analytic subset $E$

of $X$. Furthermore, for any point $p$ in $G^{\prime}-\psi(E),$ $\psi^{-1}(p)$ consists of finitely
many points $\sigma_{1}(p),$ $\cdots$ , $\sigma_{t}(p)$ , where $t$ is independent of $p$ . Take a holomorphic
function $f$ on $\psi^{-1}(G)$ . As usual, constructing elementary symmetric functions
of some of $\{f\sigma_{1}, \cdots , f\sigma_{t}\}$ , we can find a pseudopolynomial

$P(w;z_{1}, \cdots z_{k})=w^{s}+a_{1}(z)w^{s-1}+\cdots+a_{s}(z)$

with coefficients $a_{l}$ holomorphic in $G$ such that the discriminant $d(z)$ of $P$ does
not vanish identically and $P(f(p)j\psi(p))\equiv 0$ in $\psi^{-1}(G)$ . It is easily shown by
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Laurent expansion that every holomorphic function in $G$ is continuable to $G^{\prime}$ .
Therefore, each $a_{\iota}$ has its continuation $a_{\iota}^{\prime}$ to $G^{\prime}$ and we obtain a pseudopoly-
nomial

$P^{\prime}(w;z_{1}, \cdots z_{k})=w^{s}+a_{1}^{\prime}(z)w^{s-1}+\cdots+a_{s}^{\prime}(z)$ .
Then the discriminant $d^{\prime}(z)$ of $P^{\prime}$ does not vanish identically, because $d(z)$

$=d^{\prime}(z)\not\equiv O$ in $G$ . We put $M=\{d^{\prime}=0\}U\psi(E)$ . The function $f$ is holomorphi-
cally continuable along any path in $X-\psi^{-1}(M)$ remaining a solution of the
equation $P^{\gamma}=0$ . Consequently, we get a possibly many-valued holomorphic
continuation $f^{\prime}$ of $f$ to $X-\psi^{-1}(M)$ .

Assume $f^{\prime}$ is not single-valued. Then we can take a closed curve $\alpha(t)$

$(0\leqq t\leqq 1)$ in $X-\psi^{-1}(M)$ such that the continuation of a branch of $f^{\prime}$ along $\alpha$

from $\alpha(0)$ to a(l) has the germ at $\alpha(1)$ distinct from the original germ at $\alpha(0)$ .
Without loss of generality, we may assume $\alpha(0)=\alpha(1)\in\psi^{-1}(G)$ . Then, by
Lemma 4.1, the curve $\gamma=\psi\alpha$ in $G^{\prime}-M$ is homotopic in $G^{\prime}-M$ to a curve $\gamma^{\prime}$

contained in $G-M$ and hence $\alpha$ is homotopic in $X-\psi^{-1}(M)$ to the lift $\beta$ of $\gamma^{\prime}$

which is contained in $\psi^{-1}(G-M)$ . The continuation of the above branch of
$f^{\prime}$ at $\alpha(0)=\beta(0)$ along $\beta$ to $\beta(1)$ has the same germ at $\alpha(1)=\beta(1)$ as the con-
tinuation along $\alpha$ . This contradicts the single-valuedness of the original $f$ in
$\psi^{-1}(G)$ . Therefore $f^{\gamma}$ is a single-valued holomorphic function in $X-\psi^{-1}(M)$ .
Since $f^{J}$ is locally bounded in $X$, we get a holomorphic function $f^{\prime}$ in $X$ by
Riemann’s theorem on removable singularities. $f^{\gamma}$ is equal to $f$ in $\psi^{-1}(G)$ by
Lemma 4.2 and the theorem of identity. $q$ . $e$ . $d$ .

COROLLARY 4.4. If a complex space $X$ is mapped onto $G^{\prime}$ by a proper
nowhere degenerate holomorphic mapping $\psi$ , we have $f(X)=f(\psi^{-1}(G))$ for each
holomorphic function $f$ on $X$.

PROOF. Take the normalization $\tilde{X}$ of $X$ with the projection $\mu$ . The-
normal complex space $\tilde{X}$ is mapped onto $G^{\prime}$ by a proper nowhere degenerate

holomorphic mapping $\psi\mu$ . If $a\not\in f\psi^{-1}(G)=(f\mu)(\psi\mu)^{-1}(G),$ $\frac{1}{f\mu-a}$ is a holo-

morphic function of $(\psi\mu)^{-1}(G)$ which is continuable to $\tilde{X}$ by Proposition 4.3.
This shows $a\not\in f\mu(\tilde{X})=f(X)$ . Consequently we have $f(X)\subseteqq f\psi^{-1}(G)$ and hence
$f(X)=f\psi^{-1}(G)$ . q.ed.

PROPOSITION 4.5. Let $X$ be a complex space and $\psi$ a proper nowhere de-
generate holomorphic mapping of $X$ into $G^{\prime}\times Z$, where $Z=\{|z_{k+1}|<\rho_{k+1},$ $\cdots$ , $|z_{n}|$

$<\rho_{n}\}(\rho_{i}>0)$ . If a purely k-dimensional analytic set $M$ in $\psi^{-1}(G\times Z)$ satisfies
$\overline{\psi(M)}\cap(G\times\partial Z)=\phi,$ $M$ is continuable to the whole space $X$.

Then the irredundant continuation $M^{*}$ of $M$ to $X$ satisfies the condition
$\overline{\psi(M^{*})}\cap(G^{\prime}\times\partial Z)=\phi$ .

PROOF. According to Remmert [17], $\psi(M)$ is a purely k-dimensional
analytic set in $G\times Z$. By the assumption $\overline{\psi(M)}\cap(G\times\partial Z)=\phi$ , for any $a=(a_{1\nu}$
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... , $a_{k}$) in $G\{z_{1}=a_{1}, \cdots , z_{k}=a_{k}\}\cap\psi(M)$ is considered as a relatively compact
analytic set in $Z$ and hence contains only a finite number of points. There-
fore the canonical projection $\pi$ of $\psi(M)$ into $G$ is proper nowhere degenerate.
As in the proof of Proposition 4.3, each coordinate function $z_{\iota}(k+1\leqq l\leqq n)$

satisfies $P_{l}(z_{\iota} ; z_{1}, \cdots , z_{k})=0$ on $\psi(M)$ for a suitable pseudopolynomial $P_{\iota}$ with
coefficients holomorphic in $G$ . And each $P_{\iota}$ is continuable to a pseudopoly-
nomial $P_{\iota}^{\prime}$ with coefficients holomorphic in $G^{\prime}$ . By these $P_{\iota}^{\prime}$ we define the set
$N=\{P_{\iota}^{\prime}(z_{l} ; z_{1}, , z_{k})=0;k+1\leqq l\leqq n\}$ in $G^{\prime}\times C^{n-k}$ , which is a purely k-dimen-
sional analytic set. The set $M^{\prime}=\psi^{-1}(N)$ is also a k-dimensional analytic set
in $X$ and satisfies $M^{\prime}\cap\psi^{-1}(G\times Z)\supseteqq M$. Thus $M$ satisfies the condition 1 of
Proposition 3.6.

Now we take an irreducible component $M_{i}^{\prime}$ of $M^{\prime}$ which includes an irre-
ducible component of $M|p$ for some $p$ in $M$. Since $\psi(M_{i}^{\prime})$ is an irreducible
k-dimensional analytic set in $G\times Z$ , we can find an irreducible component $N_{i}$

of $N$ including $\psi(M_{i}^{\prime})$ , which includes an irreducible component of $\psi(M)|\psi(p)$ .
Obviously the projection $\pi$ of $N_{i}$ into $G^{\prime}$ is proper and nowhere degenerate.
By Lemma 4.2, $\pi^{-1}(G)\cap N_{i}$ is irreducible in $G\times C^{n-k}$ . On the other hand, by
the assumption $\overline{\psi(M)}\cap(G\times\partial Z)=\phi$ , the set $\psi(M)$ may be considered as an
analytic subset of $G\times C^{n-k}$ . Applying Lemma 3.1 to analytic sets $N_{i}$ and $\psi(M)$

$inG\times C^{n-k},$ $weconcludeN_{i}\cap(G\times C^{n-k})\subseteqq\psi(M)\subseteqq G\times Z$. Furthermore, we assert
$N_{i}\subseteqq G^{\prime}\times Z$. Indeed, for the coordinate function $z_{\iota}(k+1\leqq l\leqq n)$ it follows from
Corollary 4.4 that $|z_{1}|<\rho_{1}$ on $N_{i}$ because $|z_{1}|<\rho_{1}$ on $N_{i}\cap(G\times Z)$ . Conse-
quently $\psi(M_{i}^{\prime})=N_{i}$ and the holomorphic mapping $\pi\psi$ is proper nowhere de-
generate on $M_{i}^{\prime}$ . By Lemma 4.1, $\psi^{-1}(G\times Z)\cap M_{i}^{\prime}=(\pi\psi)^{-1}(G)\cap M_{i}^{\prime}$ is irreducible.
The condition 2 of Proposition 3.6 is thus satisfied. Therefore $M$ is continu-
able to the whole space $X$.

The irredundant continuation $M^{*}$ of $M$ is the finite union of the above
$M_{i}^{\prime}$, each of which satisfies $\overline{\psi(M_{i}^{\prime})}\cap(G^{\prime}\times\partial Z)=\phi$ . The set $M^{*}$ satisfies also
$\overline{\psi(M^{*})}\cap(G^{\prime}\times\partial Z)=\phi$ . q. e. d.

\S 5. A local continuation theorem.

1. Let $D$ be an open subset of a complex space $X$ and $*$ -strongly s-con-
cave at a point $p$ in $X$. Our object in this section is to study the continua-
bility of analytic sets in $D$ to $p$ .

To this end, we need the following
LEMMA 5.1 (Grauert). Let $\mathfrak{M}$ be a countable family of locally analytic sets

in a complex space $X$ and $\varphi=$ $(\varphi_{1}, \cdots , \varphi_{n})$ a nowhere degenerate holomorphic
mapping of $X$ into $C^{n}$ . Then for any positive real number $\epsilon$ there exists a non-
singular matrix $(a_{ij})$ of type $(n, n)$ such that
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$|a_{ij}|<\epsilon(i\neq j)$ , $|a_{ii}-1|<\epsilon$ ( $i,$ $j=1,2,$ $\cdots$ , n)

and for holomorphic functions $\varphi_{i}^{\prime}=\sum_{1\leqq j\leqq n}a_{ij}\varphi_{j}(1\leqq i\leqq n)$ the holomorphic mapping

defined by $\varphi_{1}^{\prime},$ $\cdots$ , $\varphi_{k}^{\prime}(1\leqq k\leqq n)$ is nowhere degenerate on each k-dimensional
set in M.

For the proof see Grauert [8], Satz 11, p. 252.
LEMMA 5.2. Let $M$ be a purely k-dimensional analytic set in $D$ satisfying

$p\in\overline{M}$ and $k=s+1$ . Then $M$ can be decomposed into the union of two analytic
sets $M_{1}$ and $M_{2}$ satisfying the following conditions:

For each $M_{i}(i=1,2)$ , if $ M_{i}\neq\phi$ , there exist a neighborhood $U_{i}$ of $p$ in $X$

and a proper nowhere degenerate holomorphic mapping $\psi_{i}$ of $U_{i}$ into $G^{\prime}\times Z$ in
the $(z_{1}, \cdots , z_{n})$ -space such that $\psi_{i}^{-1}(G\times Z)\subseteqq D$ and $\overline{\psi_{i}(M_{i})}\cap(G\times\partial Z)=\phi$ , and
the $*$ -strongly s-convex function $v$ with $U_{i}\cap D=\{v>v(p)\}$ is plurisubharmonic
on the level set $L_{q}(z_{2}\psi_{i}, \cdots , z_{k}\psi_{i})\cap U_{i}$ for any $q\in U_{i}$ , where $G,$ $G^{\prime}$ and $Z$ are
domains as defined in \S 4, 1.

PROOF. By Definition 2.5 and 2.8, there exist a nowhere degenerate holo-
morphic mapping $\varphi$ of a neighborhood $U$ of $p$ into a domain $W$ in $C^{N}$ and a
strongly s-convex function $\tilde{v}$ on $W$ with $D\cap U=\{\overline{v}\varphi>\tilde{v}\varphi(p)=0\}$ . For an
arbitrarily fixed local coordinates $u_{1},$

$\cdots$ , $u_{N}$ in a neighborhood of $\varphi(p)$ (say,
$\varphi(p)=(0))$ , we take the holomorphic function $f$ defined by (3) in Lemma 2.3
and decompose $M$ into the union of two analytic sets $M_{1}$ and $M_{2}$ such that

$ f\varphi$ does not vanish identically on each irreducible component of $M_{1}$ and vanish
identically on $M_{2}$ . We shall show that these $M_{i}(i=1,2)$ satisfy the imposed
conditions.

First, we examine the condition for $M_{1}$ . By Lemma 5.1 and Lemma 2.2,
we can choose a new system of local coordinates $w_{i}=\sum_{1\leqq j\leqq N}a_{ij}u_{j}(1\leqq i\leqq N)$ for

a suitable non-singular matrix $(a_{ij})_{1\leqq i,j\leqq N}$ such that for $\varphi_{i}=w_{i}\varphi$ the holomorphic
mapping $(\varphi_{1}, \cdots , \varphi_{s})$ of a neighborhood $U$ of $p$ into $C^{s}$ is nowhere degenerate

on $U\cap M_{1}\cap\{f\varphi=0\}$ and $((\frac{\partial^{2}\tilde{v}}{\partial w_{i}\partial\overline{w}_{j}})_{q})_{1\leqq i,j\leqq N}$ is positive definite for any $q$ in

a sufficiently small $W^{\prime}$ of the origin $(W^{\prime}\subseteqq W)$ , because $M_{1}\cap\{f\varphi=0\}$ is purely
s-dimensional. Apply Lemma 2.3 to the function $\overline{v}$ . We get a function

$\tilde{v}^{\prime}={\rm Re} f+\kappa(|w_{s}|^{2}+\cdots+|w_{N}|^{2})+u(w_{1}, \cdots w_{N})$

with the properties in Lemma 2.3, where we can use the same $f$ as above by
Remark to Lemma 2.3.

Now, we map $W^{\prime}$ into $C^{n}(n=N+1)$ by the holomorphic mapping

$\tau;z_{1}=w_{k-1}$

$z_{2}=f(w_{1}, \cdots w_{N})$

$z_{i}=w_{i-2}$ $(3\leqq i\leqq k)$
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$z_{j}=w_{j-1}$ $(k+1\leqq j\leqq n)$

and define the canonical extension $\tilde{v}$ to $W^{\prime}\times C$ , which we denote again by $\tilde{v}$ .
Then $\tilde{v}$ is strongly plurisubharmonic on $\{z_{2}=a_{2}, \cdots , z_{k}=a_{k}\}$ for each $(a_{1}, \cdots , a_{n})$

$\in W^{\prime}\times C$ . Therefore $v=\overline{v}\varphi_{1}$ is plurisubharmonic on the level set $L_{q}(z_{2}\varphi_{1},$ $\cdots$ ,
$z_{k}\varphi_{1})\cap U_{1}$ for any $q$ in a sufficiently small neighborhood $U_{1}$ of $p$ , where
$\psi_{1}=\tau\varphi$ . By the definition of $\varphi$ and $\tau,$ $\psi_{1}(M_{1}\cap U_{1})\cap\{z_{1}=\ldots=z_{k}=0\}$ is a
countable discrete set. Accordingly, we can take a domain $Z=\{|z_{\ell}|<\rho_{i}$ ;
$k+1\leqq i\leqq n\}$ with $\overline{\psi_{1}(M_{1}\cap U_{1})}\cap(\{z_{1}=\ldots=z_{k}=0\}\times\partial Z)=\phi$ and hence $G^{\prime}$

$=\{|z_{i}|<\rho_{i} ; 1\leqq i\leqq k\}$ with $\overline{\psi_{1}(M_{1}\cap U_{1}}$) $\cap(G^{\prime}\times\partial Z)=\phi$ by the compactness of
$\partial Z$, where $G^{\prime}\times Z\subseteqq W^{\prime}\times C$ . Taking the trivial extension $\tilde{u}(z)$ of $u(w)$ to $W^{\prime}\times C$ ,
we see the function

$v^{\prime}={\rm Re}(z_{2})+\kappa(|z_{1}|^{2}+|z_{k+1}|^{2}+\cdots+|z_{n}|^{2})+\tilde{u}(z)$

satisfies $v^{\prime}\psi_{1}=\tilde{v}^{\prime}\varphi\leqq v,$ $v^{\prime}\psi_{1}(p)=v(p)$ in $U_{1}$ and $\tilde{u}(z_{1}, z_{2},0, \cdots , 0, z_{k+1}, \cdots , z_{n})\equiv 0$

in $W^{\prime}\times C$ . If we choose sufficiently small $\rho_{i}(2\leqq i\leqq k)$ , it holds that $|u(z)|$

$\kappa\delta$

$<-2^{-}$ in $G^{\prime}\times Z$ for an arbitrarily fixed $\delta$ with $0<\delta<\rho_{1}$ . Taking a suitable

point $a=$ $(a_{1}$ , $\cdot$ .. , $a_{n})$ (e. g. ${\rm Re} a_{2}>0,$ $a_{3}=\ldots=a_{k}=0$), sufficiently small $\epsilon_{i}$ and
the above $G^{\prime},$

$\delta$ , we have $v^{\prime}>v^{\prime}(0)=0$ on $G\times Z$ with the domain $G=\{\delta<|z_{1}|$

$<\rho_{1},$ $|z_{2}|<\rho_{2},$ $\cdots$ , $|z_{k}|<\rho_{k}$ } $\cup\{|z_{1}|<\rho_{1}, |z_{i}-a_{i}|<\epsilon_{i} ; 2\leqq i\leqq k\}$ and $G\subseteqq G^{\prime}$ .
Then, taking $U_{1}$ and $G^{\prime}\times Z$ sufficiently small, we may assume $\psi_{1}$ is a proper
nowhere degenerate holomorphic mapping of $U_{1}$ into $G^{\prime}\times Z$. Obviously,
$\psi_{1}^{-1}(G\times Z)\subseteqq D$ and $\overline{\psi_{1}(M_{1})}\cap(G\chi\partial Z)=\phi$ .

For the analytic set $M_{2}$ , we can choose a system of local coordinates

$z_{i}=\sum_{1\leqq J\leqq N}b_{ij}u_{j}(1\leqq i\leqq N)$ such that $((\frac{\partial^{2}v}{\partial z_{i}\partial\overline{z}_{j}})_{q})$ is positive definite on $\{z_{8}$

$=z_{3}(q)$ , $\cdot$ .. , $z_{k}=z_{k}(q)$ } for any $q$ in a neighborhood $W$ of $\varphi(p)$ and the holo-
morphic mapping $(\varphi_{1}, \cdots , \varphi_{k}),$

$\varphi_{i}=z_{i}\varphi$ , is nowhere degenerate on $U_{2}\cap M_{2}$ for
some neighborhood $U_{2}$ of $p$ . Without recourse to the mapping $\tau$ , we can
define the mapping $\psi_{2}=\varphi$ and domains $G\times Z$ and $G^{\prime}\times Z$ in $C^{n}(n=N)$ with
the desired properties by the same method as above. $q$ . $e$ . $d$ .

REMARK. In Lemma 5.2, we can find $G=G_{a}(\nu)(t1=1,2, \cdots)$ as the above
domain $G$ such that $\lim a_{i}^{(\nu)}=0(2\leqq i\leqq k)$ for $a^{()}\nu=(a_{2}^{(\nu)}$ , $\cdot$ .. , $a_{k}^{(\mathcal{V})})$ . In fact, it

suffices to take $a_{2}^{(\nu)}=\frac{1}{\nu+\nu_{0}}$ , $a_{s}^{(\nu)}=\ldots=a_{k}^{(\nu)}=0$ for sufficiently large $\nu_{0}$ .
2. Now, we have the first main theorem.
THEOREM 5.3. Let $D$ be an open set which is $*$ -strongly s-concave at $p$ .

If $k\geqq s+1$ , every purely k-dimensional analytic set $M$ in $D$ is uniquely con-
tinuable to $p$ .

PROOF. To prove the continuability of $M$ to $p$ , we may assume $k=s+1$

and $p\in\overline{M}$. Then $M$ can be decomposed into the union of two analytic subsets
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$M_{1}$ and $M_{2}$ in Lemma 5.2. If each M. is continuable to $p,$ $M=M_{1}UM_{2}$ is
obviously continuable to $p$ . Therefore, we may regard $M$ as $M_{1}$ or $M_{2}$ , namely,
there exists a proper nowhere degenerate holomorphic mapping $\psi$ of a neigh-
borhood $U$ of $p$ into $G^{\prime}\times Z$ such that $\Delta:=U_{\cap}\psi^{-1}(G\times Z)\subseteqq D,\overline{\psi(M)}\cap(G\times\partial Z)$

$=\Phi$ and the $*$ -strongly s-convex function $v$ with $D\cap U=\{v>v(p)=0\}$ is
plurisubharmonic on the level set $N(q)=L_{q}(z_{1}\psi, \cdots , z_{k}\psi)\cap U$ for any $q$ in $U$,

where $G,$ $G^{\prime}$ and $Z$ are domains as defined in \S 4. Now we can apply Propo.
sition 4.5. There exists a purely k-dimensional analytic set $M^{*}$ in $U$ with
$ M^{*}\cap\Delta=M_{\cap}\Delta$ and $\overline{\psi(M^{*})}\cap(G^{\prime}\times\partial Z)=\phi$ .

We want to show $M^{*}\cap D=M$. To this end, we prove $N(q)\cap N$ intersects
$\Delta$ for any purely k-dimensional analytic set $N$ in $D\cap U$ with $\overline{\psi(N)}\cap(G\times\partial Z)$

$=\phi$ and any $q$ in $N$. Assume that some purely k-dimensional analytic set $N$

in $D\cap U$ satisfies $\overline{\psi(N)}\cap(G\times\partial Z)=\phi$ and for a point $q$ in $N,$ $N^{\prime}$ $:=N(q)\cap N$

does not intersect $\Delta$ . Then $N^{\prime}$ is of dimension at least one and relatively
compact in $U$, because $\psi(N^{\prime})\subseteqq((G^{\prime}-G)\times Z)\cap\{z_{2}-z_{2}\psi(q)=\ldots=z_{k}-z_{k}\psi(q)=0\}$

$\subseteqq\{|z_{1}|\leqq\delta, z_{2}-z_{2}\psi(q)=\ldots=z_{k}-z_{k}\psi(q)=0\}\times Z$ and $\psi$ is proper. Since $v=0$

on $\partial D\cap U,$ $v|N^{\prime}$ attains its maximum in an interior point of $N^{\prime}$ . By the
maximum principle, $v$ must be identically equal to zero on $N^{\prime}$ . This is a
contradiction.

Especially, each irreducible component of both $M^{*}\cap D$ and $M$ intersects
$\Delta$ . By Lemma 3.1 and the condition $ M^{*}\cap\Delta=M_{\cap}\Delta$ , we conclude $M^{*}\cap D$

$=M$. Consequently, $M$ is continuable to $DUU$.
The uniqueness of the continuation of $M$ to $p$ is an immediate consequence

of Proposition 2.9 and Corollary 3.5. $q.e$ . $d$ .
COROLLARY 5.4. In the above situation, if at a point $p,$ $X$ is irreducible

and of dimension $k=s+1$ , there exists an arbitrarily small irreducible neigh-
borhood $U$ of $p$ such that $U$ is mapped onto $G^{\prime}$ by a proper nowhere degenerate
holomorphic mapping $\psi$ and $\psi^{-1}(G)\subseteqq D$ is valid, where $G$ and $G^{\prime}$ are domains
as defined in \S 4, 1.

Moreover, for such neighborhood $U$ of $p,$ $D\cap U$ is irreducible and any
s-dimensional analytic subset of $U$ intersects $D$ .

PROOF. In Lemma 5.2, we take $D$ for the analytic set $M$. Then Lemma
5.2 implies that there exists a (not necessarily open) neighborhood $U$ of $p$

which can be decomposed as $U=U_{1}UU_{2}$ such that for each $i(=1,2)U_{i}$ is
mapped onto $G^{\prime}$ by a proper nowhere degenerate holomorphic mapping $\psi_{i}$

with $\psi_{i}^{-1}(G)\subseteqq D$ . Since $X$ is irreducible at $p$ , we can take an irreducible
neighborhood $U$ of $p$ with the above properties. Then, by Lemma 4.2,
$\Delta=\psi^{-1}(G)$ is irreducible. On the other hand, each irreducible component of
$D\cap U$ intersects $\Delta$ as in the proof of Theorem 5.3. Thus $D\cap U$ is irreducible
by Lemma 3.1.
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Now we shall prove the last assertion. Take an s-dimensional analytic
set $N$ in $U$ . The image $\psi(N)$ of $N$ by the nowhere degenerate proper holo-
morphic mapping $\psi$ is also an s-dimensional analytic set in $G^{\prime}$ . If $\psi(N)$

$\cap\{\delta<|z_{1}|<\rho_{1}, |z_{2}|<\rho_{2}, \cdot . , |z_{k}|<\rho_{k}\}=\phi$ , the canonical projection $\pi$ of $\psi(N)$

into the domain $\tilde{G}=\{|z_{2}|<\rho_{2}, \cdots , |z_{k}|<\rho_{k}\}$ in $C^{k-1}$ is proper nowhere degen-
erate. Then, since $\pi$ is open and closed, we have $\pi\psi(N)=\{|z_{2}|<\rho_{2}$ , , $|z_{k}|$

$<\rho_{k}\}$ . Therefore, $\psi(N)$ intersects $\{|z_{1}|<\rho_{1}, |z_{2}-a_{2}|<\epsilon_{2}, \cdots , |z_{k}-a_{k}|<\epsilon_{k}\}$ . In
any way, $\psi(N)\cap G\neq\phi$ and hence $ N\cap D\cap U\neq\phi$ . $q$ . $e$ . $d$ .

3. In Theorem 5.3, provided $k=s$ , the conclusion is false. We give some
counter examples.

EXAMPLES 5.5. (i) We consider an open set $D=\{|z|^{2}+|w|^{2}>2\}$ in $C^{2}$ .
The set $M=\{(z, w);zw=1, |z|>1\}\cap D$ is an analytic set in $\{|z|>1\}\cap D$

and $\overline{M}$ does not intersect $\{|z|\leqq 1\}\cap D$ . Therefore $M$ is an analytic set in $D$ .
Obviously, $D$ is strongly l-concave at each boundary point of $D$ . Neverthe-
less, a purely l-dimensional analytic set $M$ in $D$ is not continuable to a
boundary point $p=(1,1)$ of $D$ . Because, for any analytic set $M^{\prime}$ in a neigh-
borhood $U$ of $p$ , $M^{\prime}\supseteqq M_{\cap}U$ implies necessarily $ M^{\prime}\cap\{zw=1, |z|\leqq 1\}\neq\phi$ .
There is no analytic set $M^{\prime}$ in a neighborhood $V$ of $p$ with $M^{\prime}\cap D=M_{\cap}V$ .

(ii) Take a sequence $\{a_{k}\}$ in the z-plane satisfying that $|a_{k}|>1,$ $\sum_{k}(|a_{k}|$

$-1)<\infty$ and the set of all accumulation points of $\{a_{k}\}$ is the set $\{|z|=1\}$ .
The Blaschke product

$B(z)=\prod_{k}\frac{|a_{k}|(z-a}{a_{k}(z\overline{a}_{k}-}1^{k})^{\underline{)}}$

is a holomorphic function in $\{|z|>1\}$ with $|B(z)|<1$ and the set $\{|z|=1\}$ is
the natural boundary. Now we consider the set $N:=$ { $(z,$ $w);w=B(z)$ in $D$ }
which is a purely l-dimensional analytic set in $D$ . We can find a real number
2 $(0<2<2)$ and a point $p$ in $\{|z|^{2}+|w|^{2}=2\}$ such that $N$ has a continuation
$N^{\prime}$ in the domain $D=\{|z|^{2}+|w|^{2}>2\}$ and $N^{\prime}$ is not continuable to a strongly
l-concave boundary point $p$ of $D$ . Otherwise, $N$ is uniquely continuable to
the whole space $C^{2}$ (c.f. the proof of Theorem 7.1 in \S 7). By $N^{*}$ , we denote
the continuation of $N$ to $C^{2}$ . Then the canonical projection $\pi$ of $N^{*}$ to the
z-plane is locally biholomorphic on $N^{*}$ except an at most countable set { $b_{i}$ ;
$i=1,$ 2, }. In a neighborhood of each $q=(z_{0}, w_{0})\in N^{*}-\{b_{i}\}$ $N^{*}$ is repre-
sented as $w=\chi_{q}(z)$ , where $\chi_{q}(z)$ is a holomorphic function on some neigh-
borhood of $z_{0}$ with $\chi_{q}(z_{0})=w_{0}$ . For a point $q$ in $M$, we have to take $\chi_{q}(z)$

$=B(z)$ . Therefore we see $\chi_{r}(z)=B(z)$ at any point $r$ which can be joined
with $q$ by a curve in $N^{*}$ disjoint $\{b_{i}\}$ . Consequently, the function $B(z)$ is
holomorphically continuable along a curve intersecting $\{|z|=1\}$ . This is a
contradiction.

From the above proof, we can also assert that there is no purely l-dimen-
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sional analytic set which includes $N$ . The analytic set $N$ in $D$ is not con-
tinuable to $C^{2}$ even if we consider the possibly many-valued continuation.

\S 6. The continuation of holomorphic mappings, meromorphic functions
and Cousin-II distributions.

1. Holomorphic functions. Let $D$ be an open set in a complex space $X$

which is $*$-strongly s-concave at a point $p$ in $X$.
PROPOSITION 6.1. If $X$ is normal and of dimension at least $s+1$ at $p$ , there

exists a neighborhood $U$ of $p$ such that every holomorphic function in $D$ is
continuable to $DUU$.

PROOF. Since $X$ is irreducible at $p$ and $\dim_{p}X\geqq s+1$ , we can find an
irreducible neighborhood $U$ of $p$ and a proper nowhere degenerate holomorphic
mapping $\psi$ of $U$ onto $G^{\prime}$ with $\Delta=\psi^{-1}(G)\subseteqq D$ by Corollary 5.4, where $G$ and
$G^{\prime}$ are domains as defined in \S 4, 1’ $(k=\dim_{p}X)$ . Take a holomorphic func-
tion $f$ in $D$ . By Proposition 4.3, we have the continuation $f^{\prime}$ of the restriction
$ f|\Delta$ of $f$ to $U$. On the other hand, $U\cap D$ is connected by Corollary 5.4. By
the theorem of identity, we conclude $f^{\prime}=f$ in $U\cap D$ . $q$ . $e$ . $d$ .

A weakly holomorphic function $f$ on a complex space $Z$ is by definition
a holomorphic function on the complex manifold $\mathring{Z}$ consisting of all regular
points of $Z$ such that for any $p$ in $Z,$ $f$ is bounded in some neighborhood of
$p$ . With a weakly holomorphic function $f$ on $Z$ we can associate one and only
one holomorphic function $\tilde{f}$ in the normalization $\tilde{Z}$ of $Z$ with the projection $\mu$

by the relation $ f=f\mu$ . Then, denoting by $S_{N}(f)$ the set of all points $p$ in $Z$

such that $f$ is not the trace of any holomorphic function in a neighborhood
of $p$ , we know $S_{N}(f)$ is an analytic subset of $Z$ (Kasahara [12] Lemma 5).

PROPOSITION 6.2. If $dih_{p}X\geqq s+1$ , namely, there exists a prime sequence
consisting of at least $s+1$ elements in the maximal ideal of the local ring $O_{p}$ , then

for some neighborhood $U$ of $p$ every holomorphic function in $D$ is continuable
to $DUU$ (cf. Andreotti-Grauert [2] Th\’eor\‘em 10, p. 232).

PROOF. Let (X, $\mu$) be the normalization of $X$ with the projection $\mu$ . Then
$\tilde{D}=\mu^{-1}(D)$ is $*$ -strongly s-concave at each point $\tilde{p}_{i}$ in $\mu^{-1}(p)$ . By the assump-
tion of $dih_{p}X\geqq s+1,$ $\dim_{q}X\geqq dih_{q}X\geqq s+1$ for any $q$ in some neighborhood
of $p$ , whence $\dim_{\tilde{p}i}\tilde{X}\geqq s+1$ for each $\tilde{p}_{i}$ . By Proposition 6.1, each $\tilde{p}_{i}$ has a
neighborhood $\tilde{V}_{i}$ such that $\tilde{V}_{i}\cap\tilde{V}_{j}=\phi(i\neq j)$ and every holomorphic function
in $D$ is continuable to $\tilde{V}_{i}$ . There exists a neighborhood $V$ of $p$ with $\mu^{-1}(V)$

$\subseteqq\bigcup_{i}\tilde{V}_{?}\cdot$ . According to Corollary 5.4, for each $\tilde{p}_{i}$ there exists a neighborhood
$\tilde{V}_{i}^{\prime}$ of $\tilde{p}_{i}(\tilde{V}_{i}^{\prime}\subseteqq\mu^{-1}(V))$ satisfying that any s-dimensional analytic subset of $\tilde{V}_{i}^{\prime}$

intersects $\tilde{D}$ . A neighborhood $U$ of $p$ with $\mu^{-1}(U)\subseteqq\bigcup_{i}\tilde{V}_{i}^{\prime}$ has the property

that each s-dimensional analytic set $N$ in $V$ with $ N\cap D=\phi$ does not intersect
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$U$, where we may assume $\dim_{q}X\geqq s+1$ for any $q\in U$. Take a holomorphic
function $f$ in $D$ . We get a continuation $\tilde{f}^{\prime}$ of a holomorphic function $ f=f\mu$

on $\tilde{D}$ to $\tilde{D}U\mu^{-1}(V)$ . Then there exists one and only one weakly holomorphic
function $f^{\prime}$ in $DUV$ with $\tilde{f}^{\prime}=f^{\prime}\mu$ . Obviously, the analytic set $S_{N}(f^{\prime})$ in $V$

does not intersect $D$ .
If $\dim(S_{N}(f^{\prime})\cap U)\geqq s$ , then $ S_{N}(f^{\prime})\cap D\neq\phi$ by the above assumption. This

is a contradiction. Thus $\dim_{q}S_{N}(f^{\prime})\leqq s-1\leqq dih_{q}X-2$ for any $q$ in $U$ . Then
the holomorphic function $f^{\prime}$ in $U-S_{N}(f^{\prime})$ is continuable to $U$ by Scheja’s gen-
eralization of Riemann’s theorem on removable singularities (Scheja [22], $p$ .
359). Consequently, $ S_{N}(f^{\gamma})\cap U=\phi$ , namely, $f^{\prime}$ is holomorphic on U. $q$ . $e$ . $d$ .

COROLLARY 6.3. If $X$ is normal and $\dim_{p}X\geqq s+1$ , or $dih_{p}X\geqq s+1$ , for
an arbitrary Fr\’echet space $F$ every F-valued holomorphic function in $D$ is con-
tinuable to a neighborhood of $p$ .

This is an immediate consequence from the above propositions and [6]

Corollary 1 to Theorem 2 (cf. Bungart-Rossi [5], Appendix). $q$ . $e$ . $d$ .
COROLLARY 6.4. Under the same assumption as above, for an arbitrary

Stein space $Y$ every holomorphic mapping of $D$ into $Y$ is continuable to a
neighborhood of $p$ .

For the proof, it is sufficient to prove the following
LEMMA 6.5. Let $\varphi$ be a holomorphic mapping of a complex space $X_{1}$ into

another complex space $X_{2}$ such that each holomorphic function $f_{1}$ in $X_{1}$ corre-
sponds to exactly one holomorphic function $f_{2}$ in $X_{2}$ with $ f_{1}=f_{2}\varphi$ . Then each
holomorphic mapping $\tau_{1}$ of $X_{1}$ into a Stein space $Y$ corresponds to exactly one
holomorphic mapping $\tau_{2}$ of $X_{2}$ into $Y$ with $\tau_{1}=\tau_{2}\varphi$ .

PROOF. This was given by H. Kerner ([13] Satz 2) in the case of normal
complex space. In his proof, the normality of $Y$ is used only to prove the
fact that a normal Stein space $Y$ is homeomorphic to the space of all closed
maximal ideals of $H(Y)$ endowed with the weak topology by the canonical
correspondence, where $H(Y)$ denotes the topological C-algebra of all holo-
morphic functions on $Y$ endowed with the compact convergence topology.
’This is also valid for an arbitrary Stein space (Iwahashi [11]). $q.e$ . $d$ .

2. Holomorphic mapping into a relatively compact weakly l-convex
domain in a K-complete space. The following proposition is essentially due
to Andreotti-Stoll [3] \S 2.

PROPOSITION 6.6. Let $Y$ be a relatively compact weakly l-convex domain
in a K-complete space $Z$ and $D$ an open subset of a complex space $X$ satisfying
the following condition at a boundary point $p$ of $D$ :

There exists a fundamental system of connected neighborhoods $\mathfrak{U}$ of $p$ such
that for each $U\in \mathfrak{U}$ every bounded holomorphic function in $U_{\cap}D$ is continuable
to $U$.
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If $D$ is analytically $(k-1)$-concave at $p(k=\dim_{p}X)$ . every holomorphic
mapping of $D$ into $Y$ is continuable to a neighborhood of $p$ .

PROOF. Take a holomorphic mapping $\tau$ of $D$ into $Y$ . We consider the
set $\Gamma=\bigcap_{U\in 11}\overline{\tau(U\cap D)}$. Since $Y$ is relatively compact in $Z,\overline{\tau(U\cap D)}$ is a com-

pact subset of $\overline{Y}$ for each $U\in \mathfrak{U}$ . Moreover, it is connected. Otherwise,
$U_{\cap}D=O_{1}UO_{2}$ for two non-empty disjoint open sets $O_{1}$ and $O_{2}$ . The bounded
holomorphic fuction $f=1$ on $O_{1}$ and $=0$ on $O_{2}$ is not continuable to $U$. Thus
$\Gamma$ is the intersection of a directed family of non-empty connected compact
sets, whence it is also a non-empty connected compact subset of $\overline{Y}$.

On the other hand, for an arbitrarily fixed $q$ in $\Gamma$ , there exist finitely
many holomoprhic functions $f_{1},$ $\cdots$ , $f_{\iota}$ in $Z$ such that $q$ is an isolated point of
$L_{q}(f_{1}, \cdots , f_{\iota})$ by the assumption of the K-completeness of $Z$. Since each $ f_{i}\tau$

is a bounded holomorphic function, $ f_{i}\tau$ is continuable to an arbitrary $U$ in 1\ddagger .

Particularly, each $ f_{i}\tau$ is continuous at $p$. Therefore, $\cap\overline{f_{i}\tau(U\cap D)}=f_{i}(\Gamma)$

$D\rightarrow U\in u$

consists of one and only one point, which is nothing but $f_{i}(q)$ . This asserts
$\Gamma\subseteqq L_{q}(f_{1}, \cdots f_{\iota})$ .

As $\Gamma$ is connected and contains $q$ as an isolated point, we deduce $\Gamma=\{q\}$ .
This implies that for any neighborhood $W$ of $q$ there exists some $U$ in $\mathfrak{U}$ with
$\tau(U_{\cap}D)\subseteqq W$ . Taking $W$ sufficiently small, we may regard $W$ as an analytic
set in the unit polydisc $P^{n}$ in the $(z_{1}, \cdot , z_{n})$ -space. Then $z_{i}\tau(1\leqq i\leqq n)$ are
bounded holomorphic functions in $U\cap D$ and hence continuable to $U$ by the
assumption. We denote the continuation of $ z_{i}\tau$ by $\tau_{i}$ and define the holo-
morphic mapping $\tau^{\prime}=$ $(\tau_{1}, , \tau_{n})$ of $U$ into $C^{n}$ , which is equal to $\tau$ in $U_{\cap}D$ .
As in the proof of Corollary 4.4, we see $|\tau_{i}|\leqq 1$ in $U$ and furthermore $|\tau_{i}|<1$

on $U$ by the maximum principle of holomorphic functions. Thus the range
$\tau^{\prime}(U)$ of $\tau^{\prime}$ is included in $P^{n}$ . On the other hand, we can write $W=\{g_{i}(z_{1}$ ,
.., , $z_{n}$) $=0;i=1,2,$ }, where $g_{i}$ is holomorphic in $P^{n}$ . $g_{i}(\tau_{1}$ , $\cdot$ .. , $\tau_{n})=0$ in
$U\cap D$ implies $g_{i}(\tau_{1}, \cdot, , \tau_{n})=0$ in the whole set $U$. This shows $\tau(U)\subseteqq W$ .

To complete the proof, it suffices to show that the above $q$ is contained
in $Y$ . In fact, in this case, for a sufficiently small $W$ we have $\tau^{\prime}(U)\subseteqq W\subseteqq Y$,
that is, $\tau^{\prime}$ is a holomorphic mapping of $U$ into $Y$ . By the assumption, there
exists an at least one-dimensional analytic set $M$ in a neighborhood of $p$ such
that $M-\{p\}\subseteqq D$ . Then we may assume $M$ is irreducible and of dimension 1.
If $\tau^{\prime}(M)=\{q\}$ , we can find easily a point $p^{\prime}$ contained in $M\cap D$ . Hence
$q=\tau^{\prime}(p^{\prime})=\tau(p^{\prime})\in Y$ . If $\tau^{\prime}(M)$ contains a point different from $q$ , it includes
a l-dimensional locally analytic set $N$ passing through $q$ . Obviously, $N-\{q\}$

$\subseteqq Y$ . It cannot happen to be $q\in\partial Y$ by the weak l-convexity of Y. q. e. $d$ .
COROLLARY 6.7. Let $D$ be an open set in a complex space $X$ which is

$*$ -strongly s-concave at $p$ . If $X$ is normal and $\dim_{p}X\geqq s+1$ , or $dih_{p}X\geqq s+1$ ,
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every holomorphic mapping of $D$ into the above $Y$ is continuable to a neigh-
borhood of $p$ .

COROLLARY 6.8. Let $X$ be a normal complex space and $M$ be a thin analytic
subset of X. Then every holomorphic mapping of $X-M$ into $Y$ is continuable
to $X$ .

PROOF. For a k-dimensional analytic set $M$ at $p$ we can find easily $k$

holomorphic functions $f_{1},$ $\cdots$ $f_{k}$ in a neighborhood of $p$ such that $L_{p}(f_{1}, \cdots , f_{k})$

contains $p$ as an isolated point. Thus $X-M$ is analytically k-concave at $p$ .
If $k\leqq\dim_{p}X-1$ and $X$ is normal, $X-M$ satisfies the conditions of Proposi-
tion 6.6. $q$ . $e$ . $d$ .

3. Meromorphic functions. For meromorphic functions, we have also
PROPOSITION 6.9. Let $D$ be an open set and $*$ -strongly s-concave at $p$ . If

$\dim_{q}X\geqq s+1$ for any $q$ in some neighborhood of $p$ , every meromorphic function
is continuable to a neighborhood of $p$ .

PROOF. Accordig to Kasahara [12], Lemma 6, the set of all meromorphic
functions in a complex space is canonically isomorphic to the set of all mero-
morphic functions in its normalization. Without loss of generality, we may
assume $X$ is normal.

As in the proof of Proposition 6.1, we take an irreducible neighborhood
$U$ of $p$ and a proper nowhere degenerate holomorphic mapping $\psi$ of $U$ onto
$G^{\prime}$ with $\Delta_{\nu}=\psi^{-1}(G_{a^{(\nu)}})\subseteqq D$ , where $G_{a^{(\nu)}}$ and $G^{\prime}$ are domains as defined in \S 4,

1 and $G_{a^{(\nu)}}$ can be chosen as $0^{()}\nu$ converges to zero by Remark to Lemma 5.2.
For a meromorphic function $f$ in $D$ , similarly to the case of holomorphic
functions, there exists a pseudopolynomial

$P(w ; z_{1}, \cdots z_{k})=w^{t}+a_{1}(z)w^{t-1}+\cdots+a,(z)$

with coefficients meromorphic in $\bigcup_{\nu}G_{a^{(\nu)}}$ such that $P(f(q);\psi(q))=0$ for any

$q$ in $\bigcup_{\nu}\Delta_{\nu}$ , where it is defined, and the discriminant $d(z)$ of $P$ does not vanish

identically (cf. the proof of Proposition 4.3 and Grauert-Remmert [10] p. 269).

Then each $a_{l}$ is meromorphically continuable to a neighborhood $W$ of the
origin by Levi-Kneser’s continuity theorem of meromorphic functions (Levi

[15], Kneser [14] and Okuda-Sakai [16]). Thus we get the pseudopolynomial
$P^{\prime}(w;z)=w^{t}+a_{1}^{\prime}(z)w^{t-1}+\cdots+a_{t}^{\prime}(z)$

with coefficients meromorphic in $W$ and a possibly many-valued holomorphic
function $f^{J}$ in $\psi^{-1}(W-S)$ with $f^{\prime}=f$ in some non-empty subset of $\bigcup_{\nu}\Delta_{\nu}$ as a

root of $P^{\prime}=0$ , where $S$ is a thin analytic subset of $W$ . By Lemma 4.1 and
Corollary 5.4, $f^{\prime}$ is single-valued in $U^{\prime}=\psi^{-1}(W-S)$ and $f^{\prime}=f$ in $D\cap U^{\prime}$ . Then
it is easily to show $f^{\prime}$ is meromorphic in $W$ (cf. [10] p. 269). This completes
the proof. $q$ . $e$ . $d$ .
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4. Cousin-II distributions on a complex manifold. By definition a
Cousin-II distribution on a complex manifold $X$ is a family $\mathfrak{U}=\{(U_{i}, f_{i})\}$

of open sets $U_{i}$ and not identically vanishing meromorphic functions $f_{i}$ on $U_{i}$

such that $X=\bigcup_{i}U_{i}$ and $\frac{f_{i}}{f_{j}}$ is holomorphic in $U_{i}\cap U_{j}$ for any $i,$ $j(U_{i}\cap U_{j}\neq\phi)$ .

For an arbitrary set $E$ , we shall say a Cousin-II distribution on some neigh-
borhood $D$ of $E$ a Cousin-II distribution on $E$ and two Cousin-II distributions
$\mathfrak{U}$ and $\mathfrak{B}$ on $E$ to be equivalent on $E$ if there exists a neighborhood $D$ of $E$

such that both 1\ddagger and $\mathfrak{B}$ are defined on $D$ and $\frac{f_{i}}{g_{j}}$ and $-f_{i}^{-}g_{j}$ are holomorphic

in $U_{i}\cap V_{j}\cap D$ for each $(U_{i}, f_{i})\in \mathfrak{U},$ $(V_{j}, g_{j})\in \mathfrak{B}(U_{i}\cap V_{j}\cap D\neq\phi)$ , which we
denote by $\mathfrak{U}|E=\mathfrak{B}|E$ . A Cousin-II distribution $\mathfrak{U}$ on $E$ defines canonically
the restriction $\mathfrak{U}|E^{\prime}$ of 11 to a subset $E^{\prime}$ of $E$ . For $\mathfrak{U}=\{(U_{?}, f_{\tau})\}$ and $\mathfrak{B}=\{(V_{jr}$

$g_{j})\}$ on an open set $D$ , we can define the product $\mathfrak{U}\cdot \mathfrak{B}=\{(U_{i}\cap V_{j}, f_{i}g_{j})i$

$U_{i}\cap V_{j}\neq\phi\}$ of $\mathfrak{U}$ and $\mathfrak{B}$ and the inverse $\frac{1}{\mathfrak{U}}=\{(U_{i},$ $\frac{1}{f_{i}})\}$ of U. If for

$\mathfrak{U}=\{(U_{i}, f_{i})\}$ each $f_{i}$ is holomorphic in $U_{i}$ , we shall say $\mathfrak{U}$ a holomorphic
Cousin-II distribution. Then, without ambiguity, we can define the set of
those points at which $f_{i}=0$ for some $i$ . We denote it by $Supp(\mathfrak{U})$ .

A meromorphic function $f$ in an open set $D$ can be represented as $f=_{2}^{1}\frac{f}{f}-$

in a neighborhood $V$ of each point $p$ in $D$ with $f^{1},$ $f^{2}$ holomorphic in $V$ , where
we may assume $(f^{1}, f^{2})_{q}=1$ or the germs of $f^{1}$ and $f^{2}$ at $q$ are coprime in the
local ring $0_{q}$ for any $q\in U$ . For a Cousin-II distribution $\mathfrak{U}$ on an open set $D$ ,

we get $\mathfrak{B}=\{(V_{k},$ $\frac{f_{k}^{I}}{f_{k}^{2}})\}$ equivalent to $\mathfrak{U}$ by a suitable refinement such that
$f_{k}^{1}$ and $f_{k^{2}}$ have the above property on $V_{k}$ for any $k$ . Then $\mathfrak{U}^{n}=\{(V_{k}, f_{k^{I}})\}$ and
$\mathfrak{U}^{d}=\{(V_{k}, f_{k^{2}})\}$ are both holomorphic Cousin-II distributions and we have
$\mathfrak{U}=\frac{\mathfrak{U}^{n}}{\mathfrak{U}^{(l}}$ and $\mathfrak{U}^{n}=(\frac{1}{\mathfrak{U}})^{a}$ For two $\mathfrak{U}$ and $\mathfrak{B}$ , they are equivalent if and only

if $Supp(\frac{\mathfrak{U}}{\mathfrak{B}})^{n}=Supp(\frac{\mathfrak{B}}{\mathfrak{U}})^{n}=\phi$ .

DEFINITION 6.10. A Cousin-II distribution $\mathfrak{U}$ on a set $E$ is said to be con-
tinuable to another set $E^{\prime}$ if there exists a Cousin-II distribution $\mathfrak{U}^{\prime}$ on $EUE^{\prime}$

such that $\mathfrak{U}^{\prime}|E=\mathfrak{U}|E$ .
PROPOSITION 6.11. Let $D$ be an open set in a complex manifold $X$ and

$*$ -strongly s-concave at a point $p$ . If $n=\dim_{p}X\geqq s+2$, every $ Cousin-\Pi$ distri-
bution on $D$ is uniquely continuable to $p$ .

PROOF. Take a Cousin-II distribution $\mathfrak{U}$ on $D$ . If both $\mathfrak{U}^{n}$ and lt $a$ are
continuable to $p,$

$\mathfrak{U}$ is also continuable. For the proof of the continuability,
we may assume that $\mathfrak{U}$ is holomorphic. The set $M=Supp(\mathfrak{U})$ is a purely
$(n-1)$ -dimensional analytic set in $D$ if it is not empty. By the assumption,
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we can find the unique continuation $M^{\prime}$ of $M$ to a neighborhood $U^{\prime}$ of $p$

(Theorem 5.3). We may assume $p\in M^{\prime}$ . Otherwise, the proof is obvious. By
$g_{q}(M^{\prime})$ , we denote the set of those germs of holomorphic functions at $q\in M^{\prime}$

which vanish identically on $M^{\prime}$ . As is well known, $9_{q}(M^{\prime})$ is a principal ideal
of $o_{q}(q\in M^{\prime})$ . By the coherence of the analytic sheaf $9(M^{\prime})=\bigcup_{q\in U}X_{q}(M^{\prime})$ ,

there exists a holomorphic function $f^{\prime}$ in a neighborhood $U^{\prime\prime}$ of $p(U^{\prime\prime}\subseteqq U^{\prime})$

such that for any $q\in U^{\prime\prime}$ the germ $f_{q^{\prime}}$ defined by $f^{\prime}$ at $q$ is a generator of
$q_{q}(M^{\prime})$ . Now we decompose $M^{\prime}$ as

$M^{\prime}=M_{1}^{\prime}U\ldots UM_{t}^{\prime}$

in a neighborhood $U$ of $p(U\subseteqq U^{\prime\prime})$ , where each $M_{i}^{\prime}$ is irreducible in $U$ and
defines an irreducible component of $M^{\prime}|p$ . Then for each $M_{i}^{\prime}$ there exists a
neighborhood $V_{i}$ of $p(V_{i}\subseteqq U)$ such that $V_{i}\cap M_{i}^{\prime}\cap D$ is irreducible by Corollary
5.4. We may consider that to each $M_{i}^{\prime}$ corresponds exactly one prime factor

$f_{i}^{\prime}$ of $f^{\prime}$ such that $f_{tq}^{\prime}$ is a generator of $f_{q}(M_{i})$ for any $q\in U$. Since $D$ is
Rothstein $(n-1)$-concave at $p$ by Proposition 2.9, we can take a point $q_{i}$ in
$(M_{i}^{\prime}-\bigcap_{i\neq j}M_{j}^{\prime})\cap\bigcap_{1\leqq J\leqq t}V_{j}\cap D$ and some element, say $(U_{i}, f_{i})$ , in $\mathfrak{U}$ with $q_{i}\in U_{i}$ . As

$f_{i}=0$ on $Supp(\mathfrak{U})=M=M^{\prime}\cap D$ , there exists a poistive integer $h_{i}$ such that
$f_{i}=(f_{i}^{\prime})^{h_{i}}g_{i}$ in a neighborhood of $q_{i}$ for a holomorphic function $g_{i}$ with $g_{i}\not\equiv 0$

on $M_{i}^{\prime}$ . Using these $h_{i}(1\leqq i\leqq t)$ , we define a holomorphic function $f=(f_{1}^{\prime})^{r\iota}$

.. $(f_{t}^{\prime})^{h_{t}}$ . We shall show that for the Cousin-II distribution $\mathfrak{V}=\{(U, f)\}$ on $U$,

$\mathfrak{B}$ is equivalent to $\mathfrak{U}$ of $V\cap D$ , where $V=\leq\bigcap_{1_{=}i\leqq t}V_{i}$ . We have $N_{1}=Supp(\frac{\mathfrak{U}}{\mathfrak{B}})^{n}$

$\subseteqq Supp(\mathfrak{U})=M^{\prime}\cap D$ . Since both $N_{1}$ and $M^{\prime}\cap D$ are purely $(n-1)$-dimensional,
if not empty, $N_{1}$ is the union of some irreducible components of $M^{\prime}\cap D$ . On
the other hand, since $g_{i}\not\equiv 0$ on $M_{i}^{\prime}$ , there exists a point $q_{i}^{\prime}\in M_{i}^{\prime}$ arbitrarily near
to $q_{i}$ with $g_{i}(q_{i}^{\prime})\neq 0$ . Then $q_{i}^{\prime}\not\in N_{1}$ and hence $N_{1}$ does not include any irre-
ducible component of $M_{i}^{\prime}\cap D$ which includes an irreducible component of $M_{i}^{\prime}|q_{i}^{\prime}$ ,
especially any $M_{\iota\cap}^{\prime}V_{i}\cap D$ . Thus we conclude $ N_{1}\cap V=\phi$ . Next we consider

the analytic set $N_{2}=Supp(\frac{\mathfrak{B}}{\mathfrak{U}})^{n}$ Then we have $q_{i}^{\prime}\not\in N_{2}$ and $N_{2}\subseteqq Supp(\mathfrak{B})$

$=M^{\prime}\cap D$ . By the same argument as above we conclude $ N_{2}\cap V=\phi$ . Con-
sequently, $\mathfrak{B}$ is equivalent to $\mathfrak{U}$ on $D\cap V$ or $\mathfrak{U}^{\prime}=\mathfrak{U}U\{(V, f)\}$ is a continuation
of $\mathfrak{U}$ to $DUV$ .

To see the uniqueness, we take two continuations $\mathfrak{U}^{\prime}$ and $\mathfrak{U}^{\prime\prime}$ of $\mathfrak{U}$ to $p$ .
The set $N_{8}=Supp(\frac{\mathfrak{U}^{\prime}}{\mathfrak{U}^{\prime}})^{n}$ is a purely $(n-1)$-dimensional analytic set in a

neighborhood of $p$ if it is not empty. If $p\in N_{3},$ $N_{a}$ intersects $D$ by Proposition
2.9. This contradicts the fact $\mathfrak{U}^{\prime}|D=\mathfrak{U}^{\prime\prime}|D$ . Thus $p\not\in N_{8}$ and hence we have
a neighborhood $W_{1}$ of $p$ with $ N_{3}\cap W_{1}=\phi$ . Similarly, there exists another
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neighborhood $W_{2}$ of $p$ with $Su$pp $(\frac{\mathfrak{U}^{\prime\prime}}{\mathfrak{U}’})^{n}\cap W_{2}=\phi$ . Consequently $Supp(\frac{\mathfrak{u}/}{\mathfrak{U}’})^{n}$

$=Supp(\frac{\mathfrak{U}^{\prime\prime}}{\mathfrak{U}’})^{n}=\phi$ on $W=W_{1}\cap W_{2}$ or $\mathfrak{U}^{\prime}$ is equivalent to 11’ on W. q. e. $d$ .
COROLLARY 6.12. Let $M$ be an $(n-2)$-dimensional analytic subset of a

complex manifold $X$ of pure-dimension $n$ . Then every Cousin-II distribution on
$X-M$ is uniquely continuable to the whole space $X$.

PROOF. According to Remmert-Stein [18], every purely $(n-1)$ -dimensional
analytic set in $X-M$ is continuable to $X$. On the other hand, $X-M$ is
Rothstein $(n-1)$-concave at any point in $M$ and, for any purely $(n-1)$-dimen-
sional irreducible locally analytic set $N,$ $N-M$ is also irreducible. Using these
facts, we can prove Corollary 6.12 by the same argument as in the proof of
Proposition 6.11. $q.e$ . $d$ .

\S 7. Global continuation theorems.

1. Let $X$ be a complex space, where there exists a $*$-strongly s-convex
function $v$ . In this section, we give some global continuation theorems for
such a complex space. For example, if $X$ is a K-complete complex space of
dimension $n$ , there exists a nowhere degenerate holomorphic mapping $f=(f_{1}$ ,
... , $f_{n}$) of $X$ into $C^{n}$ . The function $v=|f_{1}|^{2}+\cdots+|f_{n}|^{2}$ is $*$-strongly l-convex
on $X$. And for another complex space $Y$ , if there exists a holomorphic map-
ping $\tau$ of $Y$ into $X$ with $\dim_{p}\tau^{-1}\tau(p)\leqq r$ for any $p\in Y$ , the function $ u=v\tau$

is a $*$-strongly $(r+1)$-convex function in $Y$ for the above $v$ (see, Example 2.6
(iii)).

THEOREM 7.1. Let $B$ be an open subset of $X$ satisfying the following
conditions $(B)_{k}$ ;

1’ $\overline{B}\cap\{v>\lambda\}\subset\subset X$ for any real number $\lambda$ ,
$2^{o}$ for any $p\in\partial B$ and any locally analytic set $M$ with $\dim_{p}M\geqq kM-B$

intersects $\{v>v(p)\}$ .
If $k\geqq s+1$ , every k-dimensional analytic set on $\partial B$ is uniquely continuable

to $B$ .
PROOF. Take a purely k-dimensional analytic set $M$ on $\partial B$ , which is also

analytic in a neighborhood $U$ of $\partial B$ . For brevity, we put $D=BUU$ and
$D_{\lambda}=D\cap\{v>\lambda\}$ for a real number $\lambda$ .

We prove first the uniqueness of the continuation. Let $M_{1}$ and $M_{2}$ be
two purely k-dimensional analytic sets in $D_{\lambda}$ for some $\lambda$ such that $M_{1}\cap(D_{\lambda}$

$-B)=M_{2}\cap(D_{\lambda}-B)$ . If some irreducible component $N$ of $M_{1}$ or $M_{2}$ does not
intersect $D_{\lambda}-B$ , the restriction of $v$ to $N$ takes its maximum at an interior
point of $N$. This contradicts the maximum principle for $v|N$ . Consequently,
any irreducible component of $M_{1}$ and $M_{2}$ intersects $D_{\lambda}-B$ and hence $M_{1}=M_{2}$
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by Lemma 3.1. As we may choose $\lambda$ arbitrarily, this shows also the continu-
ation of $M$ to $B$ is unique.

Next, we shall show the existence of the continuation $M^{*}$ of $M$. To this
end, we consider the set $\Lambda$ of all $\lambda$ such that $-\infty\leqq\lambda\leqq 2_{0}=\sup v(\overline{B})$ and there
exists a purely k-dimensional analytic set $M_{\lambda}$ in $D$ with $M_{\lambda}|(D_{\lambda}-B)=M|(D_{\lambda}$

$-B)$ . Obviously $2_{0}\in\Lambda$ and hence $\Lambda\neq\phi$ . Assume $2_{1}=\inf\Lambda>-\infty$ . Then
there exists a monotone decreasing sequence $\{2_{n}\}$ in $\Lambda$ converging to $\lambda_{1}$ . If
$n\geqq m,$ $M_{\lambda_{n}}|(D_{\lambda_{m}}-B)=M|(D_{\lambda_{m}}-B)=M_{\lambda_{m}}|(D_{\lambda_{m}}-B)$ . As is shown in the proof
of the uniqueness, we have $M_{\lambda_{n}}\cap D_{\lambda_{m}}=M_{\lambda_{m}}$ . Therefore, the set $M_{\lambda_{1}}=\bigcup_{n}M_{\lambda_{n}}$

is a purely k-dimensional analytic set in $D_{\lambda_{1}}$ and satisfies $M_{\lambda_{1}}|(D_{\lambda_{1}}-B)=M|$

\langle $D_{\lambda_{1}}-B$). By the definition, $\lambda_{1}\in\Lambda$ . Now we define the analytic set $M^{\prime}=M$

V $M_{\lambda_{1}}$ is $(D-\overline{B})UD_{\lambda_{1}}$ . It is necessary to show that $M^{\prime}$ is continuable to each
point in the set $E=\overline{B}\cap\{v=2_{1}\}$ . For a point $p\not\in\overline{M}^{\prime}$ , the continuability is
evident. For a point $p$ in $\overline{M}^{\prime}\cap B\cap E$ , there exists a neighborhood $U(p)$ of
$p$ and an analytic set $M(p)$ in $U(p)$ such that $U(p)\subseteqq B$ and $M(p)\cap D=M_{\text{{\it \‘{A}}}_{1}}$

$\cap U(p)=M^{\prime}\cap U(p)$ , by Theorem 5.3. And for a point $p$ in $\partial B\cap\overline{M}^{\prime}\cap E$ , there
exist two analytic sets $M_{1}(p)$ and $M_{2}(p)$ in a neighborhood $U(p)$ of $p$ such
that $M_{1}(p)=M_{\cap}U(p)$ and $M_{2}(p)\cap D_{\text{{\it \‘{A}}}_{1}}=M_{\lambda_{1}}\cap U(p)$ . Then we have $M_{1}(p)$

$|(D_{\lambda_{1}}-B)=M_{2}|(D_{\lambda_{1}}-B)$ . $Ontheotherhand,$ $bytheassumption,$ $everyk$ -dimen-
sional locally analytic set $N$ with $\dim_{p}N\geqq k$ intersects $D_{\lambda_{1}}-B$ . Especially,
each irreducible component of $M_{1}|p$ and $M_{2}|p$ intersects $D_{\lambda_{1}}-B$ . In view of
Lemma 3.1, we can conclude $M_{1}(p)\cap U^{\prime}(p)=M_{2}(p)\cap U^{\prime}(p)$ for a sufficiently
small neighborhood $U^{\prime}(p)$ of $p$ , which is equal to $M^{\prime}$ in $((D-\overline{B})UD_{\lambda_{1}})\cap U^{\prime}(p)$ .
This shows $M^{\prime}$ is continuable to $p$ . Since $(D-\overline{B})UD_{\lambda_{1}}$ is Rothstein k-concave
at each point of $E$ , we can apply Proposition 3.7. We get the continuation
$M^{\prime/}$ of $M^{\prime}$ to a neighborhood $V$ of $E$ with $M^{\prime\prime}|(V-B)=M^{\prime}|(V-B)=M|(V-B)$ .
We see easily $\lambda_{2}=\sup v(\overline{B}-V)<\lambda_{1}$ and $\lambda_{2}\in\Lambda$ . This is a contradiction. Thus
we have $\lambda_{1}=-\infty$ . The analytic set $M^{*}=M_{-\infty}$ is a continuation of $M$ to $D$ .

$q$ . $e$ . $d$ .
COROLLARY 7.2. If $B$ is a relatively compact weakly l-convex subset of $X$,

then every purely $(s+l)$ -dimensional analytic set on $X-B$ is uniquely continu-
able to $X$ .

PROOF. According to Proposition 2.9, we can take $s$ holomorphic functions
$f_{1}$ , , $f_{s}$ in a neighborhood of $p$ such that $L_{p}(f_{1}$ , $\cdot$ .. , $f_{s})-\{p\}\subseteqq\{v>v(p)\}$ . For
any locally analytic set $M$ with $\dim_{p}M\geqq s+1,$ $M_{\cap}L_{p}(f_{1}, \cdots , f_{s})$ is of dimen-
sion at least $(s+1)-s=1$ at $p$ and hence contains a point in $B^{c}$ different from
$p$ by the assumption. Thus $(M-B)\cap\{v>v(p)\}\neq\phi$ . The set $B$ satisfies the
condition $(B)_{s+1}$ of Theorem 7.1. $q$ . $e$ . $d$ .

COROLLARY 7.3. If a $*$ -strongly s-convex function $v$ on $X$ satisfies that
$\{2<v<\mu\}$ is relatively compact in $X$ for any 2, $\mu(2<\mu)$ , every purely $(s+1)-$
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dimensional analytic set in $X_{\lambda}=\{v>2\}$ is uniquely continuable to $X$ .
PROOF. A purely $(s+1)$-dimensional analytic set $M$ in $X$ is considered as

an analytic set on $X-B$ for $B=\{v<\mu\}(\mu>2)$ . Obviously, $B$ satisfies the
conditions $(B)_{s+1}$ . The unique continuation of $M$ in $X-B$ to $X$ is also the
unique continuation of $M$ in $X_{\lambda}$ to X. $q$ . $e$ . $d$ .

We can show another application of Theorem 7.1.
COROLLARY 7.4. If an open set $B$ satisfies the conditions $(B)_{k}$ of Theorem

7.1 and $k\geqq s+1$ , each purely k-dimensional irreducible analytic set on $\overline{B}$ is
irreducible on $\partial B$ .

PROOF. This is an immediate consequence of Theorem 7.1 and Remark
to Proposition 3.6. $q$ . $e$ . $d$ .

REMARK. By definition, an analytic polyhedron $P$ in $X$ is a relatively
compact open set consisting of some connected components of the set $\{|f_{1}|$

$<1,$ $\cdots$ , $|f_{N}|<1$ } defined by holomorphic functions $f_{1},$ $\cdots$ , $f_{N}$ in $X$. An arbi-
trary boundary point $p$ of $P$ satisfies $|f_{i}(p)|=1$ for some $f_{i}$ . Then, for any
locally analytic set $N$ with $\dim_{p}N\geqq 1$ , there exists a point $q$ on $N$ different
from $p$ with $|f_{i}(q)|\geqq 1$ by the maximum principle of $f_{i}$ on $N$. This shows
every analytic polyhedron is weakly l-convex. Theorem 6.3 in Rossi [19] $p$ .
464 is a special case of Corollary 7.4 (cf. \S 3, 1’).

2. For the continuation of holomorphic mappings, meromorphic functions
and Cousin-II distributions, we have the analogous results to Theorem 7.1.

LEMMA 7.5. Let $D$ be an open set in $X$ and Rothstein $k(p)$ -concave at each
point in a closed subset $E$ of $\partial D$ , where $k(p)=\varliminf_{q\rightarrow p}\dim_{q}$ X. If a holomorphic

(or meromorphic) function $f$ in $D$ is continuable to each point of $E,$ $f$ is con-
tinuable to some neighborhood of $DUE$ (cf. Proposition 3.7).

PROOF. By the assumption, there exist locally finite open coverings $\{U_{i}\}$

and $\{U_{i}^{\prime}\}$ of $E$ and holomorphic (or meromorphic) functions $f_{i}$ on $U_{i}$ such that
$U_{i}^{\prime}\subset\subset U_{i}$ and $f_{i}=f=f_{j}$ on $U_{i}\cap U_{j}\cap D$ if $ U_{i}\cap U_{j}\cap D\neq\phi$ . Then, as in the
proof of Proposition 3.7, for each point $p$ in $E$ we take a neighborhood $V(p)$

of $p$ such that $V(p)\subseteqq U_{i}^{\prime},$ $V(p)\subseteqq U_{i}$ if $p\in\overline{U}_{i}^{\prime}$ and $ V(p)\cap U_{i}^{\prime}=\phi$ if $p\not\in\overline{U}_{i}^{\prime}$ .
Since $D$ is Rothstein $k(p)$-concave at $p$ , we may assume that each irreducible
component of $V(p)$ intersects $D$ . We put $D^{\prime}=D\cup\bigcup_{p\in E}V(p)$ . We can define a

holomorphic (or meromorphic) function $f^{\prime}$ in $D^{\prime}$ by putting $f^{\gamma}=f_{i}$ in $V(p)\subseteqq U_{i}^{\prime}$

without ambiguity. Then $f^{\prime}$ is obviously a continuation of $f$ to $D^{\gamma}$ . $q$ . $e$ . $d$ .
THEOREM 7.6. Assume an open set $B$ satisfies the conditions $(B)_{k}$ of

Theorem 7.1 and $\varliminf_{q\rightarrow p}\dim_{q}X\geqq k$ for any $p$ in $\partial B$ .
If for any point $p$ in $X,$ $X$ is normal at $p$ and $\dim_{p}X\geqq s+1$ or $dih_{p}X$

$\geqq s+1$ , every holomorphic function on a connected neighborhood $U$ of $\partial B$ is
uniquely continuable to $UUB$ .
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The analogous conclusions are valid for holomorphic functions with values
in a Fr\’echet space and holomorphic mappings of $U$ into a Stein space or a
relatively compact weakly $1\cdot convex$ open set in a K-complete space under the
above assumption, and for meromorphic functions under the only assumption
$\dim_{p}X\geqq s+1$ for any $p$ .

PROOF. The proof is similar to Theorem 7.1. We have to apply the
results in \S 6, 1 $\sim 3^{o}$ and Lemma 7.5 instead of Theorem 5.3 and Proposition
3.7. We omit the details. $q$ . $e$ . $d$ .

As special cases of Theorem 7.6, we have
COROLLARY 7.7. Let $X$ be a complex space admitting $*$-strongly s-convex

function, $B$ a relatively compact weakly l-convex open set and $\dim_{p}X\geqq l+s$ for
any $p\in\partial B$ . If for any $p$ in $X,$ $X$ is normal at $p$ and $\dim_{p}X\geqq s+1$ or $dih_{p}X$

$\geqq s+1$ , every holomorphic function in a neighborhood $U$ of $\partial B$ is uniquely con-
tinuable to $UUB$ (cf. Fujimoto-Kasahara [7] Theorem 3).

COROLLARY 7.8. Suppose a $*$ -strongly s-convex function $v$ on $X$ satisfies
$\{2<v<\mu\}\subset\subset X$ for any $\lambda,$ $\mu(\lambda<\mu)$ . If for any point $p$ in $X,$ $X$ is normal at
$p$ and $\dim_{p}X\geqq s+1$ , or $dih_{p}X\geqq s+1$ , then every holomorphic function in
$X=X\cap\{v>2\}$ is continuable to $X$ (cf. Andreotti-Grauert [2] Th\’eor\‘em 1.5).

3. LEMMA 7.9. Let $D$ be an open subset of a complex manifold $X$ of pure-
dimension $n$ and Rothstein $(n-1)$ -concave at each point of a closed subset $E$ of
$\partial D$ . If a $ Cousin-\Pi$ distribution $\mathfrak{U}$ in $D$ is continuable to each point of $E,$ $\mathfrak{U}$ is
continuable to $E$ .

PROOF. As in the proof of Proposition 3.7 and Lemma 7.5, we take locally
finite open coverings $\{U_{i}\},$ $\{U_{i}^{\prime}\}$ of $E$ and Cousin-II distributions $\mathfrak{U}_{i}$ on $U_{i}$ such
that $U_{i}^{\prime}\subset\subset U_{i}$ and $\mathfrak{U}_{i}|U_{j\cap}D=\mathfrak{U}|U_{i\cap}U_{j}=\mathfrak{U}_{j}|U_{i}\cap D$ if $ U_{i}\cap U_{j}\cap D\neq\phi$ . Let
$p$ be a point of $U_{1}^{\prime}\cap\bigcap_{2\leqq i\leqq\gamma}\overline{U}_{t}^{\prime}$ with $p\not\in\bigcap_{J>r}\overline{U}_{j^{\prime}}$ . Then there exists a neighborhood

$V(p)$ of $p$ with $V(p)\subseteqq U_{1}^{\prime}\cap\bigcap_{2\leqq i\leqq r}U_{i}$ and $V(p)\cap U_{j^{\prime}}=\phi(j>r)$ . Making $V(p)$

sufficiently small, we have $1\uparrow_{i}|V(p)=\mathfrak{U}_{j}|V(p)$ for any $i,$ $j(1\leqq i, j\leqq r)$ . Indeed,

each set $M_{ij}=Supp(\frac{1\dagger_{i}}{\mathfrak{U}_{j}})$ is purely $(n-1)$-dimensional analytic set in $\bigcap_{1\leqq i\leqq r}U_{i}$

or empty, and cannot intersect $D$ . Since $D$ is Rothstein $(n-1)$-concave at $p$ ,

we conclude $p\not\in M_{ij}(1\leqq i, j\leqq r)$ . If we take $V(p)$ with $ V(p)\cap M_{ij}=\phi$ for
any $i,$ $j(1\leqq i, j\leqq r)$ , it has the desired properties. Thus we get a Cousin-II
distribution $\mathfrak{U}^{\prime}$ on $D^{\prime}=DU\bigcup_{p\in E}V(p)$ with $\mathfrak{U}^{\prime}|V(p)=\mathfrak{U}_{i}|V(p)$ if $V(p)\subseteqq U_{i}^{\prime}$ . This

shows $\mathfrak{U}$ has a continuation 1\ddagger ’ to $D^{\prime}$ . $q$ . $e$ . $d$ .
THEOREM 7.10. If an open set $B$ in a complex manifold $X$ of pure-dimen-

sion $n$ satisfies the conditions $(B)_{n-1}$ of Theorem 7.1 for a $*$-strongly s-convex
function $v$ and $n\geqq s+2$ , then every Cousin-II distribution on $\partial B$ is continuable
to $\overline{B}$ .
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PROOF. We proceed as in the proof of Theorem 7.1. Take a Cousin-II
distribution $\mathfrak{U}$ on a neighborhood $U$ of $\partial B$ . For an arbitrary 2, if two Cousin-II
distributions $U_{1}$ and $U_{2}$ on $D_{\lambda}=\{v>2\}\cap(BUU)$ are equivalent to $\mathfrak{U}$ on $U-\overline{B}$ ,

the sets $M_{12}=Supp(\frac{\mathfrak{U}_{1}}{11_{2}})^{n}$ and $M_{21}=Su$pp $(\frac{\mathfrak{U}_{2}}{\mathfrak{U}_{1}})^{n}$ are purely $(n-1)$ -dimen-

sional analytic sets in $D_{\lambda}$ , if not empty. By the assumption each of them
does not intersect $U-\overline{B}$ . Thus we conclude $ M_{12}=M_{21}=\phi$ , using the maximum
principle for $v$ . Thus $\mathfrak{U}_{1}|D_{\lambda}=U_{2}|D_{\lambda}=\mathfrak{U}|D_{\lambda}$ . Consequently, the continuation
of $\mathfrak{U}$ to $\overline{B}$ is unique.

To see the continuability of $\mathfrak{U}$ , we take the set $\Lambda$ of all 2 such that there
exists a Cousin-II distribution $\mathfrak{U}_{\lambda}$ on $D_{\lambda}$ with $\mathfrak{U}_{\lambda}|(U-\overline{B})=\mathfrak{U}$ . Obviously, $2_{0}$

$=\sup v(\overline{B})\in\Lambda$ and $2_{1}=\inf\Lambda\in\Lambda$ by the above argument. Thus we get a
Cousin-II distribution $\mathfrak{U}^{\prime}$ on $(U-\overline{B})UD_{\lambda_{2}}$ with $\mathfrak{U}^{\prime}|U-\overline{B}=\mathfrak{U}$ . It is continuable
to each point of $E=\overline{B}\cap\{v=2_{1}\}$ . This is easily shown by using Proposition
6.11 and the fact that for a point $p\in\partial B$ two distributions $U_{1}$ and $\mathfrak{U}_{2}$ at $p$

with $\mathfrak{U}_{1}|(U-\overline{B})\cap D_{\lambda_{1}}=1\ddagger_{2}|(U-\overline{B})\cap D_{\lambda_{1}}$ satisfies also $1J_{1}|p=\mathfrak{U}_{2}|p$ because

$p\not\in Supp(\frac{\mathfrak{U}_{1}}{\mathfrak{U}_{2}})^{n}USupp(\frac{\mathfrak{U}_{2}}{\mathfrak{U}_{1}})^{n}$ By Lemma 7.9, $\mathfrak{U}_{\lambda_{1}}$ is continuable to $E$ , whence

we can find easily $2_{2}\in\Lambda$ with $\lambda_{2}<2_{1}$ . This is a contradiction. The distri-
bution $\mathfrak{U}_{-\infty}$ is a continuation of $\mathfrak{U}$ to $UU$ B. $q$ . $e$ . $d$ .

\S 8. The continuation of sections of hard sheaves.

1. For the simultaneous treatment of the continuation of holomorphic
mappings and meromorphic functions etc., Kasahara introduced the notion of
a hard sheaf in his paper [12] as follows ;

DEFINITION 8.1. A sheaf $d$ of sets over a topological space $X$ is said to
be hard if for any pair of a connected open set $U$ and its open subset $U^{\prime}$ ,

the restriction map $\rho_{U}^{U}$ , : $\Gamma(U, d)\rightarrow\Gamma(U^{\prime}, d)$ is injective, where $\Gamma(U$ , ,]$)$ denotes,

the set of all sections of $d$ on $U$ .
REMARK. For a locally connected topological space $X$

(i) if there exists a basis $\mathfrak{U}=\{U\}$ of connected open sets such that for
any $U,$ $U^{\prime}\in \mathfrak{U}$ with $U^{\prime}\subseteqq U,$ $\rho_{U}^{U}$ ’ is injective, then $\mathcal{A}$ is a hard sheaf,

(ii) if there exists an open covering $\mathfrak{B}=\{V\}$ of $X$ such that the restric-
tion $d|V$ of $d$ to $V$ is hard over $V$ for any $V\in \mathfrak{B}$ , then $d$ is hard over $X$.

In order to state Kasahara’s theorem ([12], Theorem 1), we recall his
definition of an admissible function $v$ and a domain good for $v$ . Let ,] be a
hard sheaf of sets over a locally arcwise connected Hausdorff space $X$. Ac-
cording to [12], a continuous real-valued function $v$ on $X$ is said to be pre-
admissible if (1) for any 2, $\mu(2<\mu)$ each connected component of {$p\in X$ ;
$2\leqq v(p)\leqq\mu\}$ is compact and (2) for any $p\in X$ there exists a fundamental
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system $\mathfrak{U}$ of connected neighborhoods of $p$ such that $U\cap\{v>v(p)\}$ is a non-
empty connected set for each $U\in \mathfrak{U}$ and to be admissible for $d$ if, furthermore,
for any $U\in \mathfrak{U}$ the restriction mapping $\Gamma(U, \mathcal{A})\rightarrow\Gamma(U_{\cap}\{v>v(p)\}, d)$ is sur-
jective. A relatively compact open set $B,$ $B$ is said to be good for $v$ if it
satisfies the followings:

(1) Taking an arbitrary point $p$ in $\partial B$ , we denote one of the sets $\partial B$

$\cap\{v>v(p)\},$ $B\cap\{v>v(p)\}$ and $(X-\overline{B})\cap\{v<v(p)\}$ by $\Delta$ . For any neigh-
borhood $U$ of $p$ we can find another neighborhood $V$ of $p(V\subseteqq U)$ such that
each point of $ V\cap\Delta$ can be joined to $p$ by a curve in $U$ .

(2) For any real number $\rho$ except finitely many $\rho_{0}>\ldots>\rho_{s}$ , each point
$p\in\partial B\cap\{v=\rho\}$ has arbitrarily small neighborhoods $W^{\prime}$ and $W^{\prime\prime}$ such that
$W^{\prime}\cap(X-\overline{B})\cap\{v>\rho\},$ $W^{\prime}\cap B\cap\{v>\rho\},$ $W^{\prime\prime}\cap(X-\overline{B})$ and $W^{\prime\prime}\cap B$ are all non-
empty connected.

THEOREM (Kasahara). Let $d$ be a hard sheaf over a locally arcwise con-
nected, locally compact Hausdorff space $X$ with a countable basis of open sets
and $v$ an admissible function for $\mathcal{A}$ on X. Take an open set $D$ and its compact
subset $K$ satisfying that $D-K$ is connected. If there exists an open set $B$ such
that $K\subset B\subseteqq D$ and the boundary $\partial B$ is good for $v$ , the restriction mapping
$\Gamma(D, d)\rightarrow\Gamma(D-K, d)$ is bijective.

As consequences of the previous sections we can give several examples
of hard sheaves and admissible functions on normal complex spaces.

EXAMPLES 8.2. Let $X$ be a normal complex space of pure-dimension $n$ .
Then a $*$ -strongly $(n-1)$-convex function $v$ on $X$ satisfying the condition (1)
for pre-admissible function is admissible for the following sheaves:

(i) The structure sheaf $0$ of all germs of holomorphic functions on $X$

and more generally the sheaf $O^{F}$ of all germs of F-valued holomorphic func-
tions on $X$ for a Fr\’echet space $F$ (Proposition 6.1 and Corollary 6.3).

(ii) $0^{Y}$ ; the sheaf of all germs of holomorphic mappings of $X$ into $Y$ if
$Y$ is a Stein space or a relatively compact weakly l-convex subdomain of a
K-complete space (Corollary 6.4 and Corollary 6.7).

(iii) $\mathfrak{M}$ ; the sheaf of all germs of meromorphic functions on $X$ (Proposi-

tion 6.9).
(iv) An analytic sheaf $d$ which is locally isomorphic to $O^{F}$ for a Fr\’echet

space $F$, namely, there exists an open covering $\mathfrak{U}=\{U\}$ of $X$ such that $d|U$

is isomorphic to $O^{F}|U$ for each $U\in \mathfrak{U}$ (Remark to Definition 8.1). For example,
the sheaf of the germs of all cross-sections of a holomorphic vector bundle
of dimension $n$ over $X$ is locally isomorphic to $O^{n}=0^{c^{n}}$. Moreover, we take
a locally trivial fiber space $(B, \pi, X, Y)$ , where $B,$ $X$ and $Y$ are all complex
spaces, $\pi$ is a holomorphic mapping of $B$ onto $X$ and there exists an open
covering $\mathfrak{U}$ of $X$ such that we can find a biholomorphic mapping $\varphi_{U}$ : $\pi^{-1}(U)$
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$\rightarrow U\times Y$ with $ Pr_{U}\varphi_{U}=\pi$ for each $U\in \mathfrak{U}$ and the canonical projection $Pr_{U}$ of
$U\times Y$ onto $U$. Then the direct image $\pi_{*}(\mathcal{O})$ of the structure sheaf $0$ of $B$ is
locally isomorphic to $O^{H(Y)}$ for the Fr\’echet space $H(Y)$ of all holomorphic
functions on $Y$ with the compact convergence topology. Indeed, we have the
isomorphisms

$\Gamma(V, \pi_{*}(O))=\Gamma(\pi^{-x}(V), O)\cong\Gamma(V\times Y, G)\cong\Gamma(V, O^{H(Y)})$

for any open subset $V$ of $U(U\in \mathfrak{U})$ and these isomorphisms commute the
restriction map of sections over $V$ to another $V^{\prime}$ (Fujimoto [5], Theorem 9).

2. In the above Kasahara’s theorem, for some special complex spaces and
real analytic admissible function $v$ for the structure sheaves, we can take off
the assumption of the existence of an open set $B$ with the boundary good
for $v$ by the following

LEMMA 8.3. Let $X$ be a purely n-dimensional normal complex space and
$\tau$ nowhere degenerate holomorphic mapping of $X$ into a purely n-dimensional
complex manifold Y. Then for a real-valued real analytic function $\tilde{v}$ on $Y$,

an open set $D$ in $X$ and a compact subset $K$ of $D$ , there exists an open set $B$

such that $K\subset B\subseteqq D$ and $B$ is good for $ v=\tilde{v}\tau$ .
PROOF. This was shown by Fujimoto-Kasahara ([7] \S 7) in case that $X$

is a complex manifold and by Kasahara ([12]) in case that $X$ is a normal
complex space and $\tau$ is a nowhere degenerate holomorphic mapping of $X$

into $C^{n}(n=\dim X)$ . Joining their methods together, we can prove easily
Lemma 8.3. $q$ . $e$ . $d$ .

Thus we have
THEOREM 8.4. Let $X$ be a purely n-dimensional complex space and $v$ a

pre-admissible $*$ -strongly s-convex function $v$ on $X$ which is represented as
$ v=v^{\prime}\tau$ by a suitable nowhere degenerate holomorphic mapping $\tau$ of $X$ into a
purely n-dimensional complex manifold $Y$ and a real analytic function $v^{\prime}$ . Take
an open set $D$ and its compact subset $K$ such that for each connected component
$D_{i},$ $D_{i}-K$ is connected. If $X$ is normal and $n\geqq s+1$ , the restriction mapping
$\rho_{D-K}^{D}$ : $\Gamma(D, d)\rightarrow\Gamma(D-K, \mathcal{A})$ is bijective, where $d$ denotes one of the sheaves
of Examples 8.2.

For an arbitrary complex space $X$, using the normalization of $X$, we have
also

THEOREM 8.5. In the same situation as in Theorem 8.4, take an open set
$D$ and its compact subset $K$ such that for each irreducible component $D_{i}$ of $D$ ,
$D_{i}-K$ is irreducible. Then the restriction mapping $\Gamma(D, \mathcal{A})\rightarrow\Gamma(D-K, d)$ is
bijective if $n\geqq s+1$ for any $p\in X$ in case of $d=\ovalbox{\tt\small REJECT}$ (Example 8.2 (iii)) or if
$dih_{p}X\geqq s+1$ for any $p\in X$ in case that $\mathcal{A}$ is either the sheaf of Examples 8.2

\langle $i$) or (ii).

PROOF. Take the normalization (X, $\mu$) of $X$, where $\tilde{X}$ is a normal complex
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space and the projection $\mu$ is proper nowhere degenerate holomorphic and has
the holomorphic inverse on the set $X^{o}$ of all regular points of $X$. By the
assumption, there is a pre-admissible $*$-strongly s-convex function $ v=v^{\prime}\tau$ on
$X$, where the function $v^{\prime}$ and the mapping $\tau$ satisfy the conditions of Theorem
8.4. Obviously, Zi $=v\mu=v^{\prime}\tau\mu$ satisfies also the conditions of Theorem 8.4 and
for each connected component $\tilde{D}_{i}$ of $\tilde{D},\tilde{D}_{i}-\tilde{K}$ is connected, where $\tilde{D}=\mu^{-1}(D)$

and $\tilde{K}=\mu^{-1}(K)$ . Since $X$ is purely n-dimensional and $n\geqq s+1$ in any case,
we can apply Theorem 8.4 to the complex space $\tilde{X}$.

By $d_{X}$ and $d_{\overline{X}}$ we denote one of the sheaves of Examples 8.2 defined
over $X$ and $\tilde{X}$, respectively. In case of $\leftrightarrow t_{X}=\ovalbox{\tt\small REJECT}_{X}$ , by Kasahara [12] Lemma
6 and Theorem 8.4 above we get the canonical isomorphisms

$\Gamma(D, \ovalbox{\tt\small REJECT}_{X})\cong\Gamma(\tilde{D}, \ovalbox{\tt\small REJECT}_{\overline{X}})\cong\Gamma(\tilde{D}-\tilde{K}, \ovalbox{\tt\small REJECT}_{\overline{X}})\cong\Gamma(D-K, \ovalbox{\tt\small REJECT}_{X})$ .
In the other cases, we have also the isomorphisms $\Gamma(\tilde{D}, d_{\overline{X}})\cong\Gamma(\tilde{D}-\tilde{K}, \simeq t_{\overline{X}})$ .
Take a section $f\in\Gamma(D-K, \mathcal{A}_{X})$ . In any case, $f$ defines a section $ f=f\mu$

$\in\Gamma(\tilde{D}-\tilde{K}, \cup q_{\overline{X}})$ , which has a continuation $\tilde{f}^{\prime}\in\Gamma(\tilde{D}, d_{\overline{X}})$ with $f=\tilde{f}^{\prime}$ on $\tilde{D}-\tilde{K}$

by the above isomorphism. Then, since $\mu$ has the holomorphic inverse on $\mathring{X}$,

we can find a section $f^{\gamma}\in\Gamma(D\cap X^{o}, d_{X})$ with $f^{\prime}\mu=\tilde{f}^{\prime}$ . It suffices to show $f^{\prime}$

is continuable to $D$ . To this end, as in the proof of Theorem 7.1, we consider
the set $\Lambda$ of all $\lambda$ satisfying that $f^{\prime}$ is continuable to $D_{\lambda}=D\cap\{v>2\}$ . In
any case, if a section $f^{\prime}\in\Gamma(D\cap\mathring{X}, d_{X})$ is continuable to $D_{v(p)}$ for a point $p$

in $K,$ $f^{\prime}$ has a continuation $f^{\prime\gamma}\in\Gamma(U, d_{X})$ with $f^{\prime}=f^{\gamma\gamma}$ on $D_{v(p)}$ for some neigh-

borhood $U$ of $p$ . Since we may assume any connected component of $U\cap X^{o}$

intersects $D_{v(p)}$ and $d_{X}$ is a hard sheaf, we see $f^{\prime}=f^{\prime\prime}$ in $U\cap X^{o}$ . Using this
fact, we can conclude easily $\inf\Lambda=-\infty$ . This shows the restriction mapping
$\Gamma(D, CA_{X})\rightarrow\Gamma(D-K, d_{X})$ is bijective. $q$ . $e$ . $d$ .

Nagoya University

References

[1] S. S. Abhyankar, Local analytic geometry, New York and London, 1964.
[2] A. Andreotti and H. Grauert, Th\’eor\‘emes de finitude pour la cohomologie des

espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259.
[3] A. Andreotti and W. Stoll, Extension of holomorphic maps, Ann. of Math., 72

(1960), 312-349.
[4] L. Bungart, Holomorphic functions with values in locally convex spaces and

applications to integral formulas, Trans. Amer. Math. Soc., 111 (1964), 317-344.
[5] L. Bungart and H. Rossi, On the closure of certain spaces of holomorphic func-

tions, Math. Ann., 155 (1964), 173-193.
[6] H. Fujimoto, Vector-valued holomorphic functions on a complex space, J. Math.

Soc. Japan, 17 (1965), 52-66.
[7] H. Fujimoto and K. Kasahara, On the continuability of holomorphic functions



Continuation of analytic sets 85

on complex manifolds, J. Math. Soc. Japan, 16 (1964), 183-213.
[8] H. Grauert, Characterisierung der holomorph-vollst\"andiger komplexen R\"aume,

Math. Ann., 129 (1955), 233-259
[9] H. Grauert and R. Remmert, Plurisubharmonische Funktionen in komplexen

R\"aumen, Math. Z, 65 (1956), 175-194.
[10] H. Grauert and R. Remmert, Komplexe R\"aume, Math. Ann., 136 (1958), 245-318.
[11] R. Iwahashi, A charactrization of holomorphically complete spaces, Proc. Japan

Acad., 36 (1960), 205-206.
[12] K. Kasahara, On Hartogs-Osgood’s theorem for Stein spaces, J. Math. Soc. Japan,

17 (1965), 297-312.
[13] H. Kerner, \"Uber die Fortsetzung holomorpher Abbildungen, Arch. Math. 11

(1960), 44-47.
[14] H. Kneser, Ein Satz \"uber die Meromorphiebereiche analytischer Funktionen von

mehereren Ver\"anderlichen, Math. Ann., 106 (1932), 648-655.
[15] E. E. Levi, Studii sui punti singolari essenziali delle funzioni analitiche de due

o pi\‘u variabili complesse, Ann. Mat. Pura Appl., (3) 17 (1910), 61-87.
[16] H. Okuda and E. Sakai, On the continuation theorem of Levi and the radius of

meromorphy, Mem. Fac. Sci. Kyushu Univ. Ser. A, 11 (1957), 65-73.
[17] R. Remmert, Holomorphe und meromorphe Abbildungen Komplexer R\"aume, Math.

Ann., 133 (1957), 328-370.
[18] R. Remmert und K. Stein, \"Uber die wesentlichen singularit\"aten analytischer

Mengen, Math. Ann., 126 (1953), 263-306.
[19] H. Rossi, Vector fields on analytic spaces, Ann. of Math., 78 (1963), 455-467.
[20] W. Rothstein, Die Fortsetzung vier- und h\"oherdimensionaler analytischer Fl\"a-

chen des $R_{2n}$ ( $n\geqq 3$), Math. Ann., 121 (1950), 340-355.
[21] W. Rothstein, Zur Theorie der analytischen Mannigfaltigkeiten im Raume von

$n$ komplexen Ver\"anderlichen, Math. Ann., 129 (1955), 96-138.
[22] G. Scheja, Riemannsche Hebbarkeitss\"atze f\"ur analytische Cohomologieklassen,

Math. Ann. 144 (1961), 345-360.
[23] W. Stoll, \"Uber meromorphe Abbildungen komplexer R\"aume I, Math. Ann., 136

(1958), 201-239.


	On the continuation of ...
	\S 1. Introduction.
	\S 2. Convex functions ...
	\S 3. General consideration ...
	\S 4. Some properties ...
	\S 5. A local continuation ...
	\S 6. The continuation ...
	\S 7. Global continuation ...
	THEOREM 7.10. ...

	\S 8. The continuation ...
	THEOREM 8.4. ...

	References


