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Transformation groups satisfying some
local metric conditions
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If a locally compact group $G$ acts effectively on a manifold $M$, then is $G$

necessarily a Lie group ? Considerably many investigations have been directed
to this well known problem. The purpose of this paper is to show that it is
affirmatively answered under some local metric conditions: locally Lipschitzian
(cf. Definition 1) or locally similar (cf. Definition 3).

The proof is reduced to show that if $G$ is zero-dimensional compact then
for an open normal subgroup $G^{\prime}$ of $G$ there exists a $G^{\prime}$ -invariant local metric
$\rho^{*}$ in $M$ such that $\rho^{*}(x, y)\leqq c\cdot\rho(x, y)$ holds locally, where $c$ is a constant and
$\rho$ is a local euclidean metric.

In this paper a manifold means a separable, metric, connected, and locally
euclidean space.

\S 1. Locally Lipschitzian transformation groups.

DEFINITION 1. A topological transformation group $G$ acting on a mani-
fold $M$ is said to be locally Lipschitzian if for a coordinate neighborhood $U_{a}$

of each point $a$ in $M$ there exist a neighborhood $V$ of the identity of $G$ and
a neighborhood $U$ of the point $a$ as follows: 1) $V(U)\subset U_{a}$ , 2) $\rho(g(x), g(y))$

$\leqq c\cdot\rho(x, y)$ for all $g\in V$ and all $x,$ $y\in U$, where $\rho$ is a euclidean distance
function in $U_{a}$ and $c$ is a constant.

The following Lemma 1 shows that classical transformation groups acting
on manifolds are locally Lipschitzian.

LEMMA 1. In the above if $G$ is locally compact and, in place of the con-
dition 2), 2)’ the local coordinate functions of $g(x)$ have partial derivatives $\cdot$ with
respect to $x$ that are continuous at $(g;x)$ simultaneously, then $G$ is locally
Lipschitzian.

PROOF. Let $n$ be the dimension of $M$. Choose a compact neighborhood
$V$ of the identity of $G$ and a neighborhood $U^{\prime}$ of the point $a$ that satisfy
the conditions 1) and 2)’, and an open convex neighborhood $U$ of $a$ such that
$\overline{U}$ is compact and $\overline{U}\subset U^{\prime}$ . The coordinate functions $g_{i}(x),$ $i=1,2,$ $\cdots$ , $n$ , are
totally differentiable with respect to $x\in\overline{U}i$ . $e.$ , for any point $x+h$ (vector

sum) sufficiently near $x$ ,
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$g_{i}(x+h)-g_{i}(x)=\sum_{j=1}^{n}\frac{\partial g_{i}(x)}{\partial x_{j}}h_{j}+\epsilon_{l}(h)$ , $i=1,$ 2, $n$ ,

where $\epsilon_{i}(h)/\Vert h\Vert\rightarrow 0$ as $\Vert h\Vert\rightarrow 0$ . Hence

$\frac{\rho(g(x+h),g(x))}{\rho(x+h,x)}=\{\sum_{i=1}^{n}[\sum_{j=1}^{n}\frac{\partial g_{i}(x)h_{j}}{\partial x_{j}\Vert h\Vert}+\frac{\epsilon_{i}(h)}{\Vert h||}]^{2}\}^{\frac{1}{2}}$

Let $x+h$ approach to $x$ along the straight line whose direction cosines are
$l_{1},$ $l_{2},$ $\cdots$ , $l_{n}$ , then

$\lim_{||h||\rightarrow 0}\frac{\rho(g(x+h),g(x))}{\rho(x+h,x)}=\{\sum_{i.j=1}^{n}[\frac{\partial g_{i}(x)}{\partial x_{j}}l_{j}]^{2}\}^{\frac{1}{2}}\leqq\{\sum_{i,j=1}^{n}[\frac{\partial g_{i}(x)}{\partial x_{j}}]^{2}\}^{\frac{1}{2}}$

The right-hand side of this inequality is independent of $l_{1},$ $l_{2},$ $\cdots$ , $l_{n}$ and con-
tinuous on the compact set $V\times\overline{U}$. Let $c$ be the maximal value it attains,
then

$\lim_{||h||\rightarrow 0}\frac{\rho(g(x+h),g(x))}{\rho(x+h,x)}\leqq c$ , for all $g\in V$ and all $x\in U$ .

Now let $x,$ $y$ be any distinct points in $U$. For any positive number $\epsilon$ there
exist a finite number of points $z_{1},$ $z_{2},$

$\cdots$ , $z_{m}$ (arranged in this order) in the
segment $\overline{xy}$ such that

$\frac{\rho(g(z_{i}),g(z_{i+1}))}{\rho(z_{i},z_{i+1})}\leqq c+\epsilon$ , $i=0,1,2,$ $\cdots$ , $m$ , where $z_{0}=x$ , $z_{m+1}=y$ .
Hence

$\rho(g(x), g(y))\leqq\rho(g(x), g(z_{1}))$

$+\rho(g(z_{1}), g(z_{2}))+\cdots+\rho(g(z_{rn}), g(y))\leqq(c+\epsilon)\rho(x, y)$ .
Since $\epsilon$ is arbitrary, we have

$\rho(g(x), g(y))\leqq c\cdot\rho(x, y)$ , for all $g\in V$ and all $x,$ $y\in U$ .
(If $x=y$ , the inequality holds trivially.)

The following Lemma 2, 3 are well known and can be proved easily.
LEMMA 2. Let $G$ be a compact transformation group acting on a metric

space $M$ with a distance function $\rho(x, y)$ . Then we can define a G-invariant
metric $\rho^{*}$ , which defines on $M$ an equivalent topology to the original one, $by$

$\rho^{*}(x, y)=\int_{G}\rho(g(x), g(y))dg$ , $x,$ $y\in M$ ,

where $dg$ means a left invariant Haar measure in $G$ .
LEMMA 3. Let $G$ be a compact transformation group acting on a metric

space $M,\tilde{M}$ be the orbit space of $M$ under $G$ , and $p$ be the natural projection
of $M$ onto M. If a G-invariant metric $\rho^{*}$ is defined on $M$ which gives an
equivalent topology to the original one then we can define a new metric $\tilde{\rho}$ in.
$\tilde{M}$, which gives an equivalent topology to the natural one, $by$
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$\tilde{\rho}(\tilde{x},\tilde{y})=\rho^{*}(G(x), G(y))$ , $\tilde{x},\tilde{y}\in\tilde{M}$ , $x\in p^{-1}(\tilde{x})$ , $y\in p^{-1}(\tilde{y})$ .
Now we prove the fundamental lemma for the proof of our theorem.
LEMMA 4. Let $K$ be a zero-dimensional compact transformation group

acting on an n-manifold $M$, and $D(M;K)$ the orbit space of $M$ under K. If
$K$ is locally Lipschitzian, then $D(M;K)$ is n-dimensional everywhere.

PROOF. Let $a$ be any point of $M$. Choose a coordinate neighborhood $U_{a}$

of $a$ . Let $\rho(x, y)$ be a euclidean distance function defined on $U_{a}$ . Then there
exist an open normal subgroup $G$ of $K$ and an n-dimensional euclidean closed
cube $U$ containing the point $a$ as an interior point such that $G(U)\subset U_{a}$ and
$\rho(g(x), g(y))\leqq c\cdot\rho(x, y)$ for all $g$ in $G$ and all $x,$ $y$ in $U$, where $c$ is a constant.
We can define a G-invariant metric $\rho^{*}$ , which gives on $G(U)$ an equivalent
topology to the original one, by

$\rho^{*}(x, y)=\int_{G}\rho(g(x), g(y))dg$ , $x,$ $y\in G(U)$ , with $\int_{G}dg=1$ ,

where $dg$ means the left invariant Haar measure in $G$ . Then

$\rho^{*}(x, y)\leqq c\cdot\rho(x, y)$ for all $x,$ $y\in U$ , and $ 0<c<+\infty$ .
Consequently it is easy to see that $U$ has $(n+1)$-dimensional Hausdorff meas-
ure zero with respect to the metric $\rho^{*}$ (cf. [2], p. 103). Let $\tilde{U}$ denotes the
orbit space of $G(U)$ under $G$ , then $\tilde{U}$ has $(n+1)$ -dimensional Hausdorff meas-
ure zero with respect to such a metric $\tilde{\rho}$ as the one defined in Lemma 3.
Consequently $\dim\tilde{U}\leqq n$ with respect to the topology by $\tilde{\rho}$ (cf. [2], p. 104),

and so with respect to the natural topology.
Now we can see that $\dim\tilde{U}=n$ . In fact suppose

$\dim G(U)-\dim\tilde{U}=m$ , $m>0$ .
Let $\pi$ be the natural projection of $G(U)$ onto $\tilde{U}$. Since $\pi$ is a closed mapping,
there is a point $y$ of $G(U)$ such that $\dim G(y)\geqq m$ (cf. [2], pp. 91, 92). On
the other hand, any orbit $G(x)$ is homeomorphic to the factor space $G/G_{x}$

respectively by Arens’ theorem ([6], p. 65) and $G/G_{x}$ is zero-dimensional (cf.
[3] or [7]). Hence any orbit $G(x)$ is zero-dimensional. This contradicts with
the hypothesis that $m$ is positive.

Let $K^{*}$ be the factor group $K/G$ , and $\tilde{M}$ the orbit space of $M$ under $G$ .
Then the group $K^{*}$ is a finite transformation group acting on $\tilde{M}$ in a natural
way. Let $\pi$ be the natural projection of $M$ onto $\tilde{M}$, and $\tilde{a}=\pi(a)$ . There exists
a neighborhood $\tilde{U}^{*}$ of $\tilde{a}$ such that 1) $\tilde{U}^{*}\subset\tilde{U},$ $2$) $\tilde{U}^{*}$ has the same topological
property as $\tilde{U}$, and 3) $\tilde{U}^{*}$ intersects with each $K^{*}$-orbit at most one point.
Let $M^{\prime}$ be the orbit space of $\tilde{M}$ under $K^{*}$ , and fi the natural projection of $\tilde{M}$

onto $M^{\prime}$ . Put $U^{\prime}=\tilde{\pi}(\tilde{U}^{*})$ and $a^{\prime}=\tilde{\pi}(\tilde{a})$ . The set $U^{\prime}$ is homeomorphic to $\tilde{U}^{*}$

under the mapping $\tilde{\pi}$, and so $U^{\prime}$ is n-dimensional. Since $U^{\prime}$ can be chosen
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arbitrarily small and the point $a^{\prime}$ can be taken arbitrarily at first, the space
$M^{\prime}$ is n-dimensional everywhere. The space $M^{\prime}$ is homeomorphic to the orbit
space $D(M;K)$ . Hence our lemma has been proved.

THEOREM 1. Let $G$ be a locally compact transformation group acting
effectively on a manifold M. If $G$ is locally Lipschitzian, then it is necessarily
a Lie group.

PROOF. A locally compact transformation group effectively acting on a
manifold is necessarily finite-dimensional (Montgomery [5]). Therefore we
can suppose without loss of generality that $G$ is zero-dimensional compact
by the structure theorem of finite-dimensional locally compact groups (cf. [6]).
If $G$ could contain a p-adic subgroup $P$, then the dimension of the orbit space
of $M$ under $P$ would be higher than the dimension of $M$ $($Yang $[8])^{1)}$ . This
contradicts with Lemma 4. Consequently $G$ has no arbitrarily small subgroups
and so $G$ is a Lie group (cf. [6]).

$CoROLLARY$ . Let $G$ be a locally compact transformation group acting
effectively on a manifold $M$, and let each transformation of a neighborhood of
the identity $e$ of $G$ be of class $C^{1}$ at each point $a$ of M–it is not required that
the above neighborhood of $e$ is independent of $a$ . Then $G$ is necessarily a Lie
group.

PROOF. We can suppose without loss of generality that $G$ is zero-dimen-
sional compact. For any fixed point $a$ in $M$ there exist an open normal
subgroup $G^{\prime}$ of $G$ and an open spherical neighborhood $U$ of the point $a$ such
that 1) $G^{\prime}(U)$ is contained in a coordinate neighborhood of $a,$

$2$) each trans-
formation $g$ of $G^{\prime}$ is of class $C^{1}$ at each point of $G^{\prime}(U)$ , and 3) $\rho(g(x), x)$

$<$ (radius of $U$ ) for all $g\in G^{\prime}$ and all $x\in U$. Then $G^{\prime}(U)$ is a connected
manifold and the pair $(G^{\prime}, G^{\prime}(U))$ satisfies the assumption of Lemma 1 (cf.
[6], p. 197). Therefore $G^{\prime}$ is locally Lipschitzian on $G^{\prime}(U)$ and so on $M$.
Consequently $G^{\prime}$ is a finite group by Theorem 1 and $G$ is so.

M. Kuranishi [4] has proved that if $G$ is a locally compact effective trans-
formation group of a manifold $M$ of class $C^{1}$ and each transformation of $G$

is of class $C^{1}$ , then $G$ must be a Lie group. The above Corollary is the locali-
zation of his result.

\S 2. Locally similar transformation groups.

DEFINITION 2. A transformation group $G$ acting on a metric space $M$

with a distance function $\rho(x, y)$ is said to be similar if

1) I wish to express my thanks to Mr. H. Omori of Tokyo Metropolitan University
for his valuable advice about the dimension of the orbit space under p-adic trans-
formation group.
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$\rho(x, y)>\rho(x^{\prime}, y^{\prime})$ implies $\rho(g(x), g(y))>\rho(g(x^{\prime}), g(y^{\prime}))$ ,

for any $g$ in $G$ and any $x,$ $x^{\prime},$ $y,$ $y^{\prime}$ in $M$.
We note that if $G$ is similar then

$\rho(x, y)=\rho(x^{\prime}, y^{\prime})$ implies $\rho(g(x), g(y))=\rho(g(x^{\prime}), g(y^{\prime}))$ ,

and the converse is true if $G$ is connected.
LEMMA 5. Let $G$ be a compact transformation group acting on a compact

metric space $M$ with a distance function $\rho(x, y)$ . If $G$ is similar, then we can
define a G-invariant metric $\rho^{*}$ , which gives on $M$ an equivalent topology to the $\cdot$

original one and $\rho^{*}(x, y)\leqq\rho(x, y)$ for any $x,$ $y$ in $M$.
PROOF. The function $f$ defined by

$f(x, y)=\inf_{g\in G}\rho(g(x), g(y))$ , $x,$ $y\in M$ ,

has the following properties: 1) $f(x, y)=0$ if and only if $x=y,$ $2$) $f(x,$ $ y\rangle$

$=f(y, x)\geqq 0,3)$ the set $\{x:f(a, x)<\epsilon\}$ is open for any positive number $\epsilon$ and
any point $a$ in $M,$ $4$) $f(x, z)\leqq 2{\rm Max}[f(x, y), f(y, z)],$ $5$) $f(g(x), g(y))=f(x, y)$ .
Put

$h(x, y)=\inf\{f(x, x_{1})+f(x_{1}, x_{2})+\cdots+f(x_{n}, y)\}$ ,

where inf is taken over all finite number of points $x_{1},$ $x_{2},$ $\cdots$ , $x_{n}$ in M. $Then_{\sim}$

$f(x, y)/4\leqq h(x, y)\leqq f(x, y)$ ,

and a new metric is introduced in $M$ by $h(x, y)$ (cf. [1]). Put

$\rho^{*}(x, y)=\int_{G}h(g(x), g(y))dg$ , with $\int_{G}dg=1$ ,

where $dg$ means the left invariant Haar measure in $G$ . It is seen easily that
$\rho^{*}$ has the required properties.

DEFINITION 3. A topological transformation group $G$ acting on a manifold
$M$ is said to be locally similar if for a coordinate neighborhood $U_{a}$ of each
point $a$ in $M$ there exist a neighborhood $V$ of the identity of $G$ and a neigh-
borhood $U$ of the point $a$ with the following properties: 1) $V(U)\subset U_{a},$ $2$)
$\rho(x, y)>\rho(x^{\prime}, y^{\prime})$ implies $\rho(g(x), g(y))>\rho(g(x^{\prime}), g(y^{\prime}))$ for all $g$ in $V$ and all
$x,$ $x^{\prime},$ $y,$ $y^{\prime}$ in $U$, where $\rho$ is a euclidean distance function in $U_{a}$ .

The following Lemma 6 and Theorem 2 can be proved slightly modifying
the proof of Lemma 4 and Theorem 1 respectively.

LEMMA 6. Let $K$ be a zero-dimensional compact transformation group
acting on an n-manifold $M$, and $\tilde{M}$ the orbit space of $M$ under K. If $K$ is
locally similar, then $\tilde{M}$ is n-dimensional everywhere.

THEOREM 2. Let $G$ be a locally compact transformation group acting
effectively on a manifold M. If $G$ is locally similar, then it is necessarily a
Lie group.

Faculty of Engineering, Gifu University
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