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\S 1. Introduction.

1. In this paper, we shall show the following fact:
Let $X$ be a connected normal Stein space with $\dim X\geqq 2,$ $K$ a compact sub-

set and $D$ an open subset of $X$ containing K. Assume that $D-K$ is connected.
Then we have the followings: (1) Every holomorphic function in $D-K$ can be
continued holomorphically into the whole D. (2) Every meromorphic function
in $D-K$ can be continued meromorphically into the whole D. (3) Every holomor-
phic mapping of $D-K$ into a Stein space $Y$ can be extended to that of $D$ into $Y$ .
(\S 5, Theorem 3).

When $X$ is the complex Euclidean space $C^{n},$ (1) is well-known as a Hartogs-
Osgood’s theorem ([10], [14]) and (2) is essentially due to E. E. Levi ([13]),

which were proved completely by A. B. Brown ([4]). In the previous paper
H. Fujimoto-K. Kasahara [7], (1) for complex manifolds was discussed. For
example, (1) is true if $X$ is a Stein manifold.

The proof of the above, which we shall conclude in \S 5, is divided into
two parts. A method of the global continuation (\S 2, Theorem 1) is almost
similar to that given in [7]. In the local continuation, a Bishop’s theorem ([3]),

from which we have easily a characterization of connected normal Stein spaces
(\S 3, Theorem 2), plays the essential role. In \S 4, we shall discuss some proper-
ties of real analytic functions, which will be used in \S 5.

In the above fact, if we take off the assumption of the connectedness of
$D-K$, we have the followings: (1) For any holomorphic function $f$ in $D-K$,

we can find a holomorphic function in $D$ which coincides with $f$ on a non-empty
open subset of $D-K$. (2‘) and (3) are (2) and (3) modificated in the same way,
respectively. The proofs are included in Theorem 1 and Lemma 4.

2. For a Stein space $X$ which is not normtl, the homological codimension
of $X$ is related to the problem. (Cf. A. Andreotti-H. Grauert [1].) Our main
theorem of this paper is the following:

THEOREM. Let $X$ be a Stein space with dih $X(=the$ homological codimen-
sion of $X$ ) $\geqq 2,$ $K$ a compact subset and $D$ an open subset of $X$ containing $K$.
Assume that each irreducible component of $D$ is also irreducible in $D-K$. Then
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we have the same (1), (2) and (3) as the above.
We shall prove this Theorem in \S 6. There, considering the normalization

of $X$, we shall apply the above fact and use an Asami’s theorem ([2]) and a
Scheja’s theorem ([18]).

In Theorem, if we assume $D=X$ and take off the assumption that each
irreducible component of $D$ is irreducible in $D-K$, we have the same (1), (2)

and (3). This (1) is included in an Andreotti-Grauert’s theorem ([1], Th\’eor\‘eme
15) as a special case, and has been proved again by H. Rossi ([17]) in case $X$

is normal. Our proof is the same as the proof of Theorem (\S 6) by using the
following Rossi’s theorem ([17], Theorem 6.3): On a connected normal Stein
space $X$ with $\dim X\geqq 2$ , the complement of a compact set has only one un-
bounded connected component.

3. We make here two remarks.
By Fujimoto’s theorems ([6]), (1) of Theorem implies that under the hy-

pothesis of Theorem every $g$ -valued holomorphic function in $D-K$ admits an
$\ovalbox{\tt\small REJECT}$ -valued holomorphic continuation in $D$ , where $\mathscr{Z}$ is a Fr\’echet space over $C$ .
And we have the same generalizations as in [7, \S 8].

If $X$ is a Stein space with dih $X=1$ , Theorem is not always true. Let $X$

be the analytic subspace $\{z_{1}z_{4}-z_{2}z_{3}=0, z_{2}^{8}-z_{1}^{2}z_{3}=0, z_{3}^{8}-z_{4}^{2}z_{2}=0\}$ of $C^{4}$ . We put
$K=\{(0,0,0,0)\}$ and $D=X$. $X$ is an irreducible and locally irreducible Stein
space of pure dimension 2, and $D-K$ is irreducible because it is connected.

We consider the following function $f:f=\frac{z_{2}^{2}}{z_{1}}$ if $z_{1}\neq 0,$ $f=\frac{z_{1}z_{8}}{z_{2}}$ if $z_{2}\neq 0$ ,

$f=\frac{z_{2}z_{4}}{z_{3}}$ if $z_{8}\neq 0$ and $f=\frac{z_{8}^{2}}{z_{4}}$ if $z_{4}\neq 0$ . Using the holomorphic mapping of

$C^{z}$ onto $X$ defined by $z_{1}=w_{1}^{4},$ $z_{2}=w_{1}^{3}w_{2},$ $z_{8}=w_{1}w_{2}^{3},$ $z_{4}=w_{2}^{4}$ , we can show that $f$

is holomorphic in $D-K$ but it can not be continued holomorphically into $D$ .
The author wishes to express his hearty thanks to Professor S. Hitotumatu

for his advice and encouragement.

\S 2. The global continuation.

1. In this paper, we say merely that a curve lies in a set even if it lies
in the set with the exception of end points, and we assume that neighborhoods
are always open. First we give some definitions.

DEFINITION 1. Let $X$ be a locally arcwise connected, locally compact Haus-
dorff space. A real-valued continuous function $v$ on $X$ is called pre-admissible
if it satisfies the followings:

(i) $v$ satisfies the maximum principle, that is, to any $p\in X$ we can find
points $p_{\nu}$ satisfying $v(p_{\nu})>v(p)$ and $\lim_{\rightarrow\infty}p_{\nu}=p$ .

(ii) To any real numbers $\rho<\rho^{\prime}$ , each connected component of the set
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$\{p\in X|\rho\leqq v(p)\leqq\rho^{\prime}\}$ is compact.
(iii) Any $p\in X$ has a fundamental system $\mathfrak{W}$ of neighborhoods such that,

for any $W\in \mathfrak{W},$ $W$ and $W\cap\{v>v(p)\}$ are connected.
DEFINITION 2. Let $v$ be a pre-admissible function on $X$. The boundary

$\partial B$ of a relatively compact open set $B$ is good for $v$ if it satisfies the followings:
(i) Let $U$ be a neighborhood of $p\in\partial B$ and $\Delta$ one of the sets $B\cap\{v>v(p)\}$ ,

$\partial B\cap\{v>v(p)\}$ and $(X-B)\cap\{v<v(p)\}$ . Then, $p$ has a neighborhood $V$ con-
tained in $U$ such that any point of $ V_{\cap}\Delta$ can be joined to $p$ by a curve in
$ U\cap\Delta$ .

(ii) There exist finitely many real numbers $\rho_{0}>\rho_{1}>\ldots>\rho_{s}$ such that, if
$\rho\neq\rho_{i}$ for all $i$ , every point $p\in\partial B\cap\{v=\rho\}$ has fundamental systems $\mathfrak{W}^{\prime}$ and
$\mathfrak{W}$ “ of neighborhoods as follows:

(a) To any $W^{\prime}\in \mathfrak{W}^{\prime},$ $W\cap(X-\overline{B})\cap\{v>\rho\}$ and $W\cap B\cap\{v>\rho\}$ are non-
empty and connected.

(b) To any $W^{\prime\prime}\in \mathfrak{W}^{\gamma\gamma},$ $W^{\prime\prime}\cap(X-\overline{B})$ and $W^{\prime\prime}\cap B$ are connected.
REMARK: Since $X$ is locally arcwise connected, a connected open set in $X$

is arcwise connected. In Definition 2 (i), making $V$ small, we may take $(X-B)$

$\cap\{v>v(p)\}$ also as $\Delta$ because of Definition 1 (iii). Furthermore, if $v(p)\neq\rho_{t}$

for all $i$ , we may take $(X-B)\cap\{v\geqq v(p)\}$ also as $\Delta$ . In Definition 2 (ii) (a),

we have easily that $W^{\prime}\cap\partial B\cap\{v>\rho\}$ is not empty and $W^{\prime}\cap(X-B)\cap\{v>\rho\}$

is arcwise connected.
DEFINITION 3. If there exists a locally homeomorphic mapping $\tau$ of a

topological space $\mathcal{A}$ onto a topological space $X$, the pair $(d, \tau, X)$ is called $a$

sheaf $d$ of sets over $X$. We denote by $\Gamma(U, d)$ the set of all continuous sec-
tions of $A$ on $U\subset X$ . A sheaf $d$ of sets over $X$ is called hard if the natural
mapping $\Gamma(U, d)\rightarrow\Gamma(V, cA)$ is always injective for any pair of a connected
open set $U\subset X$ and an open set $V\subset U$ .

DEFINITION 4. Let $v$ be a pre-admissible function on $X$ and $d4$ a hard
sheaf of sets over $X$. The function $v$ is called admissible $for\simeq q$ if it satisfies
the following: Let $U$ be a neighborhood of $p\in X$ such that $U^{+}=U\cap\{v>v(p)\}$

is connected. Then, for any $f\in\Gamma(U^{+}, d),$ $p$ has a neighborhood $V$ such that
there exists $f\in\Gamma(VUU^{+}, d)$ satisfying $f=\tilde{f}$ on $V\cap U^{+}$ .

2. Now, under these definitions, we can state a theorem of the global
continuation as follows:

THEOREM 1. Let $X$ be a locally arcwise connected, locally compact Haus-
dorff space which has a countable basis of open sets. Let $d$ be a hard sheaf
of sets over $X$ and $v$ an admissible function for $\cup q$ on X. Let $K$ be a compact
subset and $D$ an open subset of $X$ containing K. Suppose that there exists an
open set $B$ which satisfies $K\subset B\subset\subset D$ and whose boundary $\partial B$ is good for $v$ .
Then, for any $f\in\Gamma(D-K. d)$ , we can find an element of $\Gamma(D, d)$ which
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coincides with $f$ on a connected component of $D-K$. Particularly, if $D-K$ is
connected, the natural mapping $\Gamma(D, d)\rightarrow\Gamma(D-K, d)$ is bijective.

3. The remaining part of this section is devoted to the proof of Theorem
1, which is done by almost same way as in [7, \S 7]. A modification is neces-
sary because the space $X$ is not a manifold and we can not use the fact stated
in $[7, \S 7, (b)]$ . Here, we shall sketch the proof shortly and point out the
places at which the proof in [7, \S 7] needs to be modified.

Using the same notations as in Definitions 1-4 and Theorem 1, we may
assume $\rho_{0}=\sup_{p\in B}v(p)$ and $\rho_{s}=\inf_{p\in B}v(p)$ . We put $\rho_{-1}=+\infty$ . If $\inf_{p\in X}v(p)=-\infty$ ,

we put $\rho_{s+\nu}=\rho_{s}-\nu$ $(\nu=1,2, \cdot. )$ , and otherwise we put $\rho_{s+1}=\inf_{p\in X}v(p)$ . We
denote by $X_{\alpha,\beta}$ the set $\{p\in X|\alpha<v(p)<\beta\}$ .

We assume at all times that a neighborhood $U$ of $p\in X$ is so small that
it satisfies the followings: (1) If $p\in X_{\rho_{i+1},\rho_{i}}$ , then $U\subset X_{\rho_{i+1},\rho_{i}}$ . If $v(p)=\rho_{i}$ ,

then $U\subset X_{\rho_{i+1},\rho_{i-l}}$ . (2) If $p\not\in\partial B$ , then $U\subset B$ or $U\subset\overline{B}^{c}$ . If $p\in\partial B$ , then
$U\subset D-K$.

At first, we show
$(\alpha)$ Let us assume $\rho_{i+1}\leqq\rho<\rho^{\prime}<\rho_{i}$ . Let $G$ be an open subset of $X_{\rho,\rho_{i}}$ such

that any point of $\partial G\cap X_{\rho,\rho_{i}}$ has a neighborhood $U$ satisfying $U\cap G=U\cap B$ or
$U\cap G=U\cap\overline{B}^{c}$ , and $C$ a connected component of G. Then, $C_{\rho},$ $=C\cap\{v>\rho^{\prime}\}$

is connected. $($ [7], \S 7, $(c))$ .
PROOF. Let $L$ be the set of curves in $C$ joining $q^{\prime}$ to $q^{\prime\prime}$ , where $q^{\prime}$ and

$q^{\prime\prime}$ are two points of $C_{\rho},$ . We put $\rho^{\prime\prime}=\sup_{\iota\in L}\inf_{p\in\iota}v(p)$ . Suppose that $\rho^{\prime/}\leqq\rho^{\prime}$ .
To any point $p\in\overline{C}\cap\{v=\rho^{\prime\prime}\}$ , we give two neighborhoods $V^{\prime}(p)\Subset U^{\prime}(p)$

satisfying the followings: If $p\in\partial G$ , then $U^{\prime}(p)\cap B\cap\{v>\rho^{\prime\prime}\}$ and $U^{\prime}(p)\cap\overline{B}^{c}$

$\cap\{v>\rho^{r/}\}$ are connected, and $U^{\prime}(p)\cap G=U^{\prime}(p)\cap B$ or $U^{\prime}(p)\cap G=U^{\prime}(p)\cap\overline{B}^{c}$

holds. If $p\in G$ , then $U^{\prime}(p)\cap\{v>\rho^{\prime\prime}\}$ is connected and $U^{\prime}(p)\subset G$ holds. Since
$\overline{C}\cap\{v=\rho^{\prime\prime}\}$ is compact, we can take finitely many points $p_{1},$ $\cdots$ , $p_{t}$ satisfying

$\bigcup_{\nu=1}^{t}V^{\prime}(p_{\nu})\supset\overline{C}\cap\{v=\rho^{\prime\prime}\}$ . We write $U_{\nu^{\prime}}$ and $V_{\nu^{\prime}}$ instead of $U^{\prime}(p_{\nu})$ and $V^{\prime}(p_{\nu})$ ,

respectively. We put $V_{1}=V_{1}^{\prime}$ . For $ 1\leqq\mu<\nu$ , we denote by $V_{\nu\mu}^{\kappa}$ each connected
component of $V_{\nu}^{\prime}\cap V_{\mu}^{\prime}$ such that the connected component of $U_{\nu^{\prime}\cap}U_{I}^{\prime}$ contain-

ing it does not intersect $G\cap\{v>\rho^{\prime\gamma}\}$ . We put $V_{\nu}=V_{\nu^{\prime}}-\bigcup_{\mu=1}^{\nu-1}\bigcup_{\kappa}V_{\nu}^{\kappa_{\mu}}$ and want

to show $\bigcup_{\nu=1}^{t}V_{\nu}\supset\overline{C}\cap\{v=\rho^{\prime\prime}\}$ . Suppose that it were not true. We can take a

point $p\in V_{\nu}^{\prime}\cap\overline{(\bigcup_{\kappa}V_{\nu\mu}^{\kappa})}\cap\overline{C}\cap\{v=\rho^{r/}\}$ for suitable $1\leqq\mu<\nu\leqq t$ . Let $\Delta$ be a

connected component of $U_{\nu^{\prime}\cap}U_{\mu}^{\prime}$ containing $p$ . Since $\Delta\cap(\bigcup_{\kappa}V_{\nu\mu}^{\kappa})\neq\phi$ , we have
$\Delta\cap G\cap\{v>\rho^{\gamma/}\}=\phi$ . This implies $p\in\partial B$ and $\Delta\cap\partial B\cap\{v>\rho^{\prime/}\}=\phi$ . Since
$\Delta$ is a neighborhood of $p$ , this contradicts Definition 2 (ii) (a).
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Since $C\cap\{\rho^{\prime\prime}-\epsilon<v\leqq\rho^{\prime\prime}\}$ is relatively compact in $X$ for $\epsilon>0$ , we can take
$l\in L$ satisfying $l\cap\{v\leqq\rho^{\prime/}\}\subset\bigcup_{\nu}V_{\nu}$ . We have easily that $ l\cap(UV_{\nu})\nu$ can be

replaced by arcs in $G\cap\{v>\rho^{\prime\prime}\}$ . This contradicts the definition of $\rho^{\prime\prime}$ .
$q.e$ . $d$ .

The following fact can be proved in the same way as in $[7, \S 7, (d)]$ , by
using Definition 2 (ii) instead of (b) in [7, \S 7].

$(\beta)$ Let $C$ be a connected component of $(X-B)\cap\{\rho\leqq v\leqq\rho_{i}\}$ or $(X-B)$

$\cap\{\rho_{i+1}<v\leqq\rho_{i}\}$ , where $\rho_{i+1}<\rho<\rho_{i}$ . For any $\rho^{\prime}$ satisfying $\rho<\rho^{\prime}<\rho_{i}$ , the set
$C\cap\{v\geqq\rho^{\prime}\}$ is connected.

$(\gamma)$ Let us assume $(X-B)\cap\{v=\rho_{i}\}=O^{1\cup}S^{1}$ , where $O^{1}$ and $S^{1}$ are closed
and disjoint. The set $O^{2}$ consists of all points $p$ in $(X-B)\cap X_{\rho_{i+1},\rho_{i}}$ satisfying
that the connected component of $(X-B)\cap\overline{X}_{v(p),\rho_{i}}$ containing $p$ intersects $O^{1}$ .
We put $S^{2}=(X-B)\cap X_{\rho_{i+1},\rho_{i}}-O^{1},0=0^{1}UO^{2}$ and $S=S^{1}US^{2}$ . Then $S$ and $0$

are relatively closed in $(X-B)\cap\{\rho_{i+1}<v\leqq\rho_{i}\}$ . $($[7], \S 7, $(e))$ .
PROOF. Let us assume $\lim_{\nu\rightarrow\infty}p_{\nu}=p$ where $p_{\nu}$ and $p$ are points in $(X-B)$

$\cap\{\rho_{i+1}<v\leqq\rho_{i}\}$ . If $p_{\nu}\in O$ , then $p\in O$ . If $p_{\nu}\in S$ and $v(p_{\nu})\geqq v(p)$ , then $p\in S$ .
These can be proved in the same way as in [7, \S 7, (e), (i) and (ii)] by using
Definition 2 and its Remark.

Suppose $p_{\nu}\in S,$ $p\in O$ and $v(p_{\nu})<v(p)$ . By Definition 2 (i), there exists a
curve $c(t),$ $0\leqq t\leqq 1$ , in $(X-B)\cap\{v<v(p)\}$ , where $c(O)=p$ , and $c(1)=p$ . Putt-
ing $ t_{0}=\sup$ { $t|$ if $0\leqq t^{\prime}\leqq t$ , then $c(t^{\prime})\in S$ }, we have $0<t_{0}<1$ . In fact, $c(O)\in S$

implies $0<t_{0}$ , and $t_{0}<1$ is obtained by considering the point where $v$ attains
$\min_{0\leqq t\leqq 1}v(c(t))$ . Since $c(t_{0})\in\overline{O}$ , we have $c(t_{0})\in O$ . On the other hand, by the

definition of $O$ we have $v(c(t))\geqq v(c(t_{0}))$ for $0\leqq t\leqq t_{0}$ , which implies $c(t_{0})\in S$ .
This is a contradiction. $q$ . $e$ . $d$ .

4. Take a section $f\in\Gamma(D-K, \mathcal{A})$ . By induction, we shall continue $f$ to
$K$. Now, we assume the following four facts:

(I) $B_{i}^{*}$ is an open set such that $B\subset B_{i}^{*}\subset\subset X,$ $B_{i}^{*}\cap\{v\leqq\rho_{i}\}=B\cap\{v\leqq\rho_{i}\}$ ,
and $B_{i}^{*}\cap\{v>\rho_{i-1}\}=B_{i-1}^{*}\cap\{v>\rho_{i-1}\}$ .

(II) Any $p\in\partial B_{i}^{*}\cap\{v>\rho_{i}\}$ has a neighborhood $U$ satisfying $U\cap B_{i}^{*}$

$=U\cap B$ .
(III) There exists a unique section $g_{\rho_{i}}\in\Gamma(\{DUB_{i}^{*}\}\cap\{v>\rho_{i}\}, d)$ satis-

fying $g_{\beta i}=f$ (as germs) at each point of $(D-B_{i}^{*})\cap\{v>\rho_{i}\}$ .
(IV) Any $s$ . $b$ . p. 2. and any o. b. $p$ . in $X_{\rho_{i},\rho_{i\leftarrow 1}}$ can never be joined by a

cancelable curve in $X_{\rho_{i},\rho_{i-1}}$ .
Terminologies used here are as follows: A point of $(B_{i}^{*}-B)\cap\partial B$ is called

an $s$ . $b$ . $p$ . (singular boundary point) and one of $(X-B_{i}^{*})\cap\partial B\cap\{v>\rho_{i}\}$ is called
an $0$ . $b$ . $p$ . (ordinary boundary point). Let $p$ be an $s.b$ . $p.$ . If $g_{\rho_{i}}\neq f$ at $p,$ $p$ is
called an s. b. p. 1.. If $g_{\rho_{i}}=f$ at $p,$ $p$ is called an s. b. p. 2.. Let $L$ be the set of
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curves $c$ such that $c\cap\partial B$ consists of at most finitely many points and at each
of them $c$ runs from the interior of $B$ to the exterior of $B$ or conversely. Let

$\mathfrak{G}$ be a non-commutative group generated by three elements { $0$ . $b$ . $p.,$ $s$ . $b$ . p. 1.,
s. b. p. 2.} satisfying the only relations ($0$ . $b$ . p.)2 $=(s. b. p. 1)^{2}=(s. b. p. 2.)^{2}=e$ ,

where $e$ is the unit of $\mathfrak{G}$ . Take $c\in L$ . We can consider $c$ as an element $ c\sim$ of
$\mathfrak{G}$ , that is, if $c\cap\partial B$ except end points consists of $\{q_{1}, \cdots , q_{k}\}$ in the order on
$c$ , then $c\sim=q_{1}\ldots q_{k}$ , and if $c\cap\partial B$ except end points is empty, then $\tilde{c}=e$ . A
curve $c$ in $L$ is called cancelable if $\tilde{c}=e$ .

For $i=0$ , if we put $B_{0}^{*}=B$ , the above assumptions are true. Let us
assume all of the above four for $i$ .

5. Now, we construct $B_{i+1}^{*}$ . The proof of the following is the same as in
$[7, \S 7, (f)]$ .

$(\delta)$ $\overline{(B_{i}^{*}-B}$) $\cap\overline{(X-B_{i}^{*})\cap\{v>\rho_{i}\}}\cap\{v=\rho_{i}\}=\phi$ .
We decompose the set $(X-B)\cap\{v=\rho_{i}\}$ into the union $O^{1}$ US of two

disjoint sets. Take $p\in(X-B)\cap\{v=\rho_{i}\}$ . Let $U$ be a neighborhood of $p$ such
that $U\cap\{v>\rho_{i}\}$ is connected. If $p\in\overline{(B_{i}^{*}-B)}$ , then $p\in S^{1}$ . When we can
assume $U\cap\{v>\rho_{i}\}\subset B$ by making $U$ small, $p$ belongs to $S^{1}$ if and only if
$g_{\rho_{i}}\neq f$ in $U\cap\{v>\rho_{i}\}$ , or $g_{\rho_{i}}=f$ in $U\cap\{v>\rho_{i}\}$ and $p$ can be joined to an
$s.b$ . p. 2. in $X_{\rho_{i},\rho_{i-1}}$ by a cancelable curve in $X_{\rho_{i},\rho_{i-1}}$ . Otherwise $p$ belongs to
$O^{1}$ . The following is the same as in [7] \S 7 (g).

$(\epsilon)$ $O^{1}$ and $S^{1}$ satisfy the assumptions of $(\gamma)$ .
Applying $(\gamma)$ to these $O^{1}$ and $S^{1}$ , we have sets $O$ and $S$ as in $(\gamma)$ . We put

$B_{i+1}^{*}=B_{i}^{*}US$ . We can easily see that $B_{i+1}^{*}$ satisfies (I) and (II) except $B_{i+1}^{*}\Subset X$

by $(\gamma)$ .
We show $B_{i+1}^{*}\subset\subset X$. If $C$ is a connected component of $(X-B)\cap\{\rho_{i+1}<v$

$\leqq\rho_{i}\}$ , then we have $C\subset S$ or $C\subset O$ , because of $(\beta)$ and the definition of $O$ .
By Definition 2 (ii), $\max_{p\in c}v(p)$ must be $\rho_{i}$ . This implies that $ C\cap\overline{B}_{b}^{*}\neq\phi$ if

$C\subset S$ . Consequently, the union of connected components of $\overline{X}_{\rho_{i+1},\rho_{0+\epsilon}}$ intersect-
ing $\overline{B}_{i+1}^{*}$ is equal to that intersecting $\overline{B}_{i}^{*}$ , where $\epsilon>0$ . Since $\overline{B}_{i}^{*}$ is compact,
we can show that the number of connected components of $\overline{X}_{\rho_{i+1},\rho_{0}+\epsilon}$ intersecting
$B_{i^{*}}$ is finite. Hence, we have $B_{i+1}^{*}\subset\subset X$ .

The proof of (III) in $B_{i+1}^{*}$ can be obtained by the same way as in [7,

Lemma 7]. (The proof of [7] Lemma 6 used there needs to be modified, but
it is easy. Cf. the Proof of $(\alpha).)$ The proof of (IV) in $B_{i+1}^{*}$ is also similar as in
[7] \S 7 $n^{o}$ . $5$ , by using Definition 2 instead of [7] \S 7 (b).

By induction, we have $g_{-\infty}\in\Gamma(DUB_{-\infty}^{*}, \leftrightarrow\emptyset)$ and $g-=f$ holds in $D-B_{-\infty}^{*}$

if $\inf_{p\in X}v(p)=-\infty$ , and we have $g_{\rho_{S+1}}\in\Gamma(\{DUB_{s+1}^{*}\}\cap\{v>\rho_{s+1}\}, \mathcal{A})$ if $\inf_{p\in X}v(p)$

$=\rho_{s+1}$ . In the latter case, we can continue $g_{\rho_{s+1}}$ to $D\cap\{v=\rho_{s+1}\}$ and we
regard $g_{\rho_{s+1}}$ as an element of $\Gamma$ ($D,$ cfl), which coincides with $f$ in $(D-B_{s+1}^{*})$
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$\cap\{v>\rho_{s+1}\}$ .
Assume that $D-K$ is connected. Then, the natural mapping $\Gamma(D, d)$

$\rightarrow\Gamma(D-K, d)$ is surjective. From Definition 1 (i), it follows that $X$ has no
compact connected component and accordingly $D$ is connected. This implies
that $\Gamma(D, d)\rightarrow\Gamma(D-K, A)$ is injective. Thus, Theorem 1 has been proved.

\S 3. Preliminaries on complex spaces.

1. In this paper, an analytic covering, a complex space and a normal
complex space mean analytisch verzweigte Uberlagerung ‘, ’

$\beta$ -Raum’ and
‘

$\beta_{n}$ -Raum ( $=\alpha$ -Raum) ‘ in the sense of H. Grauert-R. Remmert [9], respectively.
A Stein space is a complex space which is paracompact, holomorphically con-
vex and holomorphically separable. A mapping $\tau$ of a topological space $X$

into a topological space $Y$ is called almost proper if $\tau$ is continuous and each
connected component of $\tau^{-1}(K)$ is compact for each compact subset $K$ of $Y$ .

Let $X$ be a purely n-dimensional Stein space. By a Bishop’s theorem ([3,

Theorem 4]), there exists an almost proper holomorphic mapping $\tau$ of $X$ into
$C^{n}$ . Since $X$ has no compact analytic set of positive dimension, $\tau$ is nowhere
degenerate (’ nirgends entartet’). We have easily that $\tau$ is open and locally
proper (cf. R. Remmert [15] Satz 28 and H. Grauert [8] Satz 1).

2. The following theorem, which interests us by comparison with the
characterization of an open Riemann surface as a covering surface over $C^{1}$ , is
an immediate consequence of the above Bishop’s theorem.

THEOREM 2. Let $X$ be a connected Hausdorff space. Under this assump-
tion, $X$ is a normal Stein space if and only if there exists an almost proper
mapping $\tau$ of $X$ into $C^{n}$ such that each $p\in X$ has a neighborhood $U$ for which
$\tau(U)$ is an open set in $C^{n}$ and $(U, \tau|U, \tau(U))$ is an analytic covering.

PROOF. If $X$ is a connected normal Stein space, then $X$ is purely n-dimen-
sional and there exists an almost proper holomorphic mapping $\tau$ of $X$ into $C^{n}$

which is open and locally proper. Hence, we can show easily that each $p\in X$

has a neighborhood $U$ such that $(U, \tau|U, \tau(U))$ is an analytic covering, (cf.

R. Remmert-K. Stein [16] Satz 3). Conversely, if $\tau$ : $X\rightarrow C^{n}$ satisfies the condi-
tions, we can easily see that $X$ is a normal complex space and $\tau$ is holomorphic
and nowhere degenerate. Thus, $X$ is K-complete and $X$ is a countable union
of compact sets (H. Grauert [8]). We denote by $\hat{K}_{X}$ the set $\{p\in X||f(p)|$

$\leqq\sup_{q\in K}|f(q)|$ for any holomorphic function $f$ on $X$ }. For a connected compact

set $K$ in $X$, we have $\hat{K}_{X}\subset\tau^{-1}((K)_{C^{n}})\bigwedge_{T}$ . Since $C^{n}$ is holomorphically convex and
$\tau$ is almost proper, there exists a polycylinder $Z$ containing $\bigwedge_{T(K)_{C^{n}}}$ and the
connected component $U$ of $\tau^{-1}(Z)$ containing $K$ is relatively compact in $X$.
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Since $\hat{K}_{X}\subset\tau^{-1}(Z)$ , we have $\partial U\cap\hat{K}_{X}=\phi$ . Thus, we can construct an analytic
polyhedron $P$ containing $K$. We have a sequence of analytic polyhedra $\{P_{\nu}\}$

such that $P_{\nu}\Subset P_{\nu+1}$ for all $\nu$ and $\nu^{\infty}1U_{=}P_{\nu}=X$ . Since each $P_{\nu}$ is a Runge domain

in $P_{\nu+1}$ and a Stein space, $X$ is a Stein space (K. Stein [19]).

Let $(\tilde{X}, \mu)$ be the normalization of a complex space $X$ (H. Grauert-R. Rem-
mert [9]). By a Grauert’s theorem ([8] Satz A and B), we have easily that
if $X$ is a Stein space, so is $\tilde{X}$, too.

3. Let $X$ be a complex space and $S$ a coherent analytic sheaf over $X$ .
We denote by $dih_{p}.5$ the homological codimension of $S$ at $p$ , whose definition
and properties are given in A. Andreotti-H. Grauert [1] Chap. 1. (They call
it ‘la dimension homologique’.) By definition, we put $dihS=\min_{p\in X}dih_{p}S$ ,

$dih_{p}X=dih_{p}O$ and dih $X=dihO$ , where (3 is the structural sheaf of $X$ . Here,
we point out the following fact given by G. Scheja.

LEMMA 1. Let $M$ be an analytic subspace of an open subset $D$ in $C^{n}$ and
$O$ the structural sheaf of M. We assume $dih_{p}M\geqq 2$ for a point $p\in M$. Then
$p$ has a fundamental system $\mathfrak{U}$ of neighborhoods such that, for each $U\in \mathfrak{U}$ , the
natural mapping $\Gamma(M_{\cap}U, \mathcal{O})\rightarrow\Gamma((M-\{p\})\cap U, \mathcal{O})$ is bijective.

PROOF. Since it is trivial if $M=D$ , we may assume $n\geqq 3$ and $ M\subset D\infty$ .
Let $\tilde{O}$ be the structural sheaf of $D$ and $J$ the sheaf of ideals of the analytic
set $M$. We have $\mathcal{O}\cong\tilde{\mathcal{O}}/J$ by definition. We have easily $dih_{p}3=dih_{p}M+1\geqq 3$ .
Take a Stein neighborhood $U$ of $p$ in $C^{n}$ satisfying $U\subset D$ . By a Scheja’s
theorem ([18] Satz 3* Korollar, in which the notation $co\dim_{x}A-hd_{x}\mathfrak{G}$ is
changed by $dih_{x}\mathfrak{G}-\dim_{x}$ $A$ according to our notations), $H^{1}(U, J)\rightarrow H^{1}(U-\{p\}, c\mathcal{J})$

is surjective, and hence $H^{1}(U-\{p\}, J)=0$ . This implies that $\Gamma(U-\{p\},\tilde{o})$

$\rightarrow\Gamma(U\cap(M-\{p\}), O)$ is surjective. Since $\Gamma(U, (7)\sim\cong\Gamma(U-\{p\},\tilde{O}),$ $\Gamma(U,\tilde{O})$

$\rightarrow\Gamma(U\cap(M-\{p\}), O)$ is surjective, from which the proof follows.

\S 4. Some properties of real analytic functions.

1. The following lemma was given by H. Fujimoto in case $v$ is a poly-
nomial in two variables of degree two. The method of his proof can be applied
for a general case as follows:

LEMMA 2. Let $v$ be a real analytic, strongly plurisubharmonic function in
a neighborhood $G$ of the origin $0$ in $C^{n}$ , where $n\geqq 2$ and $v(O)=0$ . Then, there
exists a fundamental system $\mathfrak{B}$ of connected neighborhoods of the origin satis-
fying the following: Let $N$ be a thin analytic set in $G,$ $U$ a neighborhood of
the origin and $f$ a holomorphic function in $U$ such that $N_{\cap}U\subset\{z\in U|f(z)$

$=0\}\subseteq U\subset G$ . Then, to any $V\in \mathfrak{B}$ satisfying $V\subset\subset U$ , every curve in $V-N$ with
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both end points in $(V-N)\cap\{v>0\}$ is homotopic in $V-N$ to a curve in $(V-N)$

$\cap\{v>0\}$ .
PROOF. For a suitable system of local coordinates $z_{1},$

$\cdots$ , $z_{n}$ in a neigh-
borhood of the origin, we may assume $v=2{\rm Re}\varphi+\sum\alpha_{\nu\overline{\mu}}z_{\nu}\overline{z}_{\mu}+o(|z|^{2})$ , where
$(\alpha_{\nu_{\mu}^{-}})$ is a positive definite Hermitian matrix and $\varphi$ is one of the polynomials
(i) $0$ , (ii) $z_{1}$ and (iii) $\Sigma\beta_{\nu\mu}z_{\nu}z_{\mu}$ satisfying $\beta_{nn}=0$ .

For the case (i) the lemma is trivial, and therefore we assume $\varphi\not\equiv 0$ .
Putting $x=$ $(z_{1}$ , $\cdot$ .. , $z_{n-1})$ and $y=z_{n}$ , we can take a neighborhood $V=V_{x}\times V_{y}$

$=\{|z_{1}|<\rho_{1}, \cdots , |z_{n-1}|<\rho_{n-1}\}\times\{|z_{n}|<\rho_{n}\}$ such that, to any $x\in V_{x},$ $\{y\in V_{y}|$

$v(x, y)>0\}$ is a non-empty connected set and $\{y\in V_{y}|v(x, y)<0\}$ is relatively
compact in $V_{y}$ . In fact, this is possible. We put $ y=\xi+i\eta$ . Making $V$ small,
we can take a positive number $\kappa$ such that $v^{\prime}\leqq v$ in $V$ where $ v^{\prime}=2{\rm Re}\varphi$

$+\kappa\sum|z_{\nu}|^{2}$ , and by Sp\"ath’s theorem we have

$v=\{\xi^{2}+a(x, \eta)\xi+b(x, \eta)\}q(x, \xi, \eta)$

in $V$ where $a,$
$b$ and $q$ are real analytic functions in $V$ satisfying $a(O)=b(0)=0$

and $q\neq 0$ in $V$ . Since $\{y|v^{\prime}(x, y)>0\}$ is the exterior of a disc whose center
and radius converge to $0$ if $x\rightarrow 0$ , we have $\{y\in V_{y}|v(x, y)>0\}\neq\phi$ and
$\{y\in V_{y}|v(x, y)<0\}\subset\subset V_{y}$ for any $x\in V_{x}$ by making $V_{x}$ small in contrast to $V_{y}$ .
Regarding $v=0$ as the polynomial equation in $\xi$ of degree two, we can show
easily that $\{y\in V_{y}|v(x, y)>0\}$ is connected for a fixed $x$ in $V_{x}$ .

We take $N,$ $U$ and $f$ as in the lemma, and assume $V\subset\subset U$ . The function
$f$ can be represented by a Hartogs’ series $\sum a_{\nu}(x)y^{\nu}$ in $\overline{V}$. Let $M$ be the set
$\{x\in\overline{V}_{x}|a_{\nu}(x)=0, v=0,1, 2, \}$ . $M$ is an analytic set of dimension at most
$n-2$ .

Take a point $x_{0}$ in $V_{x}-M$. Since $f(x_{0}, y)$ is holomorphic in $\overline{V}_{y}$ and $f(x_{0}, y)$

$\not\equiv 0,$ $\{y\in\overline{V}_{y}|f(x_{0}, y)=0\}$ is a finite set. When it is not empty, we denote it by
$\{y_{1}, \cdot , y_{r}\}$ . Since $f(x_{0}, y)\not\equiv O$ , in a neighborhood of each $(x_{0}, y_{i}),$ $\{f=0\}$ can
be represented by the set of zeros of a distinguished polynomial of $y$ with the
center at $(x_{0}, y_{i})$ . We denote by $\delta_{(x_{0},yi)}(x)$ its discriminant. We may assume

that $\delta_{x_{0}}=\prod_{i=1}^{r}\delta_{(x_{0},yi)}$ is holomorphic in a neighborhood $U_{x_{0}}$ of $x_{0}$ and $\delta_{x_{0}}\not\equiv 0$ .

Making $U_{x_{0}}$ small, we take $x^{\prime}\in U_{x_{0}}\cap\{\delta_{x_{0}}\neq 0\}$ and denote by $\{y_{1}^{\prime}, \cdot , y_{s}^{\prime}\}$ the
set $\{y\in\overline{V}_{y}|f(x^{\prime}, y)=0\}$ . Then, $\{f=0\}$ can be represented by a holomorphic
function $y=\chi_{j}(x)$ of $x$ in a neighborhood of each $(x^{\prime}, y_{j^{\prime}})$ , and for $x^{ff}$ sufficiently
near to $\chi^{\prime}$ the set $\{y\in\overline{V}_{y}|f(x^{\prime\prime}, y)=0\}$ is contained in $\{\chi_{1}(x^{\prime/}), \cdots, \chi_{s}(x^{\prime/})\}$ .
When $\{y\in\overline{V}_{y}|f(x_{0}, y)=0\}$ is empty, we take a neighborhood $U_{x_{0}}$ of $x_{0}$ such
that $\{y\in\overline{V}_{y}|f(x^{\prime}, y)=0\}=\phi$ for any $x^{\prime}\in U_{x_{0}}$ .

Take a curve $c(t)=(x(t), y(t)),$ $0\leqq t\leqq 1$ , in $V-N$ such that $v(c(O))>0$ and
$v(c(1))>0$ . It is shown easily that there exists a point $x_{0}$ in $V_{x}$ such that
$v(x_{0}, y)>0$ for any $y\in V_{y}$ . Since $(V-N)\cap\{v>0\}$ is connected, we may assume
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$x(O)=x(1)=x_{0}$ . Modifying the curve a little, we may $assum_{\vee}^{\circ}$ tnat $f(c(t))\neq 0$

and $x(t)$ belongs to some $U_{x}\cap\{\delta_{x}\neq 0\}$ for any $t$ . Now, we can finish the proof
by the same method as in the case of two variables ([7], p. 193). We omit
the details.

2. LEMMA 3. Let $v_{0},$ $v_{1},$ $\cdots$ , $v_{r}$ be real analytic functions in a neighborhood
$U$ of the origin $0$ in $9l^{m}$, where $r<m$ . Let $N$ be the set { $ x\in U|v_{1}(x)=\ldots$

$=v_{r}(x)=0\}$ and $S$ the set { $x\in U|$ the rank of the matrix $(\frac{\partial v_{i}}{\partial x_{j}})_{1\leqq J\leqq m}1\leqq i\leqq r$ at $x$ is

less than $r$ . We assume that $0\in\overline{N-S}$. Then, there exists a neighborhood $V$

of the origin contained in $U$ such that the number of stationary values of the
function $v_{0}|(N-S)\cap V$ is at most one (cf. [7] Proposition 8 and its Corollary).

PROOF. We denote by $C$ the set of all points at which the rank of the

matrix $(\frac{\partial v_{i}}{\partial x_{j}})_{1\leqq^{i\leqq r}}0\leqq_{j\leqq m}$ is less than $r+1$ . We can see easily that a point $x$ belongs

to $N-S$ and is not a stationary point of $v_{0}|(N-S)$ if and only if $x\not\in C$ .
If we regard the variables $x$ as complex variables, then $N,$ $S$ and $C$ are

analytic sets. In a small neighborhood of the origin in $C^{m}$, the analytic set
$N_{\cap}C$ can be decomposed into the union of finitely many irreducible components,
each of which contains the origin. Let $C_{i}$ be a component which meets $N-S$ .
(If $N_{\cap}C\cap V\subset S$ for a neighborhood $V$ of the origin in $\Re^{m}$, then $v_{0}|(N-S)$

$\cap V$ has no stationary values. We omit the case.) We denote by $C_{i}^{o}$ the set

of ordinary points of $C_{i}$ . Since $\overline{C_{i}^{o}}=C_{i}$ , we have $ C_{i}^{o}\cap(N-S)\neq\phi$ . Take a
point $p$ in $C_{i}^{o}\cap(N-S)$ . We may assume that $x_{r+1}$ , $\cdot$

., , $\chi_{m}$ is a system of local

coordinates of $N$ at $p$ . Denoting by $u_{1}$ , $\cdot$ .. , $u_{t}$ that of $C_{i}^{o}$ at $p$ , we have $\frac{\partial_{l1_{0}}}{\partial u_{j}}$

$=\sum_{i=r+1}^{m}\frac{\partial v_{0}}{\partial x_{i}}\frac{\partial_{X_{i}}}{\partial u_{j}}\equiv 0$ for any $j$ in a neighborhood of $p$ on $\mathring{C}_{i}$ . These equations

assert that $v_{0}$ must be identically constant on $C_{i}$ . Thus, we have $v_{0}\equiv v(0)$ on
\langle$N-S$ ) $\cap C$ . Restricting variables to real numbers, we conclude the proof.

\S 5. The case of normal Stein spaces.

1. Let $X$ and $Y$ be complex spaces. We denote by $O(X)$ the structural
sheaf of $X$, by $\ovalbox{\tt\small REJECT}(X)$ the sheaf of germs of meromorphic functions over $X$

and by $\ovalbox{\tt\small REJECT}(X, Y)$ the sheaf of germs of holomorphic mappings of $X$ into $Y$

over $X$ . If $X$ is a locally irreducible complex space, these are hard sheaves
of sets over $X$.

LEMMA 4. Let $X$ be a connected normal Stein space of dimension $n\geqq 2$

and $Y$ a Stein space. Then, there exists an admissible function $v$ for $O(X)$ ,
$\ovalbox{\tt\small REJECT}(X)$ and $\ovalbox{\tt\small REJECT}(X, Y)$ such that, for any compact set $K$ and its neighborhood $D$ ,
we can construct an open set $B$ with the good boundary $\partial B$ for $v$ satisfying
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$K\subset B\subset\subset D$ .
As a corollary of Lemma 4 and Theorem 1, we have immediately
THEOREM 3. Let $X$ be a connected normal Stein space of dimension $n\geqq 2$

and $Y$ a Stein space. Let $K$ be a compact subset of $X$ and $D$ an open subset
such that $K\subset D\Subset X$ and $D-K$ is connected. Then, the natural mappings
$\Gamma(D, \mathcal{O}(X))\rightarrow\Gamma(D-K, O(X)),$ $\Gamma(D, \ovalbox{\tt\small REJECT}(X))\rightarrow\Gamma(D-K, \ovalbox{\tt\small REJECT}(X))$ and $\Gamma(D, \ovalbox{\tt\small REJECT}(X, Y))$

$\rightarrow\Gamma(D-K, \ovalbox{\tt\small REJECT}(X, Y))$ are bijective.
2. Now, we begin the proof of Lemma 4. Let $\tau$ be an almost proper

holomorphic mapping of $X$ into $C^{n}$ given in Theorem 2. We denote by $\{z_{1}$ ,

... , $z_{n}$ } a fixed system of coordinates of $C^{n}$ . We put $\sim v=\sum_{\nu=1}^{n}|z_{\nu}|^{2}$ and $ v=\sim v\circ\tau$ .
We want to show that this $v$ satisfies our purpose.

We first prove that $v$ is pre-admissible. Since $\tau$ is open and almost proper,
$v$ satisfies (i) and (ii) of Definition 1 trivially. For the proof of (iii), we take
a point $p\in X$ and put $\tau(p)=z_{0}$ . Let $W$ be a neighborhood of $p$ such that
$\tau^{-1}\circ\tau(p)\cap W=\{p\}$ and $(W, \tau|W, \tau(W))$ is an analytic covering. We denote
by $N^{\prime}$ the minimal critical set of the analytic covering and put $N=\tau^{-1}(N^{\prime})\cap W$.
Applying Lemma 2 to 7, we construct a fundamental system $\mathfrak{B}$ of neighbor-
hoods of $z_{0}$ . We take $V^{\prime}\in \mathfrak{B}$ satisfying $V^{\prime}\subset\tau(W)$ and the conclusion of
Lemma 2 for $N^{\prime}$ . Since $V^{\prime}$ is connected and $\tau^{-1}\circ\tau(p)\cap W=\{p\},$ $V=\tau^{-1}(V^{\prime})$

$\cap W$ is connected. Since $V-N$ is an unramified, unlimited and connected
covering over $V^{\prime}-N^{\prime},$ $V\cap\{v>v(p)\}$ is connected by Lemma 2. Thus, $v$ is
pre-admissible.

Now, we show that $v$ is admissible for $O(X)$ and $\ovalbox{\tt\small REJECT}(X)$ . We use the same
notations as above. Take a neighborhood $U$ of $p$ such that $U^{+}=U\cap\{v>v(p)\}$

is connected and $f\in\Gamma(U^{+}, O(X))$ (resp. $\Gamma(U^{+},$ $\ovalbox{\tt\small REJECT}(X))$). We may assume $W\subset U$.
We put $W^{+}=W\cap\{v>v(p)\}$ and $/W^{+}=\tau(W)\cap\{v\sim>v(p)\}$ . Since $(W^{+},$ $\tau|W^{+}$ ,
$\prime W^{+})$ is also an analytic covering, there exists a polynomial $P(w;z)=w^{k}$

$+a_{1}(z)w^{k-1}+\cdots a_{k}(z)$ whose coefficients are holomorphic (resp. meromorphic) in
$/W^{+}$ such that $P(f(q);\tau(q))=0$ holds in $W^{+}$ . We may assume that the dis-
criminant $d(z)$ is not identically zero. By the Hartogs’ (resp. Levi’s) theorem
of continuity ([10], [13]), $a_{i}(z)$ and $d(z)$ can be continued to $z_{0}$ . Accordingly,
making $W$ small, we may assume that all $a_{i}(z)$ and $d(z)$ are holomorphic (resp.
meromorphic) in $\tau(W)$ . The discriminant of $P(w;z)$ in $\tau(W)$ is also $d(z)$ . Let
$S^{\prime}$ be the set $\{z\in\tau(W)|d(z)=0\}$ (resp. $\{z\in\tau(W)|d(z)=0\}U\{z\in\tau(W)|z$ is a
singularity of some $a_{i}(z)$ or $d(z)$ }). We may assume that the neighborhood $V^{\prime}$

satisfies the conclusion of Lemma 2 for $S^{\prime}$ . We put $S=\tau^{-1}(S^{\prime})\cap V$ . Since
$V-S$ is an unramified, unlimited and connected covering over $V^{\prime}-S^{\prime},$ $f$ in
$V\cap\{v>v(p)\}$ can be continued holomorphically to $V-S$ as a solution of the
polynomial equation $P=0$ . By Lemma 2, this continuation is single-valued.
By the theorem of removable singularities, we can regard $f$ as a holomorphic
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(resp. meromorphic) function in V. (Throughout this proof, see H. Grauert-
R. Remmert [9], 259-261 and 266-270). Thus, $v$ is admissible for $\mathcal{O}(X)$ and $\ovalbox{\tt\small REJECT}(X)$ .

Using the same notations, we prove that $v$ is admissible for $\ovalbox{\tt\small REJECT}(X, Y)$ . Let
$\mu$ be a holomorphic mapping of $U^{+}$ into $Y$ . We put $\Delta=\{y\in Y|$ there exists
a sequence $p_{\nu}$ contained in $U^{+}$ satisfying $\lim_{\nu\rightarrow\infty}p_{\nu}=p$ and $\lim_{\nu\rightarrow\infty}\mu(p_{\nu})=y$ }. Since

$v$ is admissible for $\mathcal{O}(X),$ $\Delta$ is non-empty because of the holomorphic convexity
of $Y$ , and moreover $\Delta$ consists of one and only one point $y$ because of the
holomorphic separability of $Y$ . We may regard a neighborhood of $y$ as an
analytic subspace $M$ of the unit polycylinder $P$ in $c^{m}$ . Furthermore, we may
assume $\mu^{(}U^{+}$) $\subset M$, because of $\Delta=\{y\}$ . We put $\mu=(f_{1}, \cdots , f_{m})$ where $f_{i}$

$\in\Gamma(U^{+}, O(X))$ . From the admissibility of $v$ for $O(X)$ , we may assume $f_{i}$

$\in\Gamma(V, \mathcal{O}(X))$ . Moreover, we may assume that $V$ is contained in the envelope
of holomorphy of $U^{+}$ . (In fact, this is true if $\overline{V}^{\prime}$ is contained in a Stein neigh-
borhood of $z_{0}$ which is contained in the envelope of holomorphy of $/W^{+}.$)

Then, since $|f_{i}|<1$ in $U^{+}$ , we have $|f_{i}|<1$ on $V$ . We denote by $\tilde{\mu}$ the map-
ping $(f_{1}, \cdots , f_{m})$ of $V$ into $P$ . Since $M$ can be represented by the set of com-
mon zeros of holomorphic functions in $P$ , we have easily $\tilde{\mu}(V)\subset M$, and hence
$\tilde{\mu}$ is a holomorphic mapping of $V$ into $Y$ for which $\tilde{\mu}=\mu$ holds on $V\cap U^{+}$ .
Thus, $v$ is admissible for $\ovalbox{\tt\small REJECT}(X, Y)$ .

3. We construct here an open set $B$ .
Let $p$ be a point in $K$ and let $B_{1}\subset\subset D$ be a neighborhood of $p$ such that

$(B_{1}, \tau|B_{1}, /B_{1})$ is an analytic covering satisfying $\tau^{-1}\circ\tau(p)\cap B_{1}=\{p\}$ , where
$/B_{1}=\tau(B_{1})$ . We may assume that there exists a holomorphic function $f$ in $B_{1}$

such that an equation $P(f(q);\tau(q))=0$ holds on $B_{1}$ where $P(w;z)$ is an irredu-
cible polynomial in $w$ whose coefficients are holomorphic functions in $/B_{1}$ and
whose degree is equal to the number of sheets of the covering. Furthermore,

we may assume that, after a suitable affine transformation of the coordinates,

we have new coordinates $z_{1}^{\prime},$ $\cdots$ , $z_{n}^{\prime}$ which satisfy $\tau(p)=0$ and the followings:
$\prime B_{1}$ is a polycylinder $Z_{1}\times\cdots\times Z_{n}$ , where $Z_{i}=\{|z_{i}^{\prime}|<\epsilon_{i}\}$ . There exist dis-

tinguished polynomials $\Delta_{i}(z_{i}^{\prime} ; z_{i+1}^{\prime}, \cdots , 2_{n}^{\prime})$ in $z_{i}^{\prime}$ having their centers at $0$ whose
coefficients are holomorphic in $Z_{i+1}\times\cdots\times Z_{n}$ such that every solution of
$\Delta_{i}(z_{i}^{\prime} ; z_{i+1}^{\prime}, z_{n}^{\prime})=0$ belongs to $Z_{i}$ for any $(z_{i+1}^{\prime}. \cdots z_{n}^{\prime})\in Z_{i+1}\times\cdots\times Z_{n}(i=1,2$ ,
... , $r$). The set of zeros of the discriminant of $\Delta_{i}$ is contained in the set
$\Delta_{i+1}=0$ ($i=0,1,2,$ $\cdots$ , $r-1$ : Here we put $z_{0}^{\prime}=w$ and $\Delta_{0}=P$). The degree of
$\Delta_{\gamma}$ is one.

Denoting by $N_{j}$ the set

$\{z^{\prime}\in\prime B_{1}|\Delta_{1}=\ldots=\Delta_{j}=0, \Delta_{j+1}\neq 0\}$ ($j=1,2,$ $\cdots$ , $r$ ; provided $\Delta_{r+1}=1$) ,

we can see that $N_{j}$ is a locally analytic set without singularities and $\{z_{j+1}^{\prime}$ ,
... , $z_{n}^{\prime}$ } is a system of local coordinates at any point of $N_{j}$ (cf. K. Kasahara
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[12] Lemma 3). Similarly, the same is true for $\{P=\Delta_{1}=\ldots=\Delta_{j}=0, \Delta_{j+1}\neq 0\}$ .
Here, we make a remark; if $\tau^{-1}(z)\cap B_{1}=\{q_{1}, \cdot , q_{m}\}$ for $z\in N_{j}$ , then, for
$z^{\prime}\in N_{j}$ near 2, $\tau^{-1}(z^{\prime})\cap B_{1}$ consists of just $m$ points and therefore each $q_{i}$ has
a neighborhood which contains one and only one point of $\tau^{-1}(z^{\prime})\cap B_{1}$ . This
can be proved by a Kasahara’s lemma ([12], Lemma 2) and the fact that $B_{1}$

is the normalization of the analytic set $\{P=0\}$ by the mapping which maps
$q\in B_{1}$ to $(f(q), \tau(q))\in\{P=0\}$ .

Let $/B_{2}$ and $\prime B_{3}$ be concentric open balls by the coordinates $z$ with the
center at $\tau(p)$ satisfying $/B_{3}\Subset\prime B_{2}\Subset^{\prime}B_{1}$ . We put $B_{i}=\tau^{-1}(\prime B_{i})\cap B_{1}(i=2,3)$ .
We now find points $p_{\nu}$ in $K$ and corresponding sets $B_{\iota}^{(\nu)},$ $\prime B_{i}^{(\nu)}(i=1,2,3;\nu=1,2$ ,

$\iota$

. , l) such that $\nu=1UB_{8}^{(\nu)}\supset K$. We denote the corresponding $z^{\prime},$ $r,$ $N_{j}$ by $z^{(\nu)},$ $r^{(\nu)}$ ,

$N_{j}^{(\nu}$‘, respectively. By Proposition 10 in [7], we can take open balls $\prime B^{(\nu)}$ which
satisfy $\prime B_{3}^{(\nu)}\subset\subset^{\gamma}B^{(\nu)}\Subset^{\prime}B_{2}^{(\nu)}$ and the following: We denote by $S_{\nu}$ the boundary
of $\prime B^{(\nu)}$ and by $S_{i_{1},\cdots,i_{k}}$ the set $S_{i_{1}}\cap\cdots\cap S_{i_{k}}$ . Then, any $S_{i_{1},\cdots,i_{t}}$ and any $S_{i_{1},\cdots,i_{k}}$

$\cap N_{j}^{(\nu}$ ‘ are empty or regular surfaces.
We put $B^{(\nu)}=\tau^{-1}(\prime B^{(\nu)})\cap B_{1}^{(\nu)}$ and $ B=UB^{(\nu)}\nu=1\iota$ . $B$ is an open set and satisfies

$K\subset B\subset\subset D$ .
4. We shall prove that $\partial B$ is good for $v$ .
To a point $p\in\partial B$ , we may assume $p\in\bigcap_{\nu=1}^{k}\partial B^{(\nu)}$ and $p\not\in U^{\ell}\overline{B}^{(\nu)}\nu=k+1$ We take

a neighborhood $W$ of $p$ such that $W\subset\bigcap_{\nu=1}^{k}B_{1}^{(\nu)}$ , $ W\cap(U^{l}\overline{B}^{(\nu)})\nu=k+1=\phi$ and

$(W, \tau|W, \prime W)$ is an analytic covering satisfying $W\cap\tau^{\leftrightarrow 1}\circ\tau(p)=\{p\}$ , where
$/W=\tau(W)$ . We can make $W$ sufficiently small. We put $\prime B=\prime B^{(1)}U\ldots U^{\prime}B^{(k)}$ .

We prove the condition (i) of Definition 2. Let $’\Delta$ be one of the sets
$\prime B\cap\{v\sim>v(p)\},$ $\partial^{\gamma}B\cap\{v\sim>v(p)\}$ and $\prime B^{c}\cap\{\sim v<v(p)\}$ . We can take a neighbor-
hood $/V$ of $\tau(p)$ contained in $\prime W$ such that any point of $/V\cap^{\prime}\Delta$ can be joined
to $\tau(p)$ by a curve in $/W_{\cap^{\prime}}\Delta$ , (cf. [7] Proposition 9). We put $V=\tau^{-l}(/V)\cap W$,

which satisfies the condition.
To prove the condition (ii), we first show that the set $R$ of all stationary

values of the functions $\sim v|S_{i_{1},\cdots,ir}$ and $v\sim|S_{i_{1},\cdots,t_{r}\cap}N_{j}^{(\nu)}\cap/B_{2}^{(\nu)}$ is finite. (When

the domain of the function is one point, we regard it as a stationary point.\rangle
By Lemma 3 and the compactness of $S_{i_{1},\cdots,ir}$ , the functions $v\sim|S_{i_{1},\cdots,ir}$ have finitely
many stationary values. Suppose that $\{\rho_{\lambda}\}$ were an infinite set of stationary
values of $\sim v|S_{i_{1},\cdots,i\gamma}\cap N_{J^{\nu)}}(\cap^{\prime}B_{2}^{(\nu)}$ . Let $z_{\lambda}$ be stationary points such that $v\sim(z_{\lambda})$,

$=\rho_{\lambda}$ . Considering a suitable subsequence, we may assume $\lim_{\lambda\rightarrow\infty}\rho_{\lambda}=\rho$ and

$\lim_{\lambda\rightarrow\infty}z_{\lambda}=z$ . We may assume that $z_{\lambda}$ and $z$ belongs to the same $S_{i_{1},\cdots,i_{\gamma}}\cap\overline{N_{j}^{(\nu)}}$

$\cap^{\prime}\overline{B_{2}^{(\nu)}}$ . Applying Lemma 3 to $\sim v$ and $S_{i_{1},\cdots,i_{\gamma}}\cap\overline{N_{j}^{(\nu)}}$ in a neighborhood of $z$ , we
have a contradiction.
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Suppose $v(p)\not\in R$ . If $\tau(p)$ belongs to no $N_{j}^{(\nu)}\cap^{\prime}B^{(\nu)}$ , we can take a neigh-
borhood of $p$ on which $\tau$ is a homeomorphism. This implies the conditions (a)

and (b). We assume $p\in N_{j^{1)}}^{(}\cap^{\prime}B^{(1)}$ . Since $S_{1,\cdots,k}\cap\{v\sim=v(p)\}\cap N_{j^{(1)}}$ is a regular
surface on $N_{j}^{(1)}$ , in any neighborhood of $p,$ $N_{j}^{(i)}$ intersects all of $’\overline{B}^{c},$ $\prime B,$

$’\overline{B}^{c}$

$\cap\{v\sim>v(p)\}$ and $/B\cap\{v\sim>v(p)\}$ . If we make $W$ small, $\tau^{-1}(z)\cap W$ contains
one and only one point for any $z\in N_{j^{(1)}}\cap^{\prime}W$. Taking a neighborhood $\prime U\subset^{\prime}W$

of $\tau(p)$ such that $/U\cap^{\prime}\overline{B}^{c},$ $\prime U\cap^{\prime}B,$ $\prime U\cap^{\prime}\overline{B}^{c}\cap\{v\sim>v(p)\}$ and $/U\cap^{\prime}B\cap\{v\sim$

$>v(p)\}$ are connected, we can verify easily that $\tau^{-1}(\prime U)\cap W$ satisfies (a) and
(b). Thus, Lemma 4 has been proved.

\S 6. The general case.

1. At first, we recall the definition of weakly holomorphic function on a
complex space. Let $X$ be a complex space and $\mathring{X}$ the set of all ordinary points
of $X$ . A function $f$ on $\mathring{X}$ is called weakly holomorphic (schwach holomorph)

on $X$ if $f$ is holomorphic on $X^{o}$ and for every $p\in Xf$ is bounded in a neigh-
borhood of $p$ . Let us denote the normalization of $X$ by $(\tilde{X}, \mu)$ . A function $f$

on $X^{o}$ is weakly holomorphic on $X$ if and only if there exists a holomorphic
function $\tilde{f}$ on $\tilde{X}$ such that $ f=f\circ\mu$ holds on $\mu^{-1}(X^{o})$ . For a weakly holomorhic
function $f$ on $X$, we define the set $S_{N}(f)$ as follows: A point $p\in X$ does not
belong to $S_{N}(f)$ if and only if there exist a neighborhood $U$ of $p$ and a holo-
morphic function $\hat{f}$ in $U$ such that $f=\hat{f}$ holds on $U\cap X^{o}$. The following was
given by T. Asami ([2], Theorem 1).

LEMMA 5. If $f$ is a weakly holomorphic function on a complex space $X$,

then $S_{N}(f)$ is an analytic set in $X$.
PROOF. We give here a shorter proof. Since $S_{N}(f)$ is closed, we show

that it is locally analytic. Take $p\in S_{N}(f)$ . We may assume that $X$ is an
analytic subspace of an open set $G$ in $C^{n}$ . By a Hitotumatu’s theorem ([11],

Theorem 3), we have a neighborhood $U$ of $p$ in $c^{n}$ and a meromorphic function

$\frac{\psi}{\varphi}$ in $U$ whose trace on $X_{\cap}U$ is $f|X\cap U$, where $\varphi$ and $\psi$ are holomorphic

functions in $U$. Let $J$ be the sheaf of ideals of the analytic set $X$ in $G$ . We
denote by $(J, \varphi)$ the analytic sheaf generated by $J$ and $\varphi$ , and by $(\mathcal{J}, \varphi, \psi)$ that
generated by $\mathcal{J},$

$\varphi$ and $\psi$ . They are coherent analytic sheaves over $U$, and
therefore the quotient sheaf $Q=(J, \varphi, \psi)/(J, \varphi)$ is also coherent. We have
easily $S_{N}(f)\cap U=\{q\in U|Q_{q}\neq 0\}$ , which asserts Lemma 5 (H. Cartan [4],

lemme 1 of Expos\’e $X$ ).

LEMMA 6. Let $K(X)$ be the set of meromorphic functions on a complex
space X. We denote by (X, $\mu$) the normalization of X. Then, the natural
mapping $\mu^{*}:$ $K(X)\rightarrow K(\tilde{X})$ induced by $\mu$ is bijective.
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This is an immediate corollary of the Hitotumatu theorem stated above.
A quotient of weakly holomorphic functions is a quotient of holomorphic func-
tions locally.

2. Now, we can prove Theorem stated in \S 1. Let $X$ be a Stein space
with dih $X\geqq 2,$ $K$ a compact set and $D$ an open set of $X$ containing $K$. We
assume that each irreducible component of $D$ is also irreducible in $D-K$.
This means that, for each connected component $\tilde{D}_{i}$ of $\tilde{D},\tilde{D}_{i}-\tilde{K}$ is also con-
nected, where (X, $\mu$) $=the$ normalization of $X,\tilde{D}=\mu^{-1}(D)$ and $\tilde{K}=\mu^{-1}(K)$ .

(1) Take a holomorphic function $f$ in $D-K$. Applying Theorem 3 to $ f\circ\mu$

in $\tilde{D}_{i}-\tilde{K}$ for each $i$ , we have a weakly holomorphic function $\tilde{f}$ in $D$ satisfying
$\tilde{f}=f$ in $D-K$. Since $ S_{N}(f)\cap(D-K)=\phi$ , it is a compact analytic set and
therefore it is discrete. Thus, Lemma 1 asserts that $S_{N}(f)$ is empty. Hence,

$\tilde{f}$ is holomorphic in $D$ .
(2) Take a meromorphic function $f$ in $D-K$. By Theorem 3, we have a

meromorphic continuation $\hat{f}$ of $ f\circ\mu$ to $\tilde{D}$ . By Lemma 6, we have a meromor-
phic function $\tilde{f}$ in $D$ such that $\hat{f}=\tilde{f}\circ\mu$ on $\tilde{D}$ . It is the continuation of $f$ to $D$ .

(3) Take a holomorphic mapping $\lambda$ of $D-K$ into a Stein space Y. By

Theorem 3, we have a holomorphic continuation $\hat{\lambda}$ of $\lambda\circ\mu$ to $\tilde{D}$ .
Suppose $\hat{\lambda}(\tilde{p}_{1})\neq\hat{\lambda}(\tilde{p}_{2})$ , where $\mu^{-1}(p)=\{\tilde{p}_{1}, \cdots , \tilde{p}_{k}\}$ for $p\in D$ . Then, we have

$p\in K$. Since $Y$ is Stein, we have a holomorphic function $f$ in $Y$ satisfying
$f(\hat{\lambda}(\tilde{p}_{1}))\neq f(\hat{\lambda}(\tilde{p}_{2}))$ . We can regard $f\circ\hat{\lambda}$ as a weakly holomorphic function $\tilde{f}$ on
$D$ , and $ f\circ\lambda$ on $D-K$ has a holomorphic continuation to $D$ by (1), which coin-
cides with $\tilde{f.}$ This implies $f(\hat{\lambda}(\tilde{p}_{\nu}))=\tilde{f}(p)$ for all $\nu$ , which is a contradiction.
Thus, we can define a mapping $\tilde{\lambda}$ : $D\rightarrow Y$ as $\tilde{\lambda}=\hat{\lambda}\circ\mu^{-1}$ . We have easily that
$\tilde{\lambda}$ is continuous. Take $p\in K$ and put $y=\tilde{\lambda}(p)$ . We can regard a neighborhood
of $y$ as an analytic subspace $M$ of an open set in $C^{m}$ and take a neighborhood
$U$ of $p$ satisfying $\tilde{\lambda}(U)\subset M$. The mapping $\tilde{\lambda}|U$ is written by a pair $(f_{1}, \cdots , f_{m})$

of weakly holomorphic functions in $U$ . In the same way as above, we can
see that the set { $p\in D|\tilde{\lambda}$ is not holomorphic at $p$ } is an analytic set contained
in $K$, and therefore it is discrete. Applying Lemma 1, we have that it is
empty and $\tilde{\lambda}$ is holomorphic in $D$ .

Thus, Theorem has been proved.
Chuo University
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