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\S 0. Introduction.

In this paper we will first establish a duality between injectivity and
flatness for modules. That is: Let $E$ be a faithfully injective modulel). Then,
for each module $A$ , we have W. $dim$ . $A=IdHom(A, E)$ and further $A$ is faith-
fully flat if and only if $Hom(A, E)$ is faithfully injective. (Theorem 1.4).

Moreover, when the ring is noetherian, we have $IdA=W$. $\dim Hom(A, E)$ and
$A$ is faithfully injective if and only if $Hom(A, E)$ is faithfully flat (Theorem

1.5). In this case we have also $IdA=IdA\otimes M$, where $M$ is a faithfully flat
module, and $A$ is faithfully injective if and only if so is $A\otimes M$ (Theorem 1.3).

In case of (semi-) local rings, from these results, we can prove that the self-
injective dimension of the ring is equal to the weak dimension of the canonical
injective modulel) of the ring.

Next, using above results, we will treat a problem: Is the tensor product
of injective modules over a commutative ring again $injective^{2)}$ ? When the
ring is an integral domain, we can easily say “ Yes” (cf. [4]). If the ring is
noetherian and every principal ideal is projective (or flat), the ring is a direct
sum of a finite number of integral domains [5, Lemma 3], so in this case the
answer is also affirmative. In case of noetherian rings, we will give a condi-
tion for an affirmative answer and its several equivalent conditions (Theorem

2.4).

\S 1. Duality.

Let $R,$ $S$ be two rings. We consider the situation $(A,B_{S,S}C)$ , that is, $A$

is a left R-module, $B$ is a left R- right S- bimodule and $C$ is a left S-module.
Then we can define a homomorphism:

$\tau$ : $Hom_{R}(A, B)\otimes_{S}C\rightarrow Hom_{R}(A, B\otimes_{S}C)$

*The author gratefully acknowledges partial support from the Sakkokai Foundation.
1) See [6] for the definition.
2) This problem was first proposed by N. Yoneda.
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by setting $[\tau(\sum_{t}(f_{i}\otimes c_{i}))]a=\sum_{i}(f_{i}(a)\otimes c_{i})$ for $f_{i}\in Hom_{R}(A, B)$ , $a\in A$ and
$c_{i}\in C$ .

LEMMA 1.1. 1) $\tau$ is an isomorphism, if $A$ is R-projective and finitely
generated. 2) $\tau$ is a monomorphism (resp. an isomorphism), if $A$ is R-finitely
generated (resp. R-finitely $presented^{8)}$) and $C$ is S-flat.

PROOF. If $A=R,$ $\tau$ is obviously an isomorphism. Hence 1) follows from
an easy direct sum argument.

Now, let $A$ be finitely generated (resp. finitely presented). Then we have
an R-free module $F$ with a finite base (resp. R-free modules $F,$ $F^{\prime}$ with finite
bases) such that $F\rightarrow A\rightarrow 0$ (resp. $F^{\prime}\rightarrow F\rightarrow A\rightarrow 0$) is exact. Being $C$ S-flat, we
have the following commuative diagram with exact rows:

$0\rightarrow Hom_{R}(A, B)\otimes_{S}C\rightarrow Hom_{R}(F, B)\otimes_{s}C-Hom_{R}(F^{\prime}, B)\otimes_{S}C$

$\downarrow\tau_{A}$ $\downarrow\tau_{F}$ $\downarrow\tau_{F^{\prime}}$

$0\rightarrow Hom_{R}(A, B\otimes_{s}C)\rightarrow Hom_{R}(F, B\otimes_{s}C)\rightarrow Hom_{R}(F^{\prime}. B\otimes_{s}C)$ .
Since $\tau_{F}$ is an isomorphism (resp. $\tau_{F}$ and $\tau_{F}$, are isomorphisms) by 1), $\tau_{A}$ is a
monomorphism (resp. an isomorphism) by Five Lemma.

COROLLARY 1.2. If $A$ has a projective resolution composed of finitely
generated modules ($e.g$ . if $R$ is left noetherian and $A$ is finitely generated) and
$C$ is S-flat, then we have

Ext# $(A, B)\otimes_{S}C\cong Ext_{R}^{n}(A, B\otimes_{S}C)$ $(n\geqq 0)$ .
PROOF. This follows immediately from Lemma 1.1 and [2, IV, Th. 7.2].
THEOREM 1.3. Let $R$ be left noetherian, $M$ be a faithfully flat left S-module

and $A$ be a left R- right S- bimodule. Then we have
$Id_{R}A=Id_{R}(A\otimes_{S}M)$

Further, $A$ is faithfully injective if and only if so is $A\otimes_{S}M$.
PROOF. The first part follows directly from the above corollary and [6, Th.

2.1.].

For the second part, by Lemma 1.1 we have $Hom_{R}(R/\mathfrak{n}\tau, A)\otimes_{S}M\cong$

$Hom_{R}(R/\mathfrak{m}, A\otimes_{S}M)$ for each left maximal ideal $\mathfrak{m}$ of $R$ . Therefore, $M$ being
faithfully flat, $Hom_{R}(R/\iota \mathfrak{n}, A)=0$ if and only if $Hom_{R}(R/\mathfrak{m}, A\otimes_{S}M)=0$ , which
implies the assertion by [6, Th. 3.1].

THEOREM $1.4^{4)}$ . Let $E$ be a faithfully injective right S-module and $A$ be a
left R- right S-bimodule. Then we have

(1) W. $\dim_{R}A=(r)Id_{R}Hom_{s}(A, E)$

Moreover, $A$ is faithfully flat if and only if $Hom_{s}(A, E)$ is faithfully

3) An R-module $A$ is called finitely presented if there exist R-free modules $F,$ $F^{\prime}$

with finite bases such that $F^{\prime}\rightarrow F\rightarrow A\rightarrow 0$ is exact.
4) Cf. [6, Prop. 3.6].
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injective.
PROOF. By [2, VI, Prop. 5.1] we have $Ext_{R}^{n}(X, Hom_{s}(A, E))\cong Hom_{s}(Tor_{n}^{R}$

(X, $A$), $E$ ) for each right R-module $X$ . Thus $Ext_{R}^{n}(X, Hom_{s}(A, E))=0$ if and
only if $Tor_{n}^{R}(X, A)=0$ by [6, Th. 3.1]. This implies the first part of the
theorem. The second part is obtained similarly as in the proof of Theorem
1.3, using the isomorphism [2, II, Prop. 5.2] $Hom_{R}(R/\mathfrak{m}, Hom_{s}(A, E))\cong Hom_{s}$

$(R/\mathfrak{m}\otimes_{R}A, E)$ for each right maximal ideal $\mathfrak{m}$ of $R$ .
Now, we will prove the dual of Theorem 1.4. That is:
THEOREM $1.5^{5)}$ . Let $R$ be left noetherian and $E,$ $A$ be same as in Theorem

1.4. Then we have
$(l)Id_{R}A=(r)$ W. $\dim_{R}Hom_{s}(A, E)$

Moreover, $A$ is faithfully injective if and only if $Hom_{s}(A, E)$ is faithfully flat.
PROOF. The first part follows similarly as in Theorem 1.4, using the iso-

morphism $Tor^{R}(Hom_{s}(A, E),$ $X$ ) $\cong Hom_{s}(Ext_{R}(X, A),$ $E$) [2, VI, Prop. 5.3],

where $X$ is any finitely generated left R-module. The second part follows
also similarly by means of the following.

LEMMA 1.6. Let $(X,A_{S}, E_{s})$ be the situation. If $E$ is S-injective and $X$

is R-finitely presented, then the homomorphism

$\sigma;Hom_{s}(A, E)\otimes_{R}X\rightarrow Hom_{s}(Hom_{R}(X, A),$ $E$)

in [2, VI, \S 5] is an isomorphism.
PROOF. There exists an exact sequence $F^{\prime}\rightarrow F\rightarrow X\rightarrow 0$ with $F^{\prime},$ $F$ free

R-modules with finite bases. Since $E$ is injective, we have the following com-
mutative diagram with exact rows:

$Hom_{s}(A, E)\otimes_{R}F^{\prime}\rightarrow Hom_{s}(A, E)\otimes_{R}F\rightarrow Hom_{S}(A, E)\otimes_{R}X\rightarrow 0$

$\downarrow\sigma_{F^{\prime}}$ $\downarrow\sigma_{F}$ $\downarrow\sigma_{X}$

$Hom_{s}(Hom_{R}(F^{\prime}, A),$ $E$) $\rightarrow Hom_{s}(Hom_{R}(F, A),$ $E$) $\rightarrow Hom_{S}(Hom_{R}(X, A),$ $E$) $\rightarrow 0$ .
Thus, $\sigma_{X}$ is an isomorphism, since $\sigma_{F}$ and $\sigma_{F}$ , are isomorphisms by [2, VI,

Prop. 5.2].

Now we will apply above Theorem 1.5 to the case of commutative noeth-
erian (semi-) local rings.

THEOREM 1.7. Let $R$ be a commutative noetherian (semi-) local ring, $\mathfrak{m}$ be
its maximal ideal (Jacobson radical) and $\tilde{R}$ be the completion of R. Then we
have

(1) $\tilde{R}$ is faithfully flat as an R-module.

5) After I obtained Theorem 1.4 and 1.5, I accepted an information from H. Yana-
gihara that he obtained our Theorem 1.5 in case $S=Z$ (the ring of integers) and further
he informed to me that our Theorem 1.4 was obtained in case $S=Z$ by J. Lambek in
[Canad. Math. Bull. 7 (1964)].
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(2) $Id_{R}(R/\mathfrak{m})=gl$ . $\dim R$ .
(3) $Id_{R}R=W.\dim_{R}E_{R}(R/\mathfrak{m})^{6)}=Id_{R}^{\sim}\tilde{R}=Id_{R}\tilde{R}$ .
PROOF. (1) This is a well known result. Here we give a new proof. By

[7, Th. 3.7], $\tilde{R}$ is isomorphic to $Hom_{R}(E_{R}(R/\mathfrak{m}), E_{R}(R/\mathfrak{m}))$ as an R-module.
Hence, the result follows from Theorem 1.5 by putting $S=R$ and $A=E=$
$E_{R}(R/\mathfrak{m})$ , since $E_{R}(R/\mathfrak{m})$ is actually faithfully injective.

(2) By [7, Th. 3.4], $Hom_{R}(R/\mathfrak{m}, E_{R}(R/\mathfrak{m}))\cong R/\mathfrak{m}$ . Hence $Id_{R}R/\mathfrak{m}=$

W. $\dim_{R}R/\mathfrak{m}$ by Theorem 1.5. W. $\dim_{R}R/r\mathfrak{n}=hd_{R}R/\mathfrak{m}=g1$ . $\dim R$ is well known.
(3) Put $S=A=R$ and $E=E_{R}(R/\mathfrak{m})$ in Theorem 1.5 and we have $Id_{R}R$

$=W$ . $\dim_{R}E_{R}(R/n\tau)$ . Also we have $Id_{R}^{\sim R}=W$. $\dim_{R}^{\sim}E_{R}^{\sim}(\tilde{R}/\tilde{\mathfrak{m}})$ by replacing $R$

with $\tilde{R}$ . Further, put $S=A=\tilde{R}$ and $E=E_{R}^{\vee}(\tilde{R}/\tilde{\mathfrak{m}})$ and we have $Id_{R}\tilde{R}=$

$W$. $\dim_{R}E_{R}^{\sim}(\tilde{R}/\tilde{\mathfrak{m}})$ . On the other hand we have $E_{R}(R/\mathfrak{m})=E_{R}^{\sim}(\tilde{R}/\tilde{vn})$ by [7, Th.
3.6]. Therefore we have only to prove W. $\dim_{R}E_{R}(R/\mathfrak{m})=W$ . $\dim_{R}^{\sim}E_{R}(R/\mathfrak{m})$ .
Since $\tilde{R}$ is faithfully flat, we can easily see that the sequence $0\rightarrow X_{n}\rightarrow\ldots\rightarrow X_{0}$

$\rightarrow E_{R}(R/\mathfrak{m})\rightarrow 0$ of R-modules is exact if and only if the sequence $0\rightarrow X_{n}\otimes_{R}\tilde{R}$

$\rightarrow\ldots\rightarrow X_{0}\otimes_{R}\tilde{R}\rightarrow E_{R}(R/\mathfrak{m})\otimes_{R}\tilde{R}\rightarrow 0$ of R-modules is exact, and that $X$ is R-flat
if and only if $X\otimes_{R}\tilde{R}$ is R-flat. Therefore we have W. $\dim_{R}E(R/\mathfrak{m})$

$=W$ . $\dim_{R}^{\sim}(E_{R}(R/\mathfrak{m})\otimes_{R}\tilde{R})$ . On the other hand, it is easily seen that $E_{R}(R/\mathfrak{m})$

$\otimes_{R}\tilde{R}$ is isomorphic to $E_{R}(R/\mathfrak{m})$ by the facts that $E_{R}(R/\mathfrak{m})$ is an rn-primary
module and $\tilde{R}$ is R-faithfully flat.

\S 2. Tensor product of injective modules.

E. Matlis proved in [7] that any injective module over a commutative
noetherian ring $R$ is a direct sum of indecomposable injective modules and
that each indecomposable injective module is isomorphic to $E_{R}(R/\mathfrak{p})$ for some
prime ideal $\mathfrak{p}$ of $R$ . So, in commutative noetherian case, to examine the injec-
tivity of tensor product of injective modules, we may restrict our attention to
the modules $E_{R}(R/\mathfrak{p})\otimes_{R}E_{R}(R/\mathfrak{p}^{\prime})$ , where $\mathfrak{p}$ and $\mathfrak{p}^{\prime}$ are prime ideals of $R$ , since
the tensor product commutes with direct sums [2, $V$ , Prop. 9.2] and a direct
sum of any family of injective modules over a noetherian ring is again injec-
tive [cf. 2, I, Ex. 8].

From now on, $R$ will always denote a commutative noetherian ring. We
begin with easy lemmas.

LEMMA 2.1. Let $\mathfrak{p}$ and $\mathfrak{p}^{\prime}$ be two prime ideals of R. Then $E_{R}(R/\mathfrak{p})$

$\otimes_{R}E_{R}(R/\mathfrak{p}^{\prime})=0$ if $\mathfrak{p}\neq \mathfrak{p}^{\prime}$ or $\mathfrak{p}=\mathfrak{p}^{\prime}$ contains a non zero divisor.
PROOF. Assume that $\mathfrak{p}$ is not contained in $\mathfrak{p}^{\prime}$ . Let $x$ and $y$ be any non

zero elements of $E_{R}(R/\mathfrak{p})$ and $E_{R}(R/\mathfrak{p}^{\prime})$ respectively. Then, $\mathfrak{p}^{n}x=0$ for some

6) $E_{R}(A)$ denotes the injective envelope of $A$ as an R-module. See [3] for the
definition and [7] for fundamental properties.
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positive integer $n$ , since $0(x)$ (the order ideal of x) is a p-primary ideal [7,

Lemma 3.2]. Since $\mathfrak{p}^{n}$ is not contained in $\mathfrak{p}^{\gamma}$ , there exists an element $r$ of $\mathfrak{p}^{n}$

which is not contained in $\mathfrak{p}^{\prime}$ . Then $0(r)$ is contained in $0(y)$ , since $0(y)$ is $\mathfrak{p}^{\gamma}-$

primary. Therefore we can define a homomorphism $f:Rr\rightarrow E_{R}(R/\mathfrak{p}^{\prime})$ by setting
$f(\lambda r)=\lambda y$ for $\lambda r\in Rr$ . Since $E_{R}(R/\mathfrak{p}^{\gamma})$ is injective, there exists a homomorphism
$g:R\rightarrow E_{R}(R/\mathfrak{p}^{\prime})$ such that $f=gi$ , where $i$ is the inclusion map of $Rr$ into $R$ .
Hence $y$ is divisible by $r$ in $E_{R}(R/\mathfrak{p}^{\prime})$ , that is, we have an element $y^{\prime}(=g(1))$

of $E_{R}(R/\mathfrak{p}^{\prime})$ such that $y=ry^{\prime}$ . Thus $x\otimes y=x\otimes ry^{\prime}=xr\otimes y^{\prime}=0$ , which implies
the assertion.

In case that $\mathfrak{p}=\mathfrak{p}^{\prime}$ contains a non zero divisor, the result follows quite
similarly from the fact that an element of an injective module is divisible by
any non zero divisor of $R$ .

LEMMA 2.2. Assume that the rank of any belonging prime ideal of zero is
not greater than one. Then every tensor product of injective modules is again
injective if and only if $E_{R}(R)\otimes_{R}E_{R}(R)$ is injective.

PROOF. Let $E_{R}(R)\otimes_{R}E_{R}(R)$ be injective. By Lemma 2.1 we have only to
prove that $E_{R}(R/\mathfrak{p})\otimes_{R}E_{R}(R/\mathfrak{p})$ is injective for any prime ideal $\mathfrak{p}$ which contains
no non zero divisor. But such a $\mathfrak{p}$ belongs to zero, since the rank of any
belonging prime ideal of zero is not greater than one.

Hence $E_{R}(R/\mathfrak{p})$ is isomorphic to a direct summand of $E_{R}(R)$ by [7, Th. 2.3
and Prop. 3.1]. Therefore $E_{R}(R/\mathfrak{p})\otimes E_{R}(R/\mathfrak{p})$ is isomorphic to a direct summand
of $E_{R}(R)\otimes E_{R}(R)$ and hence injective.

LEMMA 2.3. Let $K$ be the full ring of quotients of R. Then we have $E_{R}(R)$

$=E_{R}(K)=E_{K}(K)$ .
PROOF. Since $K$ is an essential extension of $R$ as an R-module, we have

$E_{R}(R)=E_{R}(K)$ . $E_{R}(K)$ is an essential extension of $K$ as an R-module, and
hence as a K-module. Further, any R-injective K-module is obviously K-injec-
tive. So we have $E_{R}(K)=E_{K}(K)$ .

Now, we will proceed to prove a theorem which gives sufficient conditions
for the injectivity of tensor product of injective modules.

THEOREM 2.4. Let $R$ be a commutative noetherian ring and $K$ be its full
ring of quotients. Then the following $c(ynditions$ are equivalent:

(1) $K=E_{R}(R)$ i. e. $K$ is K-injective (or R-injective).

(2) $ Id_{K}K<\infty$ (or $ Id_{R}K<\infty$).

(3) $0$ is unmixed and its primary components are irreducible.
(4) $E_{R}(R)$ is R-flat (or $E_{R}(R)=E_{K}(K)$ is K-flat).

(5) W. $\dim_{R}E_{R}(R)<\infty$ (or W. $\dim_{K}E_{K}(K)<\infty$).

(6) $Hom_{R}(E_{R},(R),$ $E_{R}(R))$ is R-injective.
(7) $Hom_{R}(E_{R}(R), E_{R}(R))$ is isomorphic to $E_{R}(R)$ .
(8) $E_{R}(R)$ is a finite K-module and $E_{R}(R)\otimes_{R}E_{R}(R)$ is isomorphic to $E_{R}(R)$ .
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Moreover, in this case, a tensor product of any family of injective modules is
again injective.

PROOF. The equivalence of (1), (2) and (3) is given in [1, Prop. 6.1]. The
implications (1) $\Rightarrow(4)\Rightarrow(5),$ (1) $\Rightarrow(7)=(6)$ and (1) $\Rightarrow(8)$ follow directly from the
facts that $K$ is R-flat, and $Hom_{R}(K, K)$ and $K\otimes_{R}K$ are both naturally iso-
morphic to $K$. Now we will prove implications (5) $=(2),$ (6) $=(1)$ and (8) $\Rightarrow(3)$ ,

which complete the proof of the first part. The second part follows directly
from (3) and (8) by Lemma 2.2.

(5) $\Rightarrow(2)$ : Let W. $\dim_{R}E_{R}(R)<\infty$ . By Lemma 2.3 this is obviously equiv-
alent to W. $\dim_{K}E_{K}(K)<\infty$ . Since $R$ is noetherian, $K$ is semi-local and its
maximal ideals are the prime ideals which are maximal in the set of the
belonging prime ideals of zero in $K$. Therefore $E_{K}(K)$ contains the canonical
injective K-module $E_{K}(K/\mathfrak{n})$ , where $\mathfrak{n}$ is the Jacobson radical of $K$. Hence we
have W. $\dim_{K}E_{K}(K/\mathfrak{n})<\infty$ , which implies $ Id_{K}K<\infty$ by Theorem 1.7, (3).

(6) $\Rightarrow(1)$ : Obviously the assumption is equivalent to the K-injectivity of
$Hom_{K}(E_{K}(K), E_{K}(K))$ . Let $\mathfrak{m}$ be a maximal ideal of $K$. Then $K_{\mathfrak{n}\iota}$ , the comple-
tion of $K_{\mathfrak{m}}$ , is isomorphic to $Hom_{K}(E_{K}(K/\mathfrak{m}), E_{K}(K/\mathfrak{m}))$ [ $7$ , Th. 3.7] and hence
is isomorphic to a direct summand of $Hom_{K}(E_{K}(K), E_{K}(K))$ . Therefore $K_{\mathfrak{m}}$ is
K-injective for each maximal ideal $\mathfrak{m}$ of $K$, which implies that $\tilde{K}$ is K-injective.
Thus $K$ is self injective by Theorem 1.7, (3).

(8) $\Rightarrow(3)$ : Let $\mathfrak{p}$ be any belonging prime ideal of zero in $R$ . Then $E_{K}(K/\mathfrak{p}K)$

is isomorphic to a direct summand of $E_{K}(K)=E_{R}(R)$ . Therefore $E_{K}(K/\mathfrak{p}K)$ is
K-finitely generated and hence $E_{K}(K/\mathfrak{p}K)_{\mathfrak{p}_{K}}=E_{K\mathfrak{p}K}(K_{\mathfrak{p}_{K}}/\mathfrak{p}K_{\mathfrak{p}_{K}})$ is $K_{\mathfrak{p}_{K}}- finitely$

generated. Thus $K_{\mathfrak{p}K}$ has the minimum condition by [6, Cor. 4.6], which
implies that $\mathfrak{p}$ is minimal. The irreducibility of p-primary component follows
from the comparison between the numbers of indecomposable components
isomorphic to $E_{R}(R/\mathfrak{p})$ in both decompositions of $E_{\downarrow\iota}(R)\otimes E_{R}(R)$ and $E_{R}(R)$ .

Tokyo Metropolitan University
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