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\S 1. Introduction.

Let $S$ be a countable set and let $P_{t}(., .)$ be a (stationary) transition function
on $S$ with a continuous parameter $ t\in[0, \infty$), that is, a system satisfying the
following conditions:

(P) $P_{t}(a, b)$ is measurable in $t>0$ for any fixed $a$ and $b$ in $S$ .
(P) For each $a$ of $S$ and $t>0,\sum_{b\leftarrow S}P_{t}(a, b)=1$ .
(P) For any $s>0,$ $t>0,$ $a\in S$ and $b\in S$ ,

$P_{s+t}(a, b)=\sum_{c\in S}P_{s}(a, c)P_{t}(c, b)$

(P) $P_{0}(a, b)=\delta(a, b)$ and $\lim_{t\rightarrow 0}P_{t}(a, b)=\delta(a, b)$ ,

where $\delta(a, a)=1$ and $\delta(a, b)=0$ if $a\pm b$ . It is known that there exists the
derivative of $P_{t}(a, a)$ at $t=0$ :

$\lim_{t\rightarrow 0}\div(1-P_{\ell}(a, a))=q(a)\leqq+\infty$ .

Following P. L\’evy [11], we shall say the state $a$ is stable or instantaneous ac-
cording as $ q(a)<+\infty$ or $ q(a)=+\infty$ .

Usually a well-separable and measurable standard modification $\hat{x}_{t}$ is chosen
[4] as the sample process corresponding to the transition function $P_{t}(.,.)$ .
Such $\hat{x}_{t}$ is suitable for the study of the case where all the states are stablei).

But if there are instantaneous states, $\hat{x}_{t}$ has many irregular properties at
those states. We have no systematic method to study, for instance, processes
with only instantaneous states, several examples of which have been given by
Blackwell [1], Dobrusin [5], Feller-McKean [6] and others. Now let us recall
Feller-McKean’s example. They considered a diffusion $y_{t}$ with the state space
$[0,1]$ and with some specified transition function $Q_{t}(., .)$ . Then the restriction
of $y_{t}$ to the set $S$ of all rational points in $[0,1]$ gives a standard modification
$\hat{x}_{t}$ corresponding to the restriction of $Q_{t}(., .)$ to $S$ . In this case, the state space

1) Indeed, even in this case, it is effective to consider an enlarged space (see H.
Kunita, J. Math. Soc. Japan, 14 (1962), 66-100).
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$S$ of $\hat{x}_{t}$ has a natural enlarged space and the related properties of $\hat{x}_{t}$ can be
derived from those of a well-studied process $y_{t}$ defined on the enlarged space.

A few years ago D. Ray [14], starting from any transition function on a
measurable space, gave a general method of constructing a strong Markov
process with right continuous paths on an enlarged topological space, whose
transition function is a natural (unique) extension of the original one. In this
paper, by some modification of Ray’s method, we shall construct a Markov
process $x_{t}$ defined on the Cantor set $S_{c}$ which plays the same role for Black-
well’s example as $y_{t}$ for Feller-McKean’s one.

As will be seen in Section 2, our approach is applicable for a large class
of transition functions on a countable set and the extended process, defined
on a compact set, is strongly-Feller in the terminology of Girsanov [7]. At
this stage it seems to be useful to mention the relationship of Ray’s approach
with ours, although it is not needed for the later sections. In Section 3 it is
proved that the process $x_{t}$ of the above paragraph is strongly continuous. In
Sections 4 and 5, we shall investigate some properties of $x_{t}$ such as continuity
of path functions, recurrence and the existence of invariant measures. In
Appendix, the strong recurrence will be discussed for a general extended pro-
cess obtained by Ray’s method.

Finally it would be desirable to obtain a rather general condition on the
original transition function $P_{t}(., .)$ for its extended process to be strongly con-
tinuous and also strongly-Feller; this question remains open2).

The author wishes to express his gratitude to Professor K. Ito, N. Ikeda
for their kind encouragement and to Professor T. Watanabe who has helped
him with valuable discussions.

\S 2. General procedure. Definition of a Hunt process.

Let $P_{t}(a, b)$ be any transition function on a countable set $S$ and let $R$ be
the set of all rationals in $(0, \infty)$ . Consider a finite measure $m$ on $R\times S$ such
that $m(r, b)>0$ for any $(r, b)\in R\times S$ and define

$d(a, a^{\prime})=\sum_{(r,b)\in R\times S}|P_{r}(a, b)-P_{\gamma}(a^{\prime}, b)|m(r, b)$ .

It follows that $d$ is a metric on $S$ (from $(P_{4})$) and that the completion $S^{*}$ of $S$

by $d$ is a compact metric space. It is easy to show that $S^{*}$ is independent
of the choice of $m$ . By definition, $P_{r}(., b)$ has the unique continuous extension
$P_{r}^{*}(., b)$ to $S^{*}$ . Let $S_{R}^{*}$ be the set of all points $\xi$ in $S^{*}$ such that $\sum_{b\in S}P_{r}^{*}(\xi, b)=1$

for every $r\in R$ . In general, for a topological space $X$, the set of all $re$al

2) We note that, in some special cases (for instance, Example 3 of [4, Part II,
\S 20]), the strong continuity of the extended processes is easily verified.



196 H. NOMOTO

bounded continuous functions is denoted by $C(X)$ and the set of all real
bounded Baire functions, by $B(X)$ . It is not difficult to prove that, for any
$r\in R$ , the operator $P_{r}^{\star}$, defined by $P_{r}^{*}f(\xi)=\sum_{b\in S}P_{r}^{*}(\xi, b)f(b)$ , maps $B(S_{R}^{*})$ into
$C(S_{R}^{*})$ . From this it follows that, for any $t\in(O, \infty)$ and $b\in S,$ $P_{t}(., b)$ has a
(clearly unique) continuous extension $P_{t}^{*}(., b)$ to $S_{R}^{*}$ . In fact, the function

(1.1) $\sum_{c\in S}P_{\gamma}^{*}(\xi, c)P_{i-r}(c, b)$ $(r\in R, r<t)$

is a $\xi$ -continuous function on $S_{R}^{*}$ which coincides with $P_{t}(., b)$ on $S$ . Also (1.1)
implies that $P_{t}^{*}(\xi, b)$ is right t-continuous on $(0, \infty)$ , that $P_{t}^{*}(\xi, b)$ satisfies the
Chapman-Kolmogorov equation:

(1.2) $P_{s^{*}+t}(\xi, b)=\sum_{c\in S}P_{s}^{*}(\xi, c)P_{t}^{*}(c, b)$ for every $s,$ $t>0$ .

and that, for any $t>0,$ $P_{\iota}^{*}f(\xi)=\sum_{b\in S}P_{t}^{*}(\xi, b)f(b)$ maps $B(S_{R}^{*})$ into $C(S_{R}^{*})$ . In

other words, the semi-group $P_{t}^{*}$ is strongly-Feller on $S_{R}^{*}$ . Unfortunately, this
fact is still insufficient to assure the existence of a well behave $d$ Markov pro-
cess corresponding to $P_{t}^{*}(\xi, b)$ . For such discussion, we introduce the follow-
ing condition:

(A) There is a sequence of finite sets $K_{n}$ increasing to $S$ such that, for
any fixed $r\in R$ , the convergence of $\sum_{b\in Kn}P_{r}(a, b)$ to 1 is uniform in $a\in S$ .

With this condition it is obvious that $S^{*}=S_{R}^{*}$ . Now, for $\alpha>0$ , define

(1.3) $G_{\alpha}^{*}(\xi, b)=\int_{0^{\infty}}e^{\rightarrow\alpha t}P_{t}^{*}(\xi, b)dt$ ,

(1.4) $G_{\alpha}^{*}f(\xi)=\sum_{b\in S}G_{\alpha}^{*}(\xi, b)f(b)=\int_{0^{\infty}}e^{-at}P_{t}^{*}f(\xi)dt$ .

Then $G_{\alpha}^{*}$ maps $B(S^{*})$ into $C(S^{*})$ and the function family $\{G_{1}^{*}(., b);b\in S\}$

separates points of $S^{*}$ (from the right t-continuity of $P_{t}^{*}(\xi,$ $b)$). Therefore,
according to Theorem III of [14], there is a strong Markov process $x_{t}$ with
right continuous paths whose transition probability is $P_{t}^{*}(.,.)$ . For short, such
a process will be called a Ray process8).

We shall now compare our approach with Ray’s completion in his paper
[14, \S 5]. Analogously to (1.3), define

\langle 1.5) $G_{a}(a, b)=\int_{0^{\infty}}e^{-\alpha t}P_{t}(a, b)dt$ , $\alpha>0$ , $a,$ $b\in S$

and consider a finite measure $m^{\prime}$ on $S$ such that $m^{\prime}(b)>0$ for every $b$ in $S$ .
Let $d^{\prime}$ be a metric (from $(P_{4})$) defined by

3) We shall omit the precise description of a Ray process (see [14]).
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$d^{\prime}(a, a^{\prime})=\sum_{b\in S}|G_{1}(a, b)-G_{1}(a^{\prime}, b)|m^{\prime}(b)$ .

Completing $S$ by $d^{\prime}$ , we get a compact metric space $\tilde{S}$ independent of the choice
of $m^{\prime}$ and the continuous extension $\tilde{G}_{1}(., b)$ of $G_{1}(., b)$ to $\tilde{S}$ for each $b\in S$ .
Define $\tilde{S}_{R}=$ { $\xi\in\tilde{S}$ such that $\sum_{b\in S}\tilde{G}_{1}(\xi,$ $b)=1$ }. Then it follows from the resolvent

equation that $G_{a}(., b),$ $\alpha>0$ , has the continuous extension $\tilde{G}_{\alpha}(., b)$ to $\tilde{S}_{R}$ and
that $G_{a}$ maps $B(\tilde{S}_{R})$ to $C(\tilde{S}_{R})$ . Ray proved there is a Ray process $\tilde{x}_{t}$ on $\hat{S}_{R}$

whose transition function $\tilde{P}_{t}(\xi, b)$ is uniquely determined by the relation
$\tilde{G}_{a}(\xi, b)=\int_{0^{\infty}}e^{-\alpha t}\tilde{P}_{t}(\xi, b)dt$ we have

LEMMA 1. There is a natural continuous mapping $\varphi$ from $S_{R}^{*}$ to $\hat{S}_{R}$ which
is the identity mapping on S. Moreover this mapping is $a$ one to one corres-
pondence between $S_{R}^{*}$ and $\varphi(S_{R}^{*})$ . (For the proof, see [Kunita and Nomoto, 10].)

This lemma implies
THEOREM 1. Suppose the condition (A) is satisfied. Then our system

$\{S^{*}=S_{R}^{*}, P_{t}^{*}(\xi, b), G_{\alpha}^{*}(\xi, b), x_{t}\}$ coincides with Ray’s system $\{\tilde{S}=\hat{S}_{R},\tilde{P}_{t}(\xi, b)$ ,
$\tilde{G}_{\alpha}(\xi, b),\tilde{x}_{t}\}$ .

We note that this gives a partial answer to the open question which was
presented by Ray [14, p. 67].

Next we shall assume another condition:
(B) $P_{t}^{*}$ is a strongly continuous semi-group. (Under the condition (A),

this condition is equivalent to that, for any $f\in C(S^{*}),$ $P_{t}^{*}f(\xi)\rightarrow f(\xi)$ as $t\rightarrow 0$

for every $\xi.$)

With (B), our Ray process $x_{c}$ becomes a Hunt process in the terminology
of [Blumenthal, Getoor and McKean, 2]. We shall now give a strict descrip-
tion of Hunt processes, since it will be needed for discussion of the following
sections.

Let $E$ be a locally compact space with a countable base and $E^{*}$ be a space
obtained by adding an isolated point $\infty$ to $E$ . Let $W$ be a se $t$ of t-functions
$w(t)$ from $[0, \infty]$ to $E^{*}$ (called paths) which is right continuous and has a
left-hand limit and satisfies $ w(s)=\infty$ whenever $ w(t)=\infty$ and $s\geqq t$ . The t-
coordinate of a path $w(t)$ is denoted by $x_{t}(w)$ or simply $x_{t}$ . Let $\tilde{\mathscr{D}}(\tilde{9}^{*})$ be the
topological Borel field over $E(E^{*})$ . Let $\tilde{g}_{t}$ denote the $\sigma- field$ of subsets of $W$

generated by the sets $\{x_{s}\in B\}$ with $s\leqq t$ and $B\in\tilde{\mathscr{D}}^{*}$ , and let $\tilde{g}$ be the $\sigma- field$

generated by the union of $\tilde{g}_{t}$ . We suppose given a system of probability
measures $P_{a}(a\in E^{*})$ on E7 which satisfies the following conditions:

(i) For each $A\in\tilde{9}^{i},$ $P_{a}(A)$ is $\tilde{\mathscr{D}}^{*}$ measurable and $P_{a}\{w : x_{0}(w)=a\}=1$ .
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(ii) For each $a$ in $E,$ $t\geqq 0,$ $A$ in $\tilde{S}^{\gamma_{t}}$ and bounded $\tilde{q}$ measurable $f$

$E_{a}(f(\theta_{t}w):A)=E_{a}(E_{x_{t}}f(w):A)^{4)}$

where $\theta_{t}w(s)=w(t+s)$ . The system $X=(x_{t},\tilde{\mathcal{G}}_{t}, P_{a})$ (simply denoted by $X$ or
$x_{t})$ is called a Markov process over $E$ .

Let $\mu$ be a finite measure on $\tilde{\mathscr{D}}$ and we set $P_{\mu}(A)=\int P_{a}(A)\mu(da)$ for $A$ in
$S\sim_{7}$ . Let th $1^{J}$ and $\tilde{S}^{7//}(f\tilde{f}_{t}^{\beta})$ be the completion of $\tilde{\mathscr{Q}}$ and $\tilde{\mathcal{G}}(\tilde{g}_{t})$ with respect to $\mu$

and $P_{\mu}$ respectively. $\mathscr{D}=\cap\tilde{\mathscr{Q}}\}^{f1},$ $q=\cap\tilde{\mathscr{Z}}^{\prime 1}(q_{t}=\cap\tilde{\mathscr{Z}}_{t^{J}}^{1})$ denote the intersections
of $\tilde{\mathscr{D}}^{\prime 1},\tilde{9}^{\mu}(\tilde{\mathcal{G}}_{\iota}^{\beta})$ as $\mu$ ranges over all finite measures. The measures $P_{a}$ naturally
extended to $g$ and with this extension $P_{a}(A)$ is Ve-measurable in $a$ for each
$A\in g$ . The Markov property (ii) remains valid if we assume $f$ is $g$ measur-
able and $A$ is in $g_{t}$ . The function $\sigma$ from $W$ to $[0, \infty]$ is called a Markov
time if $\{\sigma<t\}\in q_{t}$ for each $t>0$ . Given a Markov time $\sigma$ we denote by
$q_{\sigma+}$ the a-field generated by the sets $A$ such that $A\cap\{\sigma<t\}\in S_{t}^{7}$ for any
$t>0$ . A Markov process $X=(x_{t}, S^{i}{}_{\iota}P_{a})$ is called a strong Markov process if
for each Markov time $\sigma,$ $A\in q_{\sigma+}$ and bounded $q$ measurable $f$

(ii)i $E_{a}(f(\theta_{\sigma}w):A, \sigma<\infty)=E_{\alpha}(E_{x_{\sigma}}f(w):A, \sigma<\infty)$ .
A Markov process $X$ is called a Hunt process if it is a strong Markov process
and if $\sigma_{n}$ is an increasing sequence of Markov times with limit $\sigma$ then
$x(\sigma_{n})\rightarrow x(\sigma)$ almost everywhere $P_{\alpha}$ on $\{\sigma<\infty\}$ .

\S 3. The Blackwell process.

Let $S^{(n)}=\{0,1\}$ for every $n=1,2$ , $\cdot$ .. and let $S_{c}=\prod_{n=1}^{\infty}S^{(n)}$ together with

weak topology; $S_{c}$ is the Cantor set. Points of $S_{c}$ are denoted by $a,$ $b,$ $\cdots$ and
their n-th coordinates by $a(n),$ $b(n),$ $\cdots$ :

$a=$ $(a(1), a(2),$ $\cdots$ , $a(n),$ $\cdots$ ), where $a(n)=0$ or 1.
Let $S$ be a subset of $S_{c}$ whose point has only finitely many l’s in its coordi-
nate $a(n)$ .

Blackwell defined a transition function $P_{t}^{(n)}(a(n), b(n))$ on $S^{(n)}$ as follows:

(3.1) $\left\{\begin{array}{l}P_{t}^{(n)}(0,0)=\frac{q^{(n)}(1)}{r(n)}+\frac{q^{(n)}(0)}{r(n)}e^{-r(n)t}\\F_{t}^{(n)}(1,1)=\frac{q^{(n)}(0)}{r(n)}+\frac{q^{(n)}(1)}{r(n)}e^{-r(n)t}\\P_{t}^{(n)}(0_{\prime}1)=1-P_{\iota}^{(n)}(0,0)\\P_{t}^{(n)}(1,0)=1-P_{t}^{(n)}(1,1),\end{array}\right.$

4) $E_{a}([(w) : A)=\int_{A}f(w)P_{a}(dw)$ .
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where $0<q^{(n)}(0),$ $ q^{(n)}(1)<+\infty$ and $r(n)=q^{(n)}(0)+q^{(n)}(1)$ . Then he defined a
function $P_{t}(a, b)$ by

(3.2) $P_{t}(a, b)=\prod_{n=1}^{\infty}P_{t}^{(n)}(a(n), b(n))$ $t>0$ , $a,$ $b\in S$ .

Under a condition

(C) $\sum_{n=1}^{\infty}\frac{q^{(n)}(0)}{r(n)}<\infty$

Blackwell showed that $P_{t}(a, b)$ is a transition function on $S$ and all the states
are instantaneous if and only if

(3.3) $\sum_{n=1}^{\infty}q^{(n)}(0)=\infty$ .

Under the condition $(C_{1})$ we can consider the system $\{S_{R}^{*}, P_{t}^{*}(a, b), G_{\alpha}^{*}(a, b)\}$

defined for the transition function $P_{t}(a, b)$ .
Denote by $K_{M}$ the set of all points $a$ with $a(n)=0$ for all $n\geqq M+1$ . Then

the computation in [1] shows that

(3.4) $\sum_{b\in K_{M}}P_{t}(a, b)=\prod_{n=M+1}^{\infty}P_{t}^{(n)}(a(n), 0)\geqq\prod_{n=M+1}\frac{q^{(n)}(1)}{r(n)}(1-e^{-r(n)t})\infty$

holds for all $a\in S$ and each $t>0$ . We now prove a theorem concerning to
this system.

THEOREM 2. Suppose the condition

(C) $\sum_{n=1}^{\infty}e^{-r(n)t}<+\infty$ for each $t>0$

then both condition (A) and (B) are satisfied and the Ray’s system $\{\tilde{S}=\tilde{S}_{Rr}$

$\tilde{P}_{t}(a, b),\tilde{G}_{\alpha}(a, b),\tilde{x}_{t}\}$ gives a Hunt process $X$ over a compact metric space $\hat{S}$

which is homeomorphic to the Cantor set $S_{c}$ .
The condition (A) follows at once from the estimation (3.4) and the assump-

tion $(C_{2})$ . To prove the latter parts of the theorem, we shall $pre$pare a lemma.
LEMMA 2. $S^{*}$ is homeomorphic to the Cantor set $S_{c}$ .
PROOF. 1. Let $\varphi$ be the identity mapping from $S$ in $S^{*}$ to $S$ in $S_{c}$ . For

any point $\xi\in S^{*}$, we can find a sequence $\{a_{p}\}$ such that $a_{p}\in S,$ $d(a_{p}, \xi)\rightarrow 0$ as
$ p\rightarrow\infty$ . We shall show that $a_{p}(=\varphi(a_{p}))$ tends to some point $a$ in $S_{c}$ . Assume
that there are two infinite subsequeces $\{a_{Ii})\}$ and $\{a_{q_{i}}\}$ of $\{a_{p}\}$ and some posi-
tive integer $k$ such that $a_{p_{i}}(k)=1$ and $a_{q_{i}}(k)=0$ for all $i$ .

Let $b,$ $b^{\prime}$ be two points of $S$ such that $b(k)=0,$ $b^{\prime}(k)=1$ and $b(n)=b^{\prime}(n)$

for $n\neq k$ . Then we have

$\frac{P_{t}(a_{p},b)}{P_{t}(a_{p},b’)}=\frac{P_{t}^{(k)}(a_{p}(k),b(k))}{P_{t}^{(k)}(a_{p}(k),b^{\gamma}(k))}$

As $a_{p}$ tends to $\xi$ along $a_{pi}$ or $a_{q_{i}}$ , the left-hand side of above equality con-
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verges to the same limit so that we have

$\frac{P_{t}^{(k)}(1,0)}{P_{t}^{(h)}(1,1)}=\frac{P_{t}^{(k)}(0,0)}{P_{t}^{(k)}(0,1)}$ .

But by definition of these factors, we can rewrite this relation as $0=e^{-r(k)t}$

which is impossible. Therefore, for each $k$ , there is some $p_{k}$ such that

$ a_{p_{k}}(k)=a_{p_{k}+1}(k)=a_{p_{k}+2}(k)=\cdots$ .
We define

$\varphi(\xi)=(a_{p_{1}}(1), a_{p_{2}}(2),$ $\cdots$).

It is easily seen $\varphi(\xi)$ is independent of the choice of $\{a_{p}\}$ and a continuous
map from $S^{*}$ into $S_{c}$ .

2. We now prove that $\varphi$ is a one to one map. Let $\xi,$
$\eta$ be two different

points in $S^{*}$ . Then by the definition of $d(.,.)$ , there exist some $r\in R$ and
some $b\in S$ such that $P_{r}^{*}(\xi, b)<P_{r}^{*}(\eta, b)$ . But since both $P_{r}^{*}(\xi,.)$ and $P_{r}^{*}(\eta,.)$

are probability measures on $S$, we can find another point $b^{\prime}$ from $S$ such that
$P_{r}^{*}(\xi, b^{\gamma})>P_{r}^{*}(\eta, b^{\prime})$ . Let $a_{p}\rightarrow\xi,$ $ b_{p}\rightarrow\eta$ as $ p\rightarrow+\infty$ and $b(k)=b^{\prime}(k)=0$ for
$k\geqq M+1$ .

If $\varphi(\xi)=\varphi(\eta)$ then the results in 1o imply that there exists an $N$ such
that

$a_{p}(k)=b_{p}(k)$ $(k=1,2, \cdots , M)$ ,

$P_{\gamma}(a_{p}, b)<P_{\gamma}(b_{p}, b),$ $P_{r}(a_{p}, b^{\prime})>P_{r}(b_{p}, b^{\prime})$

hold for all $p\geqq N$. Therefore

$\frac{P_{r}(a_{p},b)}{P_{r}(a_{p},b’)}<\frac{P_{r}(b_{p},b)}{P_{r}(b_{p},b’)}$

that is

$\frac{\prod_{k=1}^{M}P_{r}^{(k)}(a_{p}(k),b(k))}{\prod_{k=1}^{M}P_{r}^{(k)}(a_{p}(k),b’(k))}<\frac{\prod_{k--1}^{M}P_{r}^{(k)}(b_{p}(k),b(k))}{\prod_{k=1}^{M}P_{r}^{(k)}(b_{p}(k),b(k))}$

for all $p\geqq N$. But this is impossible since $a_{p}(k)=b_{p}(k)$ for all $p\geqq N$ and
$k=1,2$ , $\cdot$ , $M$. That is $\xi\neq\eta$ implies $\varphi(\xi)\neq\varphi(\eta)$ . Now, it is obvious that $S^{*}$

is homeomorphic to $S_{c}$ since both $S^{*},$ $S_{c}$ are compact.
REMARK. Lemma 2 shows $S^{*}$ is homeomorphic to $\hat{S}$ so that $\tilde{S}$ is homeo-

morphic to $S_{c}$ . Moreover, define $\overline{P}_{t}(a, b)=\prod_{n=1}^{\infty}P_{t}^{(n)}(a(n), b(n))$ for $a\in S_{c}$ and $b\in S$ .
Then it is easily seen that $\overline{P}_{t}(., b)$ is continuous on $S_{c}$ and $\overline{P}_{t}(a, b)=P_{t}^{*}(\varphi^{-1}(a), b)$ .

PROOF OF THEOREM 2. On account of Lemma 2, we shall not distinguish
$S^{*}$ from $S_{c}$ in the following arguments. We will also identify $P_{t}^{*}(., .)$ with
$\overline{P}_{t}(.,.)$ . Let $f$ be a tame function on $S_{c}$ :
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$f(\xi)=f(\xi(1), \xi(2),$ $\xi(p))$ .
Let $a$ be a point of $S$ and $K_{M}$ , the set defined before. Then,

$P_{t}^{*}f(a)=\sum_{b\in S}P_{t}(a, b)f(b)=\lim_{M\rightarrow\infty}\sum_{b\in K_{M}}[\prod_{n=1}^{\infty}P_{\iota}^{(n)}(a(n), b(n))]\cdot f(b(1), b(2),$ $b(p))$

$=\lim_{M\rightarrow\infty n}\prod_{=M+1}^{\infty}P_{t}^{(n)}(a(n),0)_{b(1),\cdots b(p)}\Sigma,[\prod_{n=1}^{p}P_{\iota}^{(n)}(a(n), b(n))]\cdot f(b(1), \cdots, b(p))\times$

$\times\Sigma,\prod_{nb(p+I),\cdots b(M)=p+1}^{1f}P_{t}^{(n)}(a(n), b(n))$

$=\lim_{M\rightarrow\infty}\prod_{n=M+1}^{\infty}P_{\iota}^{(n)}(a(n), 0)\Sigma\prod_{nb(1),\cdots,b(p)=1}^{p}P_{t^{(n)}}(a(n), b(n))\cdot f(b(1), b(p))$ ,

that is,

$P_{t}^{*}f(a)=_{b(1)}\Sigma,\prod_{b(p)n=1}^{p}P_{t}^{(n)}(a(n), b(n))f(b(1), \cdots , b(p))$ , for $a\in S$ .

Since both sides are continuous in $a\in S_{c}$ , therefore we have

(3.5) $P_{t}^{*}f(\xi)=_{b(1)}\Sigma,\prod_{b(p)n=1}^{p}P_{t}^{(n)}(\xi(n), b(n))f(b(1), \cdots , b(p))$ , for $\xi\in S_{c}$ .

This implies that

(3.6) $\lim_{t\rightarrow 0}P_{t}^{*}f(\xi)=f(\xi)$ , for each $\xi\in S_{c}$ .

It is known that the set of all continuous tame functions on $S_{c}$ is dense
in $C(S_{c})$ in the sense of uniform convergence (see N. Bourbaki [3]) so that
(3.6) holds for all $f\in C(S_{c})$ . Therefore $P_{t}^{*}\rightarrow f$ (strongly) as $t\rightarrow 0$ . This con-
cludes the proof.

By Theorem 1 and 2, there exists a Hunt process $X=(x_{t}, q_{t}, P_{a})$ over $S_{c}$

corresponding to the system $\{S^{*}, P_{t}^{*}(a, b), G_{\alpha}^{*}(a, b)\}$ . For short, we shall call
this Blackwell process.

REMARK. Let $f$ be a tame function in $C(S_{c})$ then the expression (3.5)
implies that

$Af(a)=\lim_{t\rightarrow 0}\div(P_{\iota}^{*}\int^{-}(a)-f(a))$

$=\sum_{i=1}^{p}\{f(a(1),$ $a(i-1),$ $1-a(i),$ $a(i+1),$ $\cdots$ , $a(p))$

$-f(a(1),$ $a(p))\}q^{(i)}(a(i))$ .

This suggests us that the Hille-Yoshida generator $A$ of the semi-group $P_{t^{*}}$ is

of the form $A=\sum_{n=1}^{\infty}A_{n}$ (symbolically) where $A_{n}$ is the generator of the semi-
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group which corresponds to the transition function $P_{t}^{(n)}(., .)$ on $S^{(n)}=\{0,1\}$ .
But it seems to be difficult to determine the domain of the generator $A$ .

\S 4. Sample function properties.

Let $W^{\prime}$ be the set of all continuous t-functions $w(t)$ over $S_{c}$ . Then we
have

THEOREM 3. $W^{f}$ can not be taken as the basic space of the Blackwell
process.

PROOF. The topology of the Cantor set $S_{c}$ is defined by a metric

$\rho(a, b)=\sum_{n=1}^{\infty}\frac{1}{2^{n}}|a(n)-b(n)$ , $a,$ $b\in S_{c}$ .

By a theorem of L. V. Seregin [15, Thecrem 3.4], it is enough to show that
the relation

$\int_{0}^{c-h}P_{a}^{*}(\rho(x_{t}, x_{t+h})>\epsilon)dt=o(h),$ $h\downarrow 0$

is false for some $\epsilon>0,$ $c>0$ and for some $a$ in $S$ .
First, note that

$\lim_{h\rightarrow 0}\frac{1}{h}P_{h}^{*}(a, b)=\left\{\begin{array}{l}q^{(n)}(0)ifa(n)=0,b(n)=1anda(k)=b(k)(k\mp\prime n),\\q^{(n)}(1)ifa(n)=1,b(n)=0anda(k)=b(k)(k\neq n),\\0 otherwise.\end{array}\right.$

Let $\epsilon$ be $0<\epsilon<\frac{1}{2}$ and $c$ be any positive constant. Then, for a point $a$ in $S$,

$\frac{1}{h}\int_{0^{c-h}}P_{a}^{*}(\rho(x_{t}, x_{t+h})>\epsilon)dt\geqq\frac{1}{h}\sum_{b\in S}P_{h}^{*}(b, V_{\epsilon}(b))\int_{0^{c-h}}P_{t}^{\star}(a, b)dt$

$\geqq\frac{1}{h}P_{\hslash}^{*}(a, V_{e}(a))\int_{0^{c-h}}P_{t}^{*}(a, a)dt$

where $V_{\epsilon}(b)=\{x:x\in S_{c}, \rho(b, x)\geqq\epsilon\}$ . By definition of the metric $\rho,$ $a^{\prime}=(1-$

$a(1),$ $a(2),$ ) is in $V_{e}(a)$ and therefore it holds that

$\lim_{h\rightarrow}\inf_{1}\frac{1}{h}\int_{0^{c-h}}P_{a}^{*}(\rho(x_{c}, x_{\iota+h})>\epsilon)dt\geqq q^{(1)}(a(1))\int_{0^{c}}P_{t}^{*}(a, a)dt>0$ .

This proves the theorem.
Now assume the condition (3.3) holds then every $a$ in $S$ is instantaneous

as was remarked in that place. In this case, the t-set $\mathscr{S}_{a}(w)=\{t:x_{t}(w)=a\}$ is
nowhere dense in $(0, \infty)$ , which is obtained in P. L\’evy [11], so that we have
$P_{a}^{*}$ { $[0,$

$\infty)-\bigcup_{a\in S}\ovalbox{\tt\small REJECT}_{a}(w)$ is everywhere dense in $[0,$ $\infty)$ } $=1$ . This means that the

added points $S^{*}-S$ are essentially used to construct the Blackwell process in
\S 3. More generally, whenever $a$ in $S$ is instantaneous we see that $S-s$ is
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not empty and the above fact remains valid for the Ray process. On the
other hand, for the Blackwell process for which the condition (3.3) is false,
we do not know any role of $S^{*}-S$ .

\S 5. Recurrence and invariant measure.
Let $X$ be the Blackwell process. For an open or closed subset $D$ of $S_{c}$ ,

define the hitting time $\sigma_{D}(w)$ as the infimum of $t$ for which $x_{t}(w)$ is in $D$ , or
$\sigma_{D}(w)=\infty$ if there are no such $t$ . $\sigma_{D}$ is known to be a Markov time. By the
estimation analogous to (3.4) and by the continuity of $P_{t}^{*}(a, b)$ with respect
to $a$ , we have $P_{t}^{*}(a, b)>0$ for any $t>0,$ $a\in S_{c}$ and $b\in S$ . From this it follows
that, for any $a$ of $S_{c}$ and any open subset $U$ of $S_{c},$ $P_{a}^{*}(\sigma_{U}<\infty)>0$ . Since $\chi_{t}$

is a strongly-Feller process on the compact set $S_{c}$ and $P_{t}^{*}$ is strongly con-
tinuous on $C(S_{c})$ , it follows that, for any compact set $K$ and for any bounded
fuction $f,$ $E_{a}(f(x_{\sigma_{K}});\sigma_{K}<+\infty)$ is continuous in $a$ on the set $S_{c}-K$ (see [7]).

Therefore some general results in [9; 12; 16; 17] can be applied and we have:
$(\alpha)$ All points of $S_{c}$ are recurrent in the sense of [17], that is, for any $a$

of $S_{c}$ and for any open neighbourhoods $U,$ $V$ of $a$ such that $\overline{V}\subset U$

$P_{a}^{*}(\sigma_{V}(\theta_{\sigma_{U}c}(w))<+\infty/\sigma_{U}c<+\infty)=1$ .
$(\beta)$ There is a measure $m$ such that, for any function $f\in C(S_{c})$ ,

$\lim_{t\rightarrow\infty}P_{\iota}^{*}f(a)=\int f(b)m(db)$ .

This measure $m$ is the unique invariant probability measure, that is, $m(S_{c})=1$

and $m(A)=\int_{s_{c}}m(da)P_{t}^{*}(a, A)$ , for every $t>0$ and for every $A\subset S_{c}$ . But in

our case, we can get a little stronger results than $(\alpha)$ for points in $S$ and also
the concrete expression $m$ in $(\beta)$ , which is unique, as will be discussed in the
following.

We will call a point $a$ is a strongly recurrent if $\overline{P}_{a}^{*}(\sigma_{a}(\theta_{\sigma_{U^{C}}}(w))<+\infty/\sigma_{U}c$

$<+\infty)=1$ holds for any open set $U$ containing $a$ , where $\sigma_{a}=\sigma_{taI}$ . Then we
have the following theorem.

THEOREM 4. Each point $a$ of $S$ is strongly recurrent.
To prove this, we shall give a lemma.
LEMMA 3. Let $a$ be any point of $S$ and $ tet\xi$ be any point of $S_{c}$ . Then

$ E_{\xi}(\sigma_{a})<+\infty$ .
PROOF. Since $P_{t}^{*}(\xi, a)$ is a positive continuous function of $\xi$ on the com-

pact $S_{c}$ , this has positive minimum $\alpha$ . Therefore, we get the following esti-
mations.

$\sup_{\xi\in S_{C}}P_{\xi}^{*}(\sigma_{a}>t)=1-\inf_{\xi\Leftarrow-S_{C}}P_{\xi}^{*}(\sigma_{a}\leqq t)\leqq 1-\inf_{\xi\subset- S_{C}}P_{\overline{\sigma}}^{*}(x_{t}=a)\leqq 1-\alpha$
,
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$P_{\xi}^{*}(\sigma_{a}>2t)=P_{\xi}^{*}(\sigma_{a}>t, \sigma_{a}(\theta_{t}w)>t)=E_{\xi}\{P_{x_{t}}^{*}(\sigma_{a}>t):\sigma_{a}>t\}\leqq(1-\alpha)^{2},$ $\cdots$ ,

$P_{\xi}^{*}(\sigma_{a}>nt)\leqq(1-\alpha)^{n}$

for arbitrary integers $n$ and $\xi\in S_{c}$ . Thus we get

$P_{\xi}^{*}(\sigma_{a}=+\infty)=\lim_{n\rightarrow\infty}P^{*}(\sigma_{a}>nt)=0$ .

Furthermore we have

$E_{\xi}(\sigma_{a})=\sum_{n-- 1}^{\infty}\int_{I(n-1)t,nt)}sP_{\xi}^{*}(\sigma_{a}\in ds)\leqq\sum_{n=1}^{\infty}ntP_{\xi}^{*}(\sigma_{a}>(n-1)t)$

$\leqq t\sum_{n=1}^{\infty}n(1-\alpha)^{n-1}<+\infty$ .

This completes the proof.
PROOF OF THEOREM 4. Let $a$ be an arbitrary point of $S$ and $Ube_{\wedge}^{\mathscr{C}}an$

open set containing $a$ . Then Lemma 3 implies that

$P_{a}^{*}(\sigma_{a}(\theta_{\sigma_{U^{C}}}(w))<+\infty, \sigma_{U}c<+\infty)=E_{\alpha}\{P_{x\mathfrak{c}\sigma_{U^{C)}}}^{*}(\sigma_{a}<+\infty);\sigma_{U^{C}}<+\infty\}$

$=P_{a}^{*}(\sigma_{U}c<+\infty)$ .
This means $a$ is strongly recurrent.

Here is an alternative proof of Theorem 4. For any point $a$ of $S$ , it is
clear from $(C_{1})$ that $ P_{t}^{*}(a, a)>\alpha$ , where $\alpha$ is a positive constant independent

of $t$ . Therefore $\int_{0^{\infty}}P_{t}^{*}(a, a)dt=+\infty$ , so that $a$ is strongly recurrent by the

Theorem in Appendix.
Note that $P_{t}^{(n)}(.,.)$ has the (uniqu $e$) invariant probability measure

$m^{(n)}(0)=\frac{q^{(n)}(1)}{r(n)},$ $m^{(n)}(1)=\frac{q^{(n)}(0)}{r(n)}$ .

Define

$m(a)=\prod_{n=1}^{\infty}m^{(n)}(a(n))$ , for any $a\in S_{c}$ .

(C) implies that $m(a)>0$ if $a\in S,$ $m(a)=0$ if $a\not\in S$ and $\sum_{a\in s}m(a)=1$ . Therefore

(5.1) $m(A)=\sum_{a\in 4\cap S}m(a)$

defines a probability measure on $S_{c}$ .
THEOREM 5. For any function $f$ of $C(S_{c})$ ,

(5.2) $\lim_{t\rightarrow\infty}P_{t}^{*}f(a)=\int_{s_{c}}f(b)m(db)$ , $a\in S_{c}$ .

Therefore the measure $m$ defined by (5.1), gives the unique invariant pro-
bability measure for the Blackwell process (or for the original transition func-
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tion $P_{t}(a, b)$ on $S$ ).

PROOF. It is enough to show that (5.2) holds for every tame function $f$.
Assume that $f$ is determined by the first $p$ coordinates. Then (3.5) implies
that

$\lim_{t\rightarrow\infty}P_{t}^{*}f(a)=\lim_{t\neg\infty b(1)}\Sigma.\prod_{b(p)n=1}^{p}P_{t}^{(n)}(a(n), b(n))f(b(1), b(p))$

$=_{b(1).\cdots.b(?))}\sum f(b(1), b(p))\prod_{n=1}^{p}m^{(n)}(b(n))$

$=\int_{s_{c}}f(b)m(db)$ .

This completes the proof.

Appendix.

Let $\{\tilde{S}_{R},\tilde{P}_{t}(a, b),\tilde{G}_{a}(a, b),\tilde{x}_{t}\}$ be the Ray process corresponding to a transi-
tion function $P_{t}(a, b)$ on $S$ . Then we have following theorem.

THEOREM. The following conditions are equivalent to each other:
(i) A point $a$ of $S$ is strongly recurrent.

(ii) $\int_{0^{\infty}}P_{t}(a, a)dt=+\infty$ .

(iii) $\tilde{P}_{a}\{\int_{0^{\infty}}\chi_{ta1}(x_{t}(w))dt=+\infty\}=1$ , where $\chi_{ta1}(.)$ is the indicator of the set
$\{a\}$ .

(iv) $\tilde{P}_{a}$ { $the$ t-set $[t:x_{t}(w)=a]$ is unbounded} $=1$ .
We give a sketch of the proof. The equivalence among (ii), (iii) and (iv)

are already obtained in K. L. Chung [4]. (iv) implies (i) clearly so that we
show that (i) implies (ii). Let $U$ be an open set containing $a$ . We define

$\tau(w)=\sigma_{U}c(w)$ ,

$\sigma_{1}(w)=\tau(w)+\sigma_{a}(\theta_{\tau}(w))$ if $\tau(w)<+\infty$ ,

$=+\infty$ otherwise ,

$\sigma_{n}(w)=\sigma_{n-1}(w)+\sigma_{1}(\theta_{\sigma_{n-1}}(w))(n\geqq 2)$ .
We can take $U$ such that $ E_{a}(\sigma_{U^{c}})<+\infty$ (see [8]). The assumption (i) and
strong Markov property imply that

$\tilde{P}_{a}(\sigma_{1}<+\infty\rangle=\tilde{P}_{a}(\tau<+\infty, \sigma_{a}(\theta_{\tau}(w))<+\infty)$

$=E_{a}\{\tilde{P}_{x_{\tau}}(\sigma_{a}<+\infty) ; \tau<+\infty)\}=\tilde{P}_{a}(\tau<+\infty)=1$

and
$\tilde{P}_{a}(\sigma_{n}<+\infty)=[\tilde{P}_{a}(\sigma_{1}<+\infty)]^{n}=1$ $(n\geqq 1)$

so that
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$E_{a}(\varphi_{\infty})=E_{a}\{\sum_{n=1}^{\infty}\varphi_{\tau(\theta_{\sigma_{n-1}w)}}(\theta_{\sigma_{n\leftarrow 1}}(w)):\sigma_{n-1}<+\infty\}$

$=\sum_{n=1}^{\infty}E_{a}\{E_{x(\sigma_{n\leftarrow 1)}}(\varphi_{\tau}):\sigma_{n-1}<+\infty\}$

$=\sum_{n=1}^{\infty}E_{a}(\varphi_{\tau})$

where $\varphi_{t}(w)=\int_{0^{t}}\chi_{ta\}}(x_{s}(w))ds$ , and $\sigma_{0}=0$ . Since $E_{a}(\varphi_{\tau})>0$ (see [4, Part II, \S 5])

so that we have $ E_{a}(\varphi_{\infty})=+\infty$ .
This proves the theorem.

Nagoya University
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