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\S 1. Introduction.

1. For a (reduced) complex space $X$ and a Fr\’echet space $F$, an F-holo-
morphic function on $X$ is defined to be an F-valued continuous function $f$ on
$X$ if, for each continuous linear functional $u$ on $F,$ $uf$ is holomorphic on $X$ .
In this paper, we attempt to extend some results in the theory of holomorphic
functions of several complex variables to the case of F-holomorphic functions
on $X$ .

In [2] Bishop gave an expansion theorem, which asserts every F-holo-
morphic function $f$ on a complex manifold is represented as a sum of (essen-
tially) scalar-valued holomorphic functions and enables us to reduce the study
of $f$ to that of a sequence of ordinary holomorphic functions. Firstly, we
generalize his expansion theorem to the case of F-holomorphic functions on a
complex space. And, using this, we show an F-holomorphic function on a
complex space is locally equal to the restriction of an F-holomorphic function
in the ambiant space. Moreover, we get some theorems on the continuations
and approximations of F-holomorphic functions, which include the following
results:

(1) Let $x/$ be a complex subspace of a complex space $X$ . If each holo-
morphic function on $X^{\prime}$ is the restriction of a holomorphic function on $X$, then
each F-holomorphic function on $x/$ is also the restriction of an F-holomorphic
function on $X$ .

(2) Let $x/$ be a subdomain of a complex space $X$ . If (X, $X^{\prime}$) is a Runge
pair, that is, each holomorphic function on $X$ is compactly approximated on
$x/$ by holomorphic functions on $X$ , then each F-holomorphic function on $X^{\prime}$ is
also compactly approximated by F-holomorphic functions on $X$ (\S 2).

2. Bishop introduced the notion of the vectorization $S_{F}$ of a coherent
analytic sheaf $S$ with respect to a Fr\’echet space $F$ and gave some interesting
properties of it ([2]). These are proved essentially by his expansion theorem.
Using our generalized expansion theorem for F-holomorphic functions on a
complex space, we can generalize almost all results of Bishop [2] to the case
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of the vectorization of a coherent analytic sheaf of a complex space. Especially,
his generalization of H. Cartan’s Theorem $B$ is extended as follows:

If a coherent analytic sheaf $S$ on a complex space $X$ satisfies $H^{N}(X, S)=0$

for some $N\geqq 1$ , then $H^{N}(X, S_{F})=0$ for each Fr\’echet space $F$.
An analytic homomorphism of a coherent analytic sheaf $S$ into another $S^{\prime}$

induces canonically the analytic homomorphism of the vectorization $S_{F}$ into
$S_{F}^{\prime}$ . Also a continuous linear map of a Fr\’echet space $F$ into another $F^{\gamma}$ induces
canonically the analytic homomorphism of $S_{F}$ into $S_{p!}$ . By using our gener-
alizations of Bishop’s results, we can show these functors are exact (\S 3).

3. For a $\sigma$-compact complex space $X$, the set $A(X, F)$ of all F-holomorphic
functions on $X$, with the topology of compact convergence, is a Fr\’echet space.
We consider $A(X, F)$ -holomorphic functions on another complex space $Y$. In
\S 4, we prove an $A(X, F)$ -holomorphic function on $Y$ is nothing but an F-
holomorphic function on $X\times Y$ . This shows that the study of F-holomorphic
functions is not only to generalize the results on ordinary holomorphic func-
tions, but also contributes to the study of ordinary holomorphic functions on
a product space. For examples, by considering $A(Y, F)$ -holomorphic functions
on a complex space $X$ and its subspace $X^{\prime}$ , we see

(1) If each holomorphic function on $X^{\prime}$ is the restriction of a holomorphic
function on $X$, then each holomorphic function on $X‘\times Y$ is also the restriction
of a holomorphic function on $X\times Y$ .

(2) If (X, $X^{\prime}$) is a Runge pair, then $(X\times Y, X^{\gamma}\times Y)$ is also a Runge pair.
Moreover, we can give an application to the theory of cohomology with

coefficients in the sheaf of germs of F-holomorphic functions as follows:
For a complex space $X$ and a Stein space $Y$

$H^{N}(X, O_{A(Y,F)})\cong H^{N}(X\times Y, O_{F})$

where $O_{F}$ denotes the sheaf of germs of F-holomorphic functions.
For a $\sigma$ -compact indefinitely differentiable manifold $M$, we obtain the

analogous results on F-valued differentiable functions of class $ c^{\omega},\infty$ (see Defini-
tion 3) on $X\times M$ and hence continuation theorems on such functions etc..

\S 2. Fundamental properties of vector-valued holomorphic functions.

1. Let $F$ be a locally convex topological vector space over the complex
number space $C$ and $X$ be a complex space.

DEFINITION 1. An F-valued function $f$ on $X$ is called to be F-holomorphic
on $X$ if $f$ is continuous and $uf$ is holomorphic on $X$ for each $u$ in $F^{*}$ , where
$F^{*}$ is the dual of $F$.

By $A(X, F)$ we denote the set of all F-holomorphic functions on $X$ . With
the compact convergence topology, $A(X, F)$ constitutes a topological vector
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space over $C$ .
Moreover, we have
LEMMA 1. For a Fr\’echet space $F$ and $a$ a-compact complex space $X,$ $A(X, F)$

is also a Fr\’echet space.
PROOF. By definition, $F$ admits a countable family $\{\Vert\Vert_{k}\}$ of continuous

semi-norms such that the sets $\{a\in F;\Vert a\Vert_{k}<1\}$ form a fundamental system
of neighborhoods of $0$ in $F$. For a countable family $\{K_{n}\}$ of compact sets
exhausting $X$ , we define semi-norms $\Vert\Vert_{k,n}$ by the equality $\Vert f\Vert_{k,n}=\sup\Vert f(K_{n})\Vert_{k}$

for eachf in $A(X, F)$ . The sets $\{f\in A(X, F) ; \Vert f\Vert_{k,n}<1\}$ form a fundamental
system of neighborhoods of $0$ in $A(X, F)$ . This shows that $A(X, F)$ is locally
convex and metrizable. To show the completeness of $A(X, F)$ , we take a
Cauchy sequence $\{f_{n}\}$ in $A(X, F)$ , which converges to an F-valued continuous
function $f$ on $X$ . Obviously, $\{uf_{n}\}$ converges compactly to $uf$ on $X$ for each
$u$ in $F^{*}$ . Then, according to Grauert and Rememrt ([6] p. 290), $uf$ is holo-
morphic on $X$ . Therefore, $f$ is by definition an F-holomorphic function on $X$ .
This completes the proof. $q$ . $e$ . $d$ .

For the most part in this paper, we treat Fr\’echet spaces. In the following,
a complex space will be always assumed to be $\sigma$ -compact.

2. For a Fr\’echet space $F$, a series $\sum_{n}a^{n}$ in $F$ is called to be absolutely

convergent in $F$ if $\sum_{n}\Vert a^{n}\Vert$ is convergent for each continuous semi-norm $\Vert\Vert$

on $F$. Thus, the series $\sum_{n}f_{n}$ in $A(X, F)$ is absolutely convergent if, for each

compact subset $K$ of $X$ and each continuous semi-norm $\Vert\Vert,$
$\sum_{n}\sup\Vert f_{n}(K)\Vert$ is

convergent.
LEMMA 2. Let $M$ be a nowhere dense analytic subset of a complex space

X. For each compact subset $K$ of $X$ , there exist a neighborhood $U$ of $M$ and
a relatively compact open set $X^{\prime}$ such that

1’. $K\subset X^{\prime}\subset\subset X$ and $ X^{\gamma}-U\neq\phi$ .
$2^{o}$ . $\sup|f(K)|\leqq\sup|f(X^{\prime}-U)|$ for each holomorphic function $f$ on $X$ .
This was shown by Grauert and Remmert in [6], Hilfssatz 4, p. 292.
LEMMA 3. Let $M$ be a nowhere dense analytic subset of a complex space

X. The space $A(X, C)$ is isomorphic with a closed subspace of the Fr\’echet

space $A(X-M, C)$ .
In particular, if a series $\sum_{n}f_{n}$ in $A(X, C)$ converges absolutely as a series

in $A(X-M, C)$ , then it converges absolutely in $A(X, C)$ .
PROOF. Obviously, the canonical restriction map of $A(X, C)$ into $A(X-M$,

$C)$ is an injective continuous linear transformation and hence $A(X, C)$ is
isomorphic with a vector subspace of $A(X-M, C)$ . Now, we take a sequence
$\{f_{n}\}$ in $A(X, C)$ which converges to $0$ as a sequence in $A(X-M, C)$ . By Lemma
2, for each compact subset $K$ of $X$, there exist a neighborhood $U$ of $M$ and
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a relatively compact open set $X^{\prime}$ with the properties 1 and $2^{o}$ . Especially,
$\sup|f_{n}(K)|\leqq\sup|f_{n}(X^{\prime}-U)|$ for every $n$ . By hypothesis, the right hand side
converges to zero. Therefore the left hand side converges also to zero. This
shows $A(X, C)$ is a topological subspace of $A(X-M, C)$ . On the other hand,
according to Lemma 1, it is a closed subspace. $q$ . $e$ . $d$ .

3. Now, we generalize the Bishop’s expansion theorem for F-holomorphic
functions defined on complex manifolds ([2], Theorem 1, p. 1182) to the case
of F-holomorphic functions defined on complex spaces.

THEOREM 1. Let $F$ be a Fr\’echet space, $\{X_{i}\}$ be a countable family of
complex spaces and $f_{i}$ be an F-holomorphic function on $X_{i}$ for each $i$ . Then
there exist a sequence $\{b_{n}\}$ in $F$ and a sequence $\{P_{n}\}$ of mutually annihilating
continuous projections on $F$ such that

1. $\{b_{n}\}$ is bounded, namely, $\{\Vert b_{n}\Vert\}$ is bounded for any continuous semi-
norm $\Vert\Vert$ on $F$.

$2^{o}$ . $P_{n}b_{n}=b_{n}$ and the image of $P_{n}$ is a l-dimensional subspace of $F$

generated by $b_{n}$ for each $n$ .
3. The series $\sum_{n}f_{i^{n}}$ , where $P_{n}f_{i}=f_{i}^{n}b_{n}$ , converges absolutely in $A(X, C)$ .

4’. $\sum_{n}P_{n}f_{i}$ converges absolutely to $f_{i}$ in $A(X, F)$ .

PROOF. By X. we denote the set of all regular points of $X_{i}$ . Then $\mathring{X}_{i}$ is
considered as a complex manifold, and the set $X_{i}-X_{i}$ of all singular points of
$X_{i}$ is a nowhere dense analytic subset of $X_{i}$ . The restriction $\tilde{f}_{i}$ of each $f_{i}$ in
$A(X_{i}, F)$ to X. is an F-holomorphic function on the complex manifold $X_{i}^{o}$ .
Applying Bishop’s theorem to the functions $\tilde{f}_{i}$ and the complex manifolds $\mathring{X}_{i}$ ,

we can take a sequence $\{b_{n}\}$ in $F$ and a sequence $\{P_{n}\}$ of mutually annihilating
continuous projections satisfying the conditions 1 $\sim 4^{O}$ as above.

We shall show th $ese\{b_{n}\}$ and $\{P_{n}\}$ satisfy the conditions 1 $\sim 4^{o}$ in our
case. Evidently the conditions 1o and $2^{O}$ are satisfied. To see the conditions
$3^{o}$ and $4^{o}$ , we put $P_{n}(a)=u_{n}(a)b_{n}$ for each $a$ in $F$. Obviously, $u_{n}\in F^{*}$ and
$\sum_{n}u_{n}\tilde{f}_{i}$ is absolutely convergent in $A(X_{i}^{o}, C)$ for each $i$ . On the other hand,

by Definition 1, $u_{n}f_{i}$ is holomorphic on $X_{i}$ . Lemma 3 implies that $\sum_{n}u_{n}f_{i}$ is

absolutely convergent in $A(X_{i}, C)$ . This proves the condition 3. Moreover,
the condition 1 implies that $\sum_{n}u_{n}f_{i}b_{n}$ converges absolutely in $A(X_{i}, F)$ to an

F-holomorphic function $g_{i}$ on X.. Since $\sum_{n}P_{n}\tilde{f}_{i}=\tilde{f}_{i}$ on $X_{i},$ $g_{i}$ is equal to $\tilde{f}_{i}$ on
$\mathring{X}_{i}$ . By the continuity of $g_{i}$ and $f_{i}$ , we have $g_{i}=f_{i}$ on $X_{i}$ . Thus the condition
3 is also satisfied. $q$ . $e$ . $d$ .

4. Let $\tau$ be a holomorphic map of a complex space $X^{\prime}$ into another $X$ .
The map $\tau$ induces canonically a continuous linear map $\tau_{F}$ of $A(X, F)$ into
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$A(X‘, F)$ for each Fr\’echet space $F$.
THEOREM 2. If the map $\tau_{c}$ of $A(X, C)$ into $A(X^{\prime}, C)$ is surjective, then

$\tau_{F}$ is also surjective for each $F$.
For the proof, we use the following Lemma, which was shown by Bishop

([2], Lemma 5, p. 1188).

LEMMA 4. Let $a$ be a continuous linear niap of a Fr\’echet space $F$ onto
another $F^{\prime}$ . Then for each absolutely convergent series $\sum_{n}b_{n}^{\prime}$ in $F^{\prime}$ there exists

an absolutely convergent series $\sum_{n}b_{n}$ in $F$ such that $\sigma(b_{n})=b_{n}^{\prime}$ .
PROOF OF THEOREM 2. Take an F-holomorphic function $g$ on $X^{\prime}$ . By

Theorem 1, $g$ is expanded as $g=\sum_{n}g^{n}b_{n}$ , where $\sum_{n}g^{n}$ is absolutely convergent

in $A(X^{\prime}, C)$ and $\{b_{n}\}$ is a bounded sequence in $F$. Then, there exists an abso-
lutely convergent series $\sum_{n}f^{n}$ in $A(X, C)$ with $\tau_{c}(f^{n})=g^{n}$ by Lemma 4. Since

the sequence $\{b_{n}\}$ is bounded $\sum_{n}f^{n}b_{n}$ converges absolutely to an F-holomorphic

function $f$ in $A(X, F)$ . Evidently, $g$ is the $\tau_{F}$-image of $f$. This shows $\tau_{F}$ is
surjective. $q$ . $e$ . $d$ .

COROLLARY 1. Let $X$ be a complex space and $X^{\prime}$ be an open subset of it.
If each holomorphic function on $X^{\prime}$ is holomorphically continuable to the whole
$X$, then for an arbitrary Fr\’echet space $F$ each F-holomorphic function on $X^{\prime}$

is holomorphically continuable to $X$.
PROOF. Apply Theorem 2 to the injection map $\tau$ of $X^{\prime}$ into X. $q$ . $e$ . $d$ .
COROLLARY 2. Let $Y$ be an analytic subset of a Stein space X. Then, each

F-holomorphic function on $Y$ is the restriction of an F-holomorphic function
on $X$ .

5. A holomorphic function on a complex space is, roughly speaking,
locally equal to the restriction of a holomorphic function in the ambient space.
We can give another restricted definition of F-holomorphic functions on a
complex space. In fact, we consider frequently the class of all F-holomorphic
functions which are locally equal to the restriction of F-holomorphic functions
in the ambient space. However, we do not need a new definition of F-holomor-
phic function by the following theorem.

THEOREM 3. An F-valued function $f$ on a complex space $X$ is F-holomorphic
on $X$ if and only if for each $p$ in $X$ there exists a neighborhood $U$ of $p$ such
that by some mapping $\tau U$ is mapped biholomorphically onto an analytic subset
$M$ of a domain $D$ in $C^{N}$ and the function $f\tau^{-1}$ on $M$ is the restriction of some
F-holomorphic function on $D$ .

PROOF. The sufficiency is obvious. To see the neccessity, take a neigh-
borhood $U$ for each point $p$ in $X$ which is mapped biholomorphically onto a
closed analytic subset $M$ of a domain of holomorphy $D$ in $C^{N}$ by a mapping
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$\tau$ . Then the function $f\tau^{-1}$ on $M$ is F-holomorphic on $M$, which is equal to
the restriction of some F-holomorphic function on $D$ in virtue of Corollary 2
of Theorem 2. $q$ . $e$ . $d$ .

6. As another application of Theorem 2, we give the following approxi-
mation theorem.

THEOREM 4. 1o Take a continuous linear map $a$ of a Fr\’echet space $F$

into another $F^{\prime}$ . If the image of $\sigma$ is dense in $F^{\prime}$ , then for the canonically
induced map $a^{*}(X)$ of $A(X, F)$ into $A(X, F^{\prime})$ the image of $a^{*}(X)$ is dense in
$A(X, F^{\prime})$ , where $X$ is an arbitrary complex space.

$2^{o}$ Take a holomorphic map $\tau$ of a complex space $X^{\prime}$ into another X. If
the image of $\tau_{C}$ is dense in $A(X^{\prime}, C)$ , then the image of $\tau_{F}$ is also dense in
$A(X^{\prime}, F)$ for each Fr\’echet space $F$.

PROOF. 1’ According to Theorem 1, an $F^{\prime}$ -holomorphic function $f$ has an
expansion $f=\sum_{n}f^{n}b_{n}^{\prime}$ such that $\{b_{n}^{\gamma}\}$ is a bounded sequence in $F^{\prime}$ and $\sum_{n}f^{n}$ is

absolutely convergent in $A(X, C)$ . It is sufficient to show that for each compact
set $K$ and each continuous semi-norm $\Vert\Vert$ on $F^{\prime}$ there exists an F-holomorphic
function $g$ on $X$ with the property $\Vert\sigma^{*}(X)g-f\Vert<1$ on $K$. To this end, we take
a sufficiently large $N$ with $\sum_{n>N}|f^{n}|\Vert b_{n}^{\prime}\Vert<1/2$ on $K$ and $b_{n}$ in $F(1\leqq n\leqq N)$

with $|f^{n}|\Vert a^{*}b_{n}-b_{n}^{\prime}\Vert<1/2N$ on $K$. The F-holomorphic function $g=\sum_{0\leqq n\leqq N}f^{n}b_{n}$

is a desired one.
$2^{o}$ For an F-holomorphic function $f$ on $X^{\prime}$ with a similar expansion

$f=\sum_{n}f^{n}b_{n}$ as above we take a sufficiently large $N$ with the analogous property.

By the hypothesis, there exists a holomorphic function $g^{n}$ on $X$ with $|\tau_{c}g^{n}$

$-f^{n}|\Vert b_{n}\Vert<1/2N$ for each $n(1\leqq n\leqq N)$ . Putting $g=\sum_{1\leqq n\leqq N}g^{n}b_{n}$ we have
$\Vert\tau_{F}g-f\Vert<1$ on K. $q$ . $e$ . $d$ .

COROLLARY. If (X, $X^{\prime}$) is a Runge pair $i$ . $e$ . each holomorphic function on
an open subset $X^{\prime}$ of a complex space $X$ can be approximated compactly on $x/$

by holomorphic functions on $X$, then, for each Fr\’echet space $F$, each F-holo-
morphic function can be also approximated by F-holomorphic functions on $X$ .

\S 3. The vectorizations of coherent analytic sheaves.

1. For a complex space $X$ with the structure sheaf $O$ and a Fr\’echet
space $F$, we consider the sheaf of germs of locally-defined F-holomorphic func-
tions on $X$ . We denote it by $O_{F}$ . Clearly, $O_{F}$ is an analytic sheaf on $X$ .

DEFINITION 2. Take an analytic sheaf $S$ on $X$ . We call the analytic sheaf
$S_{F}$ $:=S\otimes_{0}O_{F}$ the vectorization of $S$ with respect to $F$.

Bishop gave some interesting properties on the vectorization $S_{F}$ of a
coherent analytic sheaf $S$ on a complex manifold, and extended to $S_{F}$ H.
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Cartan’s Theorem $B[3]$ on a Stein manifold. The proofs of these results are
essentially due to Theorem 1 in his paper [2], which we generalized to the
case of a complex space in the previous section (Theorem 1).

Now, we can generalize almost all results of Bishop [2] to the case of the
vectorization of a coherent analytic sheaf on a complex space. In this section
we summarize them to give some applications.

LEMMA 5. Let $S$ be a coherent analytic subsheaf of $O^{k}$ on a complex space
$X$ and $F$ be a Fr\’echet space. For an open subset $U$ of $X$ , take the set $S_{F}^{\prime}(U)$

$=$ { $f=(f_{1},$ $\cdots$ , $f_{k})\in O_{F}^{k}$ ; $uf=(uf_{1},$ $\cdots$ , $uf_{k})\in S(U)$ for each $u$ in $F^{*}$ }, where $S(U)$

denotes all sections of $S$ on U. Then for each point $p$ in $U$ there exist a
neighborhood $V$ of $p$ and $s_{1}$ , $\cdot$ .. , $s_{l}$ in $S(V)$ such that each $f\in S_{F}^{\prime}(V)$ has the
expansion

$f=\sum_{i=1}^{\iota}g_{i}s_{i}$

on $V$ for suitable $g_{1},$ $\cdots$ , $g_{\iota}$ in $O_{F}(V)$ .
PROOF. This is a generalization of Bishop [2], Theorem 2, p. 1184. For

the convenience of readers, we sketch the outline of the proof. Since $S$ is
coherent, for each point $p$ in $U$ there exist a neighborhood $V$ of $p$ and $s_{1},$

$\cdots$ , $s_{\iota}$

in $S(V)$ such that the $O(V)$ -homomorphism $s$ of $0(V)^{l}$ into $S(V)$ defined by
$sh=s_{1}h_{1}+\cdots+s_{l}h_{\iota}$ for $h=$ $(h_{1}, \cdots , h_{l})$ in $O^{\iota}(V)$ is surjective. Take $f=(f_{1}, \cdots , f_{k})$

in $S_{F^{\prime}}(V)$ . By Theorem 1, there exist a bounded sequence $\{b_{n}\}$ and continuous
projections $\{P_{n}\}$ such that $P_{n}f_{j}=f_{j}^{n}b_{n},$

$f_{j}=\sum_{n}f_{j}^{n}b_{n}$ and $\sum_{n}f_{j}^{n}$ is absolutely con-

vergent in $O(V)$ for each $j(1\leqq j\leqq k)$ . Since $s$ is a continuous linear map of
a Frechet space $0^{\iota}(V)$ onto another Fr\’echet space $S(V)$ , there exists by
Lemma 4 an absolutely convergent series $\sum_{n}(g_{i}^{n})$ in $O^{l}(V)$ such that $s(g_{i}^{n})=f^{n}$ :

$=$ $(f_{1}^{n}$ , $\cdot$ .. , $f_{k}^{n})$ . Putting $g_{i}=\sum_{n}g_{i}^{n}b_{n}$ , we have $f=\sum_{i\approx 1}g_{i}s_{i}$ on $V$ . This shows

Lemma 5. $q$ . $e$ . $d$ .
2. THEOREM 5. Under the same notations and assumptions the sheaf $S$ ,

defined by the presheaf $S_{F}^{\prime}(U)$ is canonically isomorphic with $S_{F}$ .
For the proof see Bishop [2], Theorem 3, p. 1187.
$CoROLLARY$ . Let $Y$ be a closed analytic subset of X. The sheaf $I_{F}[Y]$

defined by the presheaf $I_{F}[Y](U)=$ { $f\in O_{F}(U):f=0$ on $U\cap Y$ } is isomorphic
with the vectorization $I[Y]_{F}$ of the sheaf $I[Y]$ defined by the presheaf
$I[Y](U)=$ { $f\in O(U);f=0$ on $U\cap Y$ }.

PROOF. An element $f\in O_{F}(U)$ is contained in $I_{F}[Y](U)$ if and only if $uf$

is contained in $I[Y](U)$ for all $u$ in $F^{*}$ . This shows $I_{F}[Y]=I[Y]_{F}^{\prime}$ , which
is isomorphic with $I[Y]_{F}$ by Theorem 5. $q$ . $e$ . $d$ .

3. Take a continuous linear map $\sigma$ of a Fr\’echet space $F$ into another $F^{\prime}$ .
For an arbitrary analytic sheaf $S,$ $\sigma$ induces the natural homomorphism $\sigma_{s}$
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$=1_{s}\otimes a^{*}$ of $S_{F}$ into $S_{F},$ , where $1_{s}$ denotes the identity map of $S$ . In particular,
each $u\in F^{*}$ induces a homomorphism $u_{s}$ of $S_{F}$ onto $S$ .

LEMMA 6. Let $S$ be a coherent analytic sheaf on a complex space and $F$

be a Fr\’echet space. If an element $f$ in $S_{F}(U)$ satisfies $u_{s}f=0$ for each $u$ in
$F^{*}$ , we have $f=0$ .

For the proof, see Bishop [2], Lemma 4, p. 1186.
THEOREM 6. If a coherent analytic sheaf $S$ on a complex space $X$ satisfies

$H^{N}(X, S)=0$ for some $N\geqq 1$ , then $H^{N}(X, S_{F})=0$ for each Fr\’echet space $F$.
PROOF. See the proof of Bishop [2], Theorem 4, p. 1189. We note in his

proof $H^{N}(M, S_{F})=0$ is deduced only from the condition $H^{N}(M, S)=0$ for a
coherent analytic sheaf $S$ on a complex manifold $M$. Theorem 6 is its gener-
alization. We omit the proof. $q$ . $e$ . $d$ .

COROLLARY 1. For a coherent analytic sheaf $S$ on a Stein space $X$ and a
Fr\’echet space $F,$ $H^{N}(X, S_{F})=0(N\geqq 1)$ .

PROOF. This is an immediate consequence of Theorem 6 and H. Cartan’s
Theorem $B[3]$ . $q$ . $e$ . $d$ .

COROLLARY 2. For the structure sheaf $O$ on the projective space $P^{n},$ $H^{N}(P^{n}$ ,

$O_{F})=0(N\geqq 1)$ .
PROOF. This is due to H. Cartan seminaire [4], p. 218. $q$ . $e$ . $d$ .
4. THEOREM 7. If a sequence of Fr\’echet spaces

$0\rightarrow F^{\prime}\rightarrow^{a}F\rightarrow^{\tau}F^{\prime f}\rightarrow 0$

is exact, then the sequence of the analytic sheaves

$0\rightarrow S_{F^{\prime}}\rightarrow^{\sigma_{s}}S_{F}S_{F^{\prime\prime}}\underline{\tau_{S}}\rightarrow 0$

is also exact for each coherent analytic sheaf $S$ on a complex space $X$ .
Firstly, we give the following
LEMMA 7. Under the same assumption as above, we have the exact sequence

of analytic sheaves
$a^{*}$ $\tau^{*}$

$0\rightarrow O_{F^{\prime}}\rightarrow O_{F}\rightarrow O_{F^{\prime\prime}}\rightarrow 0$ .

PROOF. The set ${\rm Im}\sigma=Ker\tau$ is a closed subspace of $F$ by the continuity
of $\tau$ . Hence $\sigma;F^{\prime}\rightarrow a(F^{\prime})$ is an open map by Banach’s theorem and $F^{\prime}$ is
considered as a closed subspace of $F$. For an open set $U$ , each function
$f\in O_{F}(U)$ with $\tau^{*}(U)(f)=0$ is considered as an F-holomorphic function on $U$

with values in $F^{\gamma}$ . By Definition 1 and Hahn-Banach’s theorem $f$ is an
$F^{\prime}$ -holomorphic function. Since the map $\sigma^{*}(U)$ of $O_{F},(U)$ into $O_{F}(U)$ is obvi-
ously injective, we have the exact sequence

$0\rightarrow O_{F^{\prime}}(U)^{\sigma^{*}(U)\tau^{*}(U)}\rightarrow O_{F}(U)\rightarrow O_{F^{\prime\prime}}(U)$ .
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Now, we take an element $f^{\prime/}\in O_{F^{\prime\prime}}(U)$ . By Theorem 1 we can take a
bounded sequence $\{b_{n}^{\prime\prime}\}$ and continuous projections $\{P_{n}\}$ such that $P_{n}f^{\prime\prime}=f^{n}b_{n}^{\prime\prime}$ ,

$f^{\prime\prime}=\sum_{n}P_{n}f^{\prime\prime}$ and $\sum_{7}f^{n}$ is absolutely convergent in $O(U)(=A(U, C))$ . For each

point $p$ in $X$ we take a neighborhood $V$ of $p$ with $V\Subset U$ and put $L_{n}$ :
$=\sup|f^{n}(V)|$ . Then $\sum_{n}L_{n}b_{n}^{\prime\prime}$ is absolutely convergent in $F^{\prime\prime}$ . According to

Lemma 3, $\sum_{n}L_{n}b_{n}^{\prime\prime}$ is the image of an absolutely convergent series $\sum_{n}b_{n}$ in $F$.

Obviously, $\Sigma_{n}^{\gamma}(f^{n}/L_{n})\cdot b_{n}$ is absolutely convergent in $O_{F}(V)$ , where $\Sigma_{n}^{\prime}$ denotes
the sum of all terms with $L_{n}\neq 0$ . For $f=\Sigma_{n}^{\prime}(f^{n}/L_{n})\cdot b_{n},$ $\tau^{*}(V)f=f^{\prime\prime}$ on $V$ .
Thus we get the exact sequence

$\sigma^{*}$ $\tau^{*}$

$0\rightarrow 0_{F^{\prime}}\rightarrow O_{F}\rightarrow O_{F^{\prime\prime}}-\rightarrow 0$ . q. e. d.

PROOF OF THEOREM 7. By the fundamental theorem on cohomology and
Lemma 7 we obtain the exact sequence

$0\rightarrow O_{F^{\prime}}(U)\rightarrow O_{F}(U)\rightarrow O_{F^{\prime\prime}}(U)\sigma^{*}(U)\tau^{*}(U)\rightarrow H^{1}(U, O_{F^{\prime}})$

for any open set $U$. Especially, if $U$ is a Stein open set ( $i$ . $e$ . holomorphically
separable and holomorphically convex open set), $\tau^{*}(U)$ is surjective because
$H^{1}(U, O_{F},)=0$ in virtue of Corollary 1 of Theorem 6. Then, we have also the
exact sequence

$O_{F},(U)\otimes S(U)\rightarrow O_{F}(U)\otimes S(U)\rightarrow O_{F^{\prime\prime}}(U)\otimes S(U)\rightarrow 0$

by the right exactness of the functor $\otimes_{o(U)}S(U)$ . Since each point has a
fundamental system of Stein neighborhoods, we see easily the exact sequence
of coherent analytic sheaves

$\sigma_{s}$ $\tau_{s}$

$S_{F^{\prime}}\rightarrow S_{F}\rightarrow S_{F^{\prime\prime}}\rightarrow 0$ .
To complete the proof of Theorem 7, it is sufficient to show the injectivity

of $a_{s}$ . Take an element $f^{\gamma}=\sum_{:}f_{i}\otimes g_{i}$ in $S_{p;}(U)$ with $\sigma_{s}f^{\gamma}=\sum_{i}(a^{*}(U)f_{i})\otimes g_{i}=0$

on an open set $V(V\subset U)$ , where $f_{i}\in O_{F^{\prime}}(U)$ and $g_{i}\in S(U)$ . As in the proof
of Lemma 7, $F^{\prime}$ is considered as a closed subspace of $F$. Each $u\in F^{\prime*}$ has
an extension $v$ to $F$ by Hahn-Banach’s theorem. Then we see

$u_{s}f^{\prime}=\sum_{i}(u^{*}f_{i})\otimes g_{i}=\sum_{i}(va)^{*}f_{i}\otimes g_{i}=v_{s}^{\prime}(\sigma_{s}f^{\prime})=0$

on $V$ . Lemma 5 implies $f^{\gamma}=0$ on $V$ . This shows $a_{s}$ is injective. q. e. $d$ .
5. Let $\varphi$ be an analytic homomorphism of an analytic sheaf $S$ into another

analytic sheaf $S^{\prime}$ . For each Fr\’echet space $ F\varphi$ induces canonically the analytic
homomorphism $\varphi_{F}=\varphi\otimes 1_{F}$ of $S_{F}$ into $S_{F}^{\prime}$ .

THEOREM 8. If a sequence of coherent analytic sheaves



Vector-valued holomorphic functions 61

$\varphi$
$\psi$

$0\rightarrow S^{\prime}\rightarrow S\rightarrow S^{\prime\prime}\rightarrow 0$

is exact, then so is the sequence

$\varphi_{F}$
$\psi_{F}$

$0\rightarrow S_{F}^{\prime}\rightarrow S_{F}\rightarrow S_{F}^{\prime\prime}\rightarrow 0$ .
PROOF. By the properties of tensor products,

$S_{F}^{\prime}\rightarrow S_{F}\varphi_{F}\rightarrow S_{F}^{\prime\prime}\psi_{F}\rightarrow 0$

is obviously exact. It is sufficient to show the injectivity of $\varphi_{F}$ . To this end,

take.an element $f=\sum_{:}f_{i}\otimes g_{i}\in S_{F}^{\prime}(U)$ with $\varphi_{F}(U)f=\sum_{i}\varphi(U)f_{t}\otimes g_{i}=0$ , where

$f_{i}\in S(U)$ and $g_{i}\in O_{F}(U)$ . For each $u\in F^{*}$ , we see

$\varphi(U)(u_{s}f)=\varphi(U)(\sum_{i}f_{i}\otimes u^{*}g_{i})=\sum_{i}(\varphi(U)f_{i})\otimes u^{*}g_{i}$

$=u_{s}(\sum_{i}\varphi(U)f_{i}\otimes g_{i})=u_{s}(\varphi_{F}(U)f)=0$ .
By the hypothesis, $\varphi(U)$ is injective and therefore $u_{s}f=0$ on $U$ . Then $f=0$

on $U$ by Lemma 6.

\S 4. $F$-holomorphic functions with values in some function spaces.

1. Let $X$ be a complex space. For another complex space $Y$, we consider
$A(Y, F)$-holomorphic functions on $X$.

THEOREM 9. The space $A(X, A(Y, F))$ is canonically isomorphic with
$A(X\times Y, F)$ as topological vector spaces.

PROOF. 1. The space $C(X\times Y, F)$ of all F-valued continuous functions
on $X\times Y$ constitutes a Fr\’echet space with the topology of compact conver-
gence. As is well known, $C(X\times Y, F)$ is canonically isomorphic with the space
$C(X, C(Y, F))$ of all continuous functions on $X$ with values in the space of all
F-valued continuous functions on $X$ . It is sufficient to show that an F-holo-
morphic function on $X\times Y$ induces an $A(Y, F)$-holomorphic function on $X$ and
vice versa.

2. Take an element $f^{*}(p)\in A(X, A(Y, F))$ . For a point $p_{0}$ in $X$ , there
exists a neighborhood $U$ of $p_{0}$ which can be considered as an analytic subset
of a polydisc $G=\{|z_{i}|<r_{i}\}_{i=1}^{N}$ . By Corollary 2 of Theorem 2, $f^{*}(p)$ is the
restriction of an $A(Y, F)$ -holomorphic function $f^{*}(p)$ on $G$ . Then, we have the
equality of $A(Y, F)$ -valued functions

$f^{*}(z)=\frac{1}{(2\pi i)^{n}}\int_{|\zeta_{i}|=r}\cdots\int_{i’}\frac{\tilde{f}^{*}(\zeta_{1},..\cdot.\cdot\cdot,\zeta_{N})}{(\zeta_{1}-z_{1})(\zeta_{N}-z_{N})}d\zeta_{1}\ldots d\zeta_{N}$

for each $z=$ $(z_{1}$ , $\cdot$ .. , $z_{N})$ in $G^{\prime}=\{|z_{i}|<r_{i^{\prime}}\}$ , where $0<r_{i^{\prime}}<r$ . By the definition
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of Riemann integral, the right hand side is approximated compactly on $G^{\prime}\times Y$

by the linear combinations of F-holomorphic functions on $Y$ with coefficients
of ordinary holomorphic functions on $G^{\prime}$ , which are contained in $A(G^{\prime}\times Y, F)$ .
By the completeness of $A(G^{\prime}\times Y, F)$ , the function $\tilde{f}(p, q):=f^{*}(p)(q)$ is contained
in $A(G^{\prime}\times Y, F)$ . Thus we see $f(p, q):=f^{*}(p)(q)\in A(X\times Y, F)$ .

3. To prove the converse, we may assume F $=C$ . $For,$ $eachF$-holomorphic
function $f(p, q)$ on $X\times Y$ has the expansion

$f=\sum_{n}f^{n}(p, q)\cdot c_{n}$

where $f^{n}(p, q)$ is in $A(X\times Y, C),$ $\sum_{n}f^{n}(p, q)$ is absolutely convergent in $A(X\times Y$ ,

$C)$ and $\{c_{n}\}$ is a bounded sequence in $F$. Suppose each $f^{n}(p, q)$ induces an
$A(Y, C)$-holomorphic function $f^{n*}(p)(q):=f^{n}(p, q)$ , then the series $\sum_{n}f^{n*}(p)$ is

absolutely convergent in $A(X, A(Y, C))$ and hence the series $\sum_{n}c_{n}\cdot f^{n*}(p)$ is

absolutely convergent in $A(X, A(Y, F))$ . Easily, we see $f^{*}(p)(q)(:=f(p, q))$

$=\sum_{n}c_{n}\cdot f^{n*}(p)(q)$ , which is contained in $A(X, A(Y, F))$ .

4. If a complex space $X$ can be proved to have the property that for an
arbitrary complex manifold $Y$ each holomorphic function on $X\times Y$ induces an
$A(Y, C)$ -holomorphic function on $X$, then $A(X\times Y, F)$ is isomorphic with
$A(X, A(Y, F))$ for an arbitrary complex space $Y$ . In fact, a holomorphic
function $f(p, q)$ on $X\times Y$ is holomorphic on the subspace $X\times Y^{o}$ , where $Y^{o}$

denotes the complex manifold consisting of all regular points of $Y$ . By the
assumption, $f(p, q)$ induces an $A(\mathring{Y}, C)$ -holomorphic function $f^{*}(p)(q):=f(p, q)$

on $X$ . By Lemma 3, $A(Y, C)$ is a closed subspace of $A(Y^{o}, C)$ . It follows from
Hahn-Banach’s theorem that the $A(Y\circ, C)$ -holomorphic function $f^{*}(p)$ on $X$ with
values in the closed subspace $A(Y, C)$ is an $A(Y, C)$ -holomorphic function.
Thus $A(X\times Y, C)$ is isomorphic with $A(X, A(Y, C))$ by 1o and 2’, and hence
$A(X\times Y, F)$ is isomorphic with $A(X, A(Y, F))$ by 3 for each Fr\’echet space $F$.

5. For complex manifolds $X$ and $Y$ , Theorem 9 is easily proved ([5]).
Moreover, according to 3, Theorem 9 holds for a complex manifold $X$ and an
arbitrary complex space $Y$ .

6. Now, we shall prove Theorem 9 for arbitrary complex spaces $X$ and
$Y$ . To this end, we may assume $F=C$ by 3 and $Y$ to be a complex manifold
by 4’. Take an element $f(p, q)$ in $A(X\times Y, C)$ . For a point $p_{0}$ in $X$ , there
exists a neighborhood $U$ which we can regard as an analytic subset of a
polydisc $G=\{|z_{i}|<r_{i}\}_{i=1}^{N}$ . In virtue of $4^{o}$ , the holomorphic function $f(p, q)$ on
$U\times Y$ induces an $A(U, C)$ -holomorphic function $f_{*}(q)(p);=f(p, q)$ on $Y$ . By
Theorem 1, there exist a bounded sequence $\{b_{n}\}$ in $A(U, C)$ and an absolutely
convergent series $\sum_{n}f^{n}$ in $A(Y, C)$ such that $f_{*}(q)=\sum_{n}f^{n}(q)\cdot b_{n}$ . Since $G$ is a
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domain of holomorphy, each $b_{n}$ has a holomorphic extension $b_{n}^{\prime}$ to $G$ . Let
$U^{\prime}$ $:=U\cap G^{\prime}$ be another neighborhood of $p_{0}$ , where $G^{\prime}=\{|z_{i}|<r_{i^{\prime}}\}_{i=1}^{N}(r_{i^{\prime}}<r_{i})$ .
Then, since the canonical restriction map of $A(G. C)$ onto $A(U, C)$ is open by
Banach’s open map theorem, there exists a positive number $M$ such that each
holomorphic function $g$ on $U$ has a holomorphic extension $\tilde{g}$ to $G$ with $|\tilde{g}|$

$\leqq M\sup|g(K)|$ on $G^{\prime}$ for some compact subset $K$ of $U$. Therefore, $\{b_{n}^{\prime}\}$ can
be chosen so as to be bounded in $A(U^{\prime}, C)$ . Thus we obtain a holomorphic
function $f=\sum_{n}f^{n}b_{n}^{\prime}$ on $G^{\prime}\times Y$ , which is equal to $f(p, q)$ on $U^{\prime}\times Y$ . Since $Y$

and $G^{\prime}$ are both complex manifolds, $f^{*}(p)(q):=\tilde{f}(p, q)$ is an $A(Y, C)$ -holomorphic
function on $G^{\prime}$ . Obviously, $f^{*}(p)(q):=f(p, q)$ is the restriction of an $A(Y, C)-$

holomorphic function $f*onG^{\prime}$ to $U^{\prime}$ . This shows $f^{*}(p)\in A(X, A(Y, C))$ .
$q$ . $e$ . $d$ .

2. By Theorem 9, we can generalize the results of $n^{o}4$ and $n^{o}6$ in \S 2.
THEOREM 10. If for a holomorphic map $\tau$ of a complex space $X^{\prime}$ into

another $X$ the induced map $\tau_{c}$ of $A(X, C)$ into $A(X^{\prime}, C)$ is surjective, then the
canonically induced map $(\tau\times 1_{Y})_{F}$ of $A(X\times Y, F)$ into $A(X^{\prime}\times Y, F)$ is surjective
for each complex space $Y$ and Fr\’echet space $F$.

PROOF. By Theorem 9 identifying $A(X, A(Y, F))$ and $A(X^{\prime}, A(Y, F))$ with
$A(X\times Y, F)$ and $A(X^{\prime}\times Y, F)$ respectively, we can regard the map $(\tau\times 1_{Y})_{F}$ of
$A(X\times Y, F)$ into $A(X^{\prime}\times Y, F)$ as the map $\tau_{A(Y,F)}$ of $A(X, A(Y, F))$ into $A(X^{\prime}$ ,
$A(Y, F))$ , which is surjective in virtue of Theorem 2. $q$ . $e$ . $d$ .

COROLLARY 1. Let $X$ be a complex space and $x/$ be an open subset of it.
If each holomorphic function on $X^{\prime}$ is holomorphically continuable to the whole
$X$ , then for an arbitrary complex space $Y$ and a Fr\’echet space $F$ each $F$,

holomorphic function on $X^{\prime}\times Y$ is holomorphically continuable to $X\times Y$ .
COROLLARY 2. Let $X$ be an analytic subset of a Stein space X. Then, for

an arbitrary complex space $Y$ each F-holomorphic function on $X^{\prime}\times Y$ is the
restriction of an F-holomorphic function on $X\times Y$ .

THEOREM 11. Take a holomorphic map $\tau$ of a complex space $x/into$ another
complex space X. If the image of $\tau_{c}$ is dense in $A(X^{\prime}, C)$ , then for an arbitrary
complex space $Y$ the image of $(\tau\times 1_{Y})_{F}$ is also dense in $A(X^{\prime}\times Y, F)$ .

PROOF. Apply Theorem 4 to the Fr\’echet space $A(Y, F)$ . $q$ . $e$ . $d$ .
$CoROLLARY$ . If (X, $X^{\prime}$) is a Runge pair, then for an arbitrary complex

space $Y,$ $(X\times Y, X^{\prime}\times Y)$ is also a Runge pair.
3. We give another application of Theorem 9 to the theory of cohomology

with coefficients in the sheaf of F-holomorphic functions.
THEOREM 12. Let $X$ be a complex space and $Y$ be a Stein space. Then,

$7or$ an arbitrary Fr\’echet space $F$, we have

$H^{N}(X, O_{A(Y,F)})\cong H^{N}(X\times Y, O_{F})$ .
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PROOF. In case of $N=0$ , this is a special case of Theorem 9. To see the
case $N\geqq 1$ , we take a Stein covering $11=\{U_{j}\}_{j\in J}i$ . $e$ . an open covering such
that for each finite subset $i_{1}$ , $\cdot$ .. , $i_{s}$ of J $U_{i_{1}}\cap\cdots\cap U_{i_{S}}$ is a Stein space. Then
the covering $\mathfrak{U}\times Y=\{U_{j}\times Y\}_{j\in J}$ is also a Stein covering of $X\times Y$ . According
to Theorem 6, these coverings $\mathfrak{U}$ and $\mathfrak{U}\times Y$ are Leray coverings with respect
to the sheaf $O_{A(Y,F)}$ on $X$ and $O_{F}$ on $X\times Y$ , respectively. Thus we have

$H^{N}(X, O_{A(Y,F)})\cong H^{N}(\mathfrak{U}, O_{A(Y,F)})$ (1)
and

$H^{N}(X\times Y, O_{F})\cong H^{N}(\mathfrak{U}\times Y, O_{F})$ . (2)

On the other hand, by Theorem 9 we have the isomorphism of the cochain
groups

$C^{N}(\mathfrak{U}, O_{A(Y,F)}):=$
$\prod_{Jo,\cdots,J_{N}}$

$H^{0}(U_{Jo}\cap\cdots\cap U_{j_{N}}, O_{A(Y,F)})$

$\cong C^{N}(\mathfrak{U}\times Y, O_{F}):=\prod_{j_{0},\cdots,j_{N}}H^{0}((U_{Jo}\cap\cdots\cap U_{j_{N}})\times Y, O_{F})$ .

Since the coboundary operator $\delta$ commutes with this isomorphism, this shows

$H^{N}(\mathfrak{U}, O_{A(Y,F)})\cong H^{N}(\mathfrak{U}\times Y, O_{F})$ . (3)

By (1), (2) and (3) $H^{N}(X, O_{A(Y.F)})$ is isomorphic with $H^{N}(X\chi Y, O_{F})$ .
COROLLARY 1. Under the same assumptions as above, if $H^{N}(X, 0)=0$ , then

$H^{N}(X\times Y, O_{F})=0$ .
PROOF. By Theorem 6 and Theorem 12, $H^{v}(X\times Y, O_{F})\cong H^{N}(X, O_{A(Y,F)})=0$ .

$q$ . $e$ . $d$ .
COROLLARY 2. $H^{N}(X\times P^{n}, O_{F})=H^{N}(X, O_{F})$ , where $P^{n}$ denotes the n-dimen-

sional projective space.
PROOF. As is well known, $H^{N}(P^{n}, O)=0$ for $N\geqq 1$ and therefore $H^{N}(P^{n}$

$\times X,$ $O_{F}$) $=0$ for $N\geqq 1$ for each Stein space $X$ by the above corollary. Thus,
for a Stein covering $\mathfrak{U}=\{U_{j}\}_{j\in J}$ of $X$ the covering $\mathfrak{U}\times P^{n}=\{U_{j}\times P^{n}\}_{j\in J}$ is a
Leray covering of $X\times P^{n}$ with respect to the analytic sheaf $O_{F}$ . As in the
proof of Theorem 12, we have $H^{N}(X\times P^{n}, O_{F})\cong H^{N}(X, O_{A(P^{n},F)})(N\geqq 1)$ . On the
other hand, each F-holomorphic function $f$ on a compact complex space must
be constant. In fact, otherwise, we take two points $p,$ $q$ with $f(p)\neq f(q)$ . By
Hahn-Banach’s Theorem, there exists a continuous linear functional $u$ on $F$

such that $uf(p)\neq uf(q)$ . The holomorphic function $uf$ is non-constant on the
compact complex space, which contradicts the maximum principle. This shows
$A(P^{n}, F)$ is isomorphic with $F$. Therefore, $H^{N}(X\times P^{n}, O_{F})\cong H^{N}(X, O_{F})$ .

$q$ . $e$ . $d$ .
4. Let $M$ be a $\sigma$ -compact differentiable manifold of class $C^{k}(0\leqq k\leqq\infty)$ .

For a Fr\’echet space $F$, we can define naturally F-valued differentiable func-
tions of class $C^{h}$ on $X$ . The function space $C^{k}(M, F)$ of all F-valued differen-



Vector-valued holomorphic functions 65

tiable functions of class $C^{k}$ constitutes also a Fr\’echet space with the topology
of compact convergence of functions and their local derivatives.

DEFINJTION 3. We call an F-valued function $f$ on $X\times M$ a k-times differ-
entiable family of F-holomorphic functions on $X$ with parameters in $M$, or
simply, of class $C^{\omega,k}$ if $f(p, q)$ is holomorphic on $X$ for each fixed point $q$ in
$M$ and has k-th derivatives with respect to each local coordinates in $M$ which
are continuous with respect to the product topology ofXxM. $ByC^{\omega,k}(X\times M, F)$

we denote the set of all F-valued function of class $C^{\omega,h}$ on $X\times M$.
THEOREM 13. An F-valued function $f(p, q)$ on $X\times M$ induces an $A(X, F)-$

valued differentiable function $f_{*}(q)(p)=f(p, q)$ of class $C^{k}$ if and only if $f(p, q)$

is of class $C^{\omega,k}$ .
PROOF. Take an $A(X, F)$ -valued differentiable function $f_{*}(q)$ on $M$. Obvi-

ously, the function $f(p, q):=f_{*}(q)(p)$ on $X\times M$ is holomorphic on $X$ for each
fixed point $q$ in $M$ and has k-th derivatives referred to each local coordinates
in $M$ because the topology of $A(X, F)$ is stronger than the simple convergence
topology. Moreover, since $f_{*}$ has continuous derivatives with values in $A(X, F)$ ,

they are continuous on $X\times M$. This shows $f(p, q)\in C^{\omega,k}(X\times M, F)$ .
Conversely, take an F-valued function $f(p, q)$ of class $C^{\omega,k}$ on $X\times M$. To

a point $q$ in $M$ we correspond the mapping $f_{*}(q)(p):=f(p, q)$ of $M$ into the
space of F-valued functions on $X$, which is contained in $A(X, F)$ by Definition
3. Since the derivatives of $f(p, q)$ are continuous on $X\times M$, they induce the
continuous derivatives of $A(X, F)$ -valued function $f_{*}(q)$ . This shows $f_{*}(q)$

$\in C^{k}(M, A(X, F))$ . q. e. d.
5. LEMMA 8. Let $x/be$ an analytic subset of a Stein space $X$ and $M$ be

$a$ a-compact differentiable manifold of class $C^{\infty}$ . Then each F-valued function
of class $C^{\omega,\infty}$ on $X^{\prime}\times M$ is the restriction of an F-valued function of class $C^{\omega,\infty}$

on $X\times M$.
PROOF. By Corollary 2 of Theorem 2, the restriction map $\tau$ of F-holo-

morphic functions on $X$ to $X^{\prime}$ is surjective. On the other hand, according to
Andreotti-Grauert ([1], Theorem 1, p. 205) the functor $C^{\infty}(M, F)$ is an exact
covariant functor on the category of Fr\’echet spaces. From these facts, we
conclude the sequence

$\tau^{\prime}$

$C^{\infty}(M, A(X, F))-C^{\infty}(M, A(X^{\prime}, F))\rightarrow 0$

is exact.
Now, take an F-valued function $f(p, q)$ of class $C^{\omega,\infty}$ on $X^{\prime}\times M$. By Theorem

13 $f(p, q)$ induces an $A(X^{\prime}, F)$ -valued indefinitely differentiable function $f_{*}(q)(p)$ :
$=f(p, q)$ on $M$. By the above argument, there exists an $A(X, F)$-valued differ-
entiable function $f_{*}(q)$ such that $\tau^{\prime}\tilde{f}_{*}=f_{*}$ . Applying Theorem 13 again, the
F-valued function $\tilde{f}(p, q):=f_{*}(q)(p)$ is of class $C^{\omega,\infty}$ on $X\times M$. Obviously,
$f(p, q)$ is the restriction of $f(p, q)$ to $X^{\gamma}\times M$. q. e. $d$ .
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THEOREM 14. For a complex space $X$ and a $\sigma$ -compact differentiable
manifold $M$ of class $C^{\infty}$ . An F-valued function $f(p, q)$ on $X\times M$ induces a
$C^{\infty}(M, F)$ -holomorphic function $f^{*}(p)(q)=f(p, q)$ on $X$ if and only if f$(p, q)$ is
of class $C^{\omega,\infty}$ .

PROOF. Take a $C^{\infty}(M, F)$ -holomorphic function $f^{*}(p)$ on $X$. For a point
$p$ in $X$, ther $e$ exists a neighborhood $U$ which can be imbedded in a polydisc
$C=\{|z_{i}|<r_{i}\}_{i=1}^{N}$ by a one-to-one proper regular holomorphic map $\psi$ . By
Corollary 2, there exists a $C^{\infty}(M, F)$-holomorphic function $f*onG$ such that
$f^{*}=f*onU$ . We can see easily the F-valued function $f(p, q)=f^{*}(p)(q)$ on
$G\times M$ is of class $C^{\omega,\infty}$ (c. f. [5]). Therefore, $f(p, q)=f\tilde{(}p,$ $q$) is of class $C^{\omega,\infty}$

on $U\times M$. This shows $f(p, q)\in C^{\omega,\infty}(X\times M, F)$ .
Conversely, take an F-valued function $f(p, q)$ of class $C^{\omega_{*}\infty}$ on $X\times M$. For

a point $p_{0}$ , there exists a neighborhood $U$ as above, which is considered as an
analytic subset of a polydisc $G=\{|z_{i}|<r_{i}\}$ . By Lemma 8, $f(p, q)$ is the
restriction of an F-valued function $f(p, q)$ of class $C^{\omega,\infty}$ on $G\times M$. Easily we
see $f(p, q)$ induces a $C^{\infty}(M, F)$ -valued holomorphic function $f^{*}(p)(q):=f(p, q)$

on $G$ (c. f. [4]). The $C^{\infty}(M, F)$-valued function $f^{*}(p)(q):=f(p, q)$ on $U$ is the
restriction of a $C^{\infty}(M, F)$ -holomorphic function $f^{*}(p)$ on $G$ to $U$. This shows
$f^{*}(p)\in A(X, C^{\infty}(M, F))$ . q. e. d.

$CoROLLARY$ . Let $X$ be a complex space and $X^{\prime}$ be an open subset of it.
$Jf$ each holomorphic function on $X^{\prime}$ is holomorphically continuable to the whole
$X$, then for an arbitrary differentiable manifold $M$, the continuations of an
indefinitely differentiable family of F-holomorphic functions with parameters
in $M$ constitute also an indefinitely differentiable family of F-holomorphic
functions.

Added in proof: Recently, we found the paper by L. Bungart. Holomor-
phic functions with values in locally convex space and applications to integral
formulas, Trans. Amer. Math. Soc., 3 (1964), 317-344. Some of the results
in this paper seems to be special cases of Bungart’s, though his methods are
different from ours.

Nagoya University
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