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Introduction.

Let $A$ be a commutative algebra with identity over a subfield $K$. Let $N$

be a maximal ideal of $A$ and let $g$ be the natural K-homomorphism of $A$ onto
$A/N$ ($K$ and $gK$ identified). Denote $A/N$ by $F_{0}$ . Then, consistent with the
usual meaning of the term coefficient field, we define a K-coefficient field as a
subfield $F$ of $A$ such that $F\supseteqq K$ and $gF=F_{0}$ .

The existence of coefficient fields for complete local algebras is assured
by well known results [3, p. 106], but as simple examples show, the existence
of K-coefficient fields is not a consequence. In Theorem 1, we give a necessary
and sufficient condition for the stepwise extension of suitable subfields of $A$

to K-coefficient fields when $K$ has characteristic $p\neq 0$ . These suitable subfields
are situated in $A^{p^{e}}=\{a^{p^{e}}|a\in A\},$ $e$ a positive integer, analogous to the way a
K-coefficient field would be situated in $A$ . This result applies of course to
quasi-local algebras. In Theorem 2, we note an extension to the case of ar-
bitrary characteristic of a result in [2] which can also be obtained by a
modification of the proof of Corollary 2 in [4, p. 280], namely, the existence
of a K-coefficient field when $A$ is quasi-local, $N$ is nil and $F_{0}$ has a separating
transcendence basis over $K$. This theorem reduces the case of any quasi-local
algebra with $N$ nil to the case to which Theorem 1 applies.

1. By a counterimage $M\subseteqq A$ of a set $M_{0}\subseteqq F_{0}$ , we mean a set $M$ such
that $gM=M_{0}$ and $g|M$ is one-one. Unless otherwise specified, $e$ always denotes
a fixed positive integer. Let $M^{p}‘=\{m^{pe}|m\in M\}$ , and similarly for other prime
powers of sets appearing hereafter. By the symbol $E(M)$ we mean the set of
all polynomials in elements from $M$ with coefficients from a field $E$.

LEMMA 1. Suppose there exists a field $E\subseteqq A$ with the same identity as $A$

such that $gE=F^{p_{0}^{e}}$ . Then a counterimage $M\subseteqq A$ of a p-basis $M_{0}$ of $F_{0},$ $[3,$ $p$ .
107], is such that $M^{p^{e}}\subseteqq E$ if and only if $E(M)$ is a field. If such an Mexists,
$gE(M)=F_{0}$ .

PROOF. Suppose $M^{p^{e}}\subseteqq E$ . Well order $M$ and put $M_{j}=\{m_{a}|\alpha<j\}$ for
an ordinal $j$ . Suppose $E(M_{j})$ is a field for some ordinal $j$ . Now $m_{j}$ satisfies
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$x^{P^{e}}-d=0,$ $d\in E(M_{j})$ . If this polynomial is reducible over $E(M_{j})$ , then there
exists a finite subset $B_{0}\subseteqq gM_{j}$ of $r$ elements say and a positive integer $f$ such
that $gm_{J^{e-f}}^{p}\in F^{pe}(B_{0})$ . But this contradicts the degree relation [ $F_{0^{e}}^{p}(B_{0}, gm_{j})$ :
$F_{0^{p^{e}}}]=p^{e(r+1)}$ . The case for $m_{1}$ is similar and since the union of an ascending
sequence of fields under inclusion is a field, it follows by transfinite induction
that $E(M)$ is a field.

On the other hand, suppose $E(M)$ is a field. For each $m\in M$, there exist
$b\in E,$ $n\in N$ such that $m^{p^{e}}=b+n$ . However, $n=0$ since $E(M)\cap N=(O)$ .

Finally, if $M$ exists, $gE(M)=F_{0}$ since $F_{0}=F^{p_{0}^{e}}(M_{0})$ . Q. E. D.
LEMMA 2. If there exists a field $E\subseteqq A^{pe}$ with the same identity as $A$ and

such that $gE=F^{p_{0}^{e}}$ , then $E$ can be extended to a field $F$ such that $gF=F_{0}$ .
PROOF. Clearly, $N^{p^{e}}\subseteqq A^{pe}\cap N$. Let $a^{p^{e}}\in A^{p^{e}}\cap N$. Then $g(a)^{p^{e}}=0$ which

implies $g(a)=0$ since $F_{0}$ is a field. Thus $a\in N$ and $a^{p^{e}}\in N^{pe}$ . Hence, $A^{pe}\cap N$

$=N^{pe}$ . Now, let $M_{0}$ be a $p$-basis of $F_{0}$ and $M$ a counterimage of $M_{0}$ . Since,
by hypothesis and the preceding remark, $A^{pe}=E+N^{pe},$ $m^{p^{e}}=b+n^{p^{e}}$ for all
$m\in M$, where $b\in E$ . Thus, the subset $\{m-n\}=M^{\prime}$ of $A$ is a counterimage
of $M_{0}$ such that $M^{\prime p^{e}}\subseteqq E$ . The result now follows from Lemma 1. Q. E. D.

A similar result has already been noted by Bray [1]. Closely related
results for complete local rings can be found in [3, Ex., p. 112].

THEOREM 1. Suppose that for some positive integer $i$ there exists a field
$E$ such that $F^{p_{0}^{i}}\cap K\subseteqq E\subseteqq A^{p^{i}}$ and $gE=F^{v_{0}^{i}}$ . Then $E$ can be extended to a
field $E^{\prime}$ such that $F^{p_{0}^{i-1}}\cap K\subseteqq E^{\prime}\subseteqq A^{p^{i-1}}$ and $gE^{\prime}=F^{p_{0}^{i-1}}$ if and only if (i)
$g(A^{p^{i-1}}\cap K)=F^{p_{0}^{i-1}}\cap K$ and (ii) $E(A^{p^{i\rightarrow 1}}\cap K)$ is a field.

PROOF. Suppose (i) and (ii) hold. Choose a $p$-basis $G_{0}\cup M_{0}$ of $F^{p_{0}^{i-1}}$ over
$F^{P_{0}^{i}}$ so that $F^{p_{0}^{i}}(G_{0})=F^{p_{0}^{i}}(F^{p_{0}^{i-1}}\cap K)$ . Identifying $A^{p^{i\rightarrow 1}}$ with $A$ and $A^{p^{i}}$ with
$A^{p^{e}}$ , we have by Lemma 2 that there exist counterimages $G$ and $M$ of $G_{0}$ and
$M_{0}$ respectively in $A^{p^{i-1}}$ such that $E(G\cup M)$ is a field and $gE(GUM)=F^{p_{0}^{i-1}}$ .
By (i), $g(A^{p^{i-1}}\cap K)=F^{p_{0}^{i\rightarrow 1}}\cap K$, and thus $G$ can be chosen so that $E(G)$

$\subseteqq E(A^{P^{\dot{i}-1}}\cap K)$ . It remains to be shown that $F^{p_{0}^{i\rightarrow 1}}\cap K\subseteqq E(GUM)$ . Now
$g$ induces an isomorphism of $E(G)$ onto $F^{p_{0}^{i}}(G_{0})=F^{p_{0}^{i}}(F^{p_{0}^{i\rightarrow 1}}\cap K)$ . By (ii),
$g|E(A^{P^{i-1}}\cap K)$ is one-one. Thus $E(G)$ and $E(A^{P^{i-1}}\cap K)$ are E-isomorphic.
Since $E(A^{p^{i-1}}\cap K)$ is pure inseparable over $E$ , it is not E-isomorphic to a
proper subfield. Hence, $E(G)=E(A^{p^{i-1}}\cap K)$ . Therefore, $F^{p_{0}^{i-1}}\cap K\subseteqq E(GUM)$ .

On the other hand, suppose $E$ can be extended to the field $E^{\prime}$ . (i) Since
$E^{\prime}\supseteqq F^{p_{0}^{i-1}}\cap K$, it follows that $A^{p^{i-1}}\cdot\cap K=F^{p_{0}^{i-1}}\cap K$. ( $A^{p^{i\rightarrow 1}}\cap K$ is always in
$F^{p_{0}^{i-1}}\cap K.)$ (ii) Since $E^{\prime}\supseteqq E(A^{p^{i-1}}\cap K)$ , the latter is a field and is in fact
isomorphic to $F_{0^{i}}^{p}(F^{p_{0}^{i-1}}\cap K)$ . Q. E. D.

COROLLARY 1. Suppose there exists a field $E$ such that $A^{pe}\cap K\subseteqq E\subseteqq A^{pe}$

and $gE=F^{p_{0}^{e}}$ . Then $E$ can be extended to a K-coefficient field if $A^{p^{i}}\cap K$

$=F^{p_{0}^{i}}\cap K$ and, in addition, either one of the following conditions holds for
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$i=1,$ $\cdots$ $e$ ;

(i) the pair $F^{p_{0}^{i}},$ $F^{p_{0}^{i\rightarrow 1}}\cap K$ is linearly disjoint over $F^{p_{0}^{i}}\cap K$ ; or
(ii) there exists a subset $G_{0i}$ of a p-basis of $F^{p_{0}^{i-1}}$ over $F^{p_{0}^{i}}$ such that

$(F_{0^{i}\cap}^{p}K)(G_{0i})=F_{0\cap}^{p^{i-1}}K$.
PROOF. (i) Suppose $E_{i}$ is a field such that $A^{p^{i}}\cap K\subseteqq E_{i}\subseteqq A^{p^{i}}$ and $gE_{i}=F^{P_{0}^{i}}$ .

Since $gE_{i}(A^{p^{i-1}}\cap K)=F^{p_{0}^{i}}(F^{p_{0}^{i-1}}\cap K)$ , it follows by application of the universal
mapping theorem for tensor products that $g|E_{i}(A^{p^{i-1}}\cap K)$ is one-one. Thus,
$E_{i}(A^{p^{i-1}}\cap K)$ is a field and from Theorem 1 it follows by induction that $E$

can be extended to a K-coefficient field.
(ii) Suppose there exists a field $E_{i}$ such that $A^{p^{i}}\cap K\subseteqq E_{i}\subseteqq A^{P^{i}}$ and $gE_{i}$

$=F_{0^{i}}^{p}$ . Since $(F_{0}^{v^{i}}\cap K)(G_{0i})=F^{p_{0}^{i-1}}\cap K,$ $E_{i}(G_{0i})=E_{i}(A^{p^{i-1}}\cap K)$ . Thus, $E_{i}(A^{p^{i-1}}$

$\cap K)$ is a field. Q. E. D.
COROLLARY 2. Suppose there exists a field $E$ such $\cdot$ that $A^{p^{e}}\cap K\subseteqq E\subseteqq A^{p^{e}}$

and $gE=F_{0^{e}}^{p}$ . Then $E$ can be extended to a K-coefficient field if either one of
the following conditions holds:

(i) $F_{0}$ is separable over $K$ ; or
(ii) $A$ has no nilpotent elements.
PROOF. (i) Let $a^{p_{0^{i}}}\in F^{p_{0}^{i}}\cap K$ for some positive integer $i$ . Then $a_{0}\in K$ since

$F_{0}$ has no pure inseparable elements over $K$. Thus, $a^{p_{0}^{i}}\in K^{p^{i}}$ and $a^{p_{0}^{i}}\in A^{P^{i}}\cap K$.
Hence, $K^{P^{i}}\supseteqq F^{P_{0}^{i}}\cap K$ and $A^{P^{i}}\cap K\supseteqq F^{p_{0}^{i}}\cap K$. Thus, $K^{p^{i}}=F^{p_{0}^{i}}\cap K$ and $A^{p}‘\cap K$

$=F_{0^{i}}^{p}\cap K$. Furthermore, $F^{p_{0}^{i-1}}\cap K$ is pure inseparable over $F^{P_{0}^{i}}\cap K$ and $F^{P_{0}^{i}}$

is separable over $F_{0^{i}}^{p}\cap K=K^{P^{i}}$ . Hence the conditions in Corollary 1 (i) hold,

(ii) By Lemma 2, $E$ can be extended to a field $F$ such that $gF=F_{0}$ . If
$K\not\leqq F$, then there exists $k\in K,$ $k\not\in F$ and $a\in F$ such that $ga=k,$ $a-k\neq 0$ and
$(a-k)^{p^{e}}=0$ (since $F\supseteqq E\supseteqq K^{P^{e}}$), which is impossible by hypothesis. Q. E. D.

Let $g_{i}=g|A^{P^{i}}(A^{P^{i-1}}\cap K)$ and let $(N^{p^{i}})$ be the ideal in $A^{P^{i}}(A^{p^{i-1}}\cap K)$

generated by $N^{p^{i}}$ .
REMARK 1. If $A$ has a K-coefficient field $F$, then

(i) there exists a field $E$ such that $A^{p^{e}}\cap K\subseteqq E\subseteqq A^{p^{e}}$ and $gE=F^{p_{0}^{e}}$ ;
(ii) $A^{p^{i}}\cap K=F^{P_{0}^{i}}\cap K$ for all positive integers $i$ ;

(iii) $Kerg_{i}=(N^{P^{i}})$ for all positive integers $i$ .
PROOF. (i) Take $E=F^{p^{e}}$ for any $e$ .
(ii) Given $a_{0}\in F_{0}$ such that $a^{p_{0}^{i}}\in K$, there exists $a\in F$ such that $ga=a_{\mathfrak{a}}$

and such that $a^{p^{i}}\in K$. Hence $A^{p^{i}}\cap K\supseteqq F^{P_{0}^{i}}\cap K$. (The inclusion $A^{P^{i}}\cap K$

$\subseteqq F^{p_{0}^{i}}\cap K$ always holds.)
(iii) $F^{p^{i}}(A^{p^{i-1}}\cap K)$ and $F_{0^{i}}^{p}(F^{p_{0}^{i-1}}\cap K)$ are naturally isomorphic and thus

there exists a homomorphism $h_{i}$ of $A^{p^{i}}(A^{p^{i\rightarrow 1}}\cap K)$ onto $F^{p^{i}}(A^{p^{i}}\cap K)$ such that
$Kerh_{i}=Kerg_{i}$ and $h_{i}\sum_{j}a_{J^{i}}^{p}k_{j}=\sum_{j}b_{j}k_{j}$ , where $k_{j}\in A^{p^{i-1}}\cap K,$ $b_{j}\in F^{p^{i}}$ and $h_{i}a_{J^{i}}^{p}$

$=b_{j}$ . Let $c=\Sigma a_{j}^{p^{i}}k_{j}\in Kerh_{i}$ . Then $0=h_{i}c=h_{i}\Sigma(b_{j}+n_{j^{i}}^{P})k_{j}=h_{i}\Sigma b_{j}k_{j}=\Sigma b_{j}k_{j}$

where $n_{j^{i}}^{P}\in N^{p^{i}}$ . Thus, $c=\sum n^{p_{j}^{i}}k_{j}\in(N^{p^{i}})$ . Hence $Kerg_{i}\subseteqq(N^{p^{i}})$ . Clearly,
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\langle $N^{p^{i}}$) $\subseteqq Kerg_{i}$ . Q. E. D.
If the pairs $A^{p^{i}},$ $A^{p^{i\rightarrow 1}}\cap K$ are linearly disjoint over $A^{p^{i}}\cap K$, and if $Kerg_{i}$

$=(N^{p^{i}})$ , then the pairs $F^{p_{0}^{i}},$ $F^{p_{0}^{i-1}}\cap K$ are linearly disjoint over $F^{p_{0^{i}}}\cap K$ by
application of elementary properties of tensor products. Thus, under these
conditions, $A$ has a K-coefficient field by Corollary 1 (i) when the field $E$ in
Corollary 1 exists.

REMARK 2. If (i) $N^{p^{e}}=(0)$ , or (ii) $F^{p_{0}^{e}}\subseteqq K$ and $A^{p^{e}}\cap K=F^{p_{0}^{e}}\cap K$, or (iii)
$N^{p^{e}}=N^{pe+1},$ $A^{p^{e}}\cap K$ is a field and $F_{0}$ is pure inseparable over $K$, or (iv) the
ideal $R$ of all nilpotent elements of $A$ is such that $R^{p^{e}}=(0),$ $A^{p^{i}}\cap K=F^{P_{0}^{i}}\cap K$

for all positive integers $i$ , and $F_{0}$ is pure inseparable over $K$, then there exists
a field $E$ such that $A^{pe}\cap K\subseteqq E\subseteqq A^{p^{e}}$ and $gE=F^{p_{0}^{e}}$ . (Here we allow $e=0.$)

PROOF. (i) $N^{p^{e}}=(0)$ implies $A$ is quasi-local which then implies $A^{p^{e}}$ is a
field.

(ii) Since $F^{p_{0}^{e}}\subseteqq K$ and $A^{p^{e}}\cap K=F^{p_{0}^{e}}\cap K$ we can take $E=A^{p^{e}}\cap K$.
(iii) By Zorn’s lemma there exists a maximal field $E$ in $A^{p^{e}}$ and containing

$A^{p^{e}}\cap K$. If $gE\subset F^{p_{0}^{e}}$ (strict inclusion), then there exists $a_{0}\in F^{p_{0}^{e}},$ $a_{0}\in EgE$ ,
$a\in A^{p^{e}},$ $a\not\in E$ such that $ga=a_{0}$ . Since $F_{0}$ is pure inseparable over $K$, there
exists a smallest positive integer $f$ such that $a^{p_{0}^{f}}\in gE$ . Thus, $a^{pf}=b+n^{p^{e}}$

where $b\in E$ and $n^{p^{e}}\in N^{p^{e}}$ . Since $N^{p^{e}}=N^{P^{e+1}}$ , there exists $n_{1}\in N$ such that
$n^{p_{1}^{e+f}}=n^{p^{e}}$ . Thus, $E(a-n^{p_{1}^{e}})$ is a field which contradicts the maximality of $E$ .

(iv) Let $E$ be a maximal field such that $A^{P^{e}}\cap K\subseteqq E\subseteqq A^{p^{e}}$ . If $gE\subset F_{0^{e}}^{P}$ ,
then there exists $a_{0}\in F^{p_{0}^{e}},$ $a_{0}\not\in gE,$ $a\in A^{p^{e}},$ $a\not\in E$ such that $ga=a_{0}$ . Since $F_{0}$

is pure inseparable over $K$, there exists a smallest positive integer $f$ and a
positive integer $h$ such that $a^{p_{0}^{f}}\in gE$ and $a^{p_{0}^{f+h}}\in K$. Thus, $a^{pf}=b+n^{p^{e}}$ where
$b\in E$ and $n^{p^{e}}\in N^{p^{e}}$ . By hypothesis, $a$ can be chosen so that $a^{pf+h}\in K$. Thus,
$a^{pf+h}=b^{P^{h}}+n^{p^{e+\hslash}}$ and since $b^{p^{h}}\in K,$ $n^{pe+h}=0$ . Since $R^{p^{e}}=(0),$ $A^{p^{e}}$ has no nil-
potent elements. Hence, $n^{p^{e}}=0$ . Therefore, $E(a)$ is a field which contradicts
the maximality of $E$ . Q. E. D.

In particular, when $e=0$ in (iii) and (iv), then $E$ is a K-coefficient field in
$A$ . The conditions in (iv) with $e=0$ contrast with those of Theorem 2 below.

2. Let $A$ be quasi-local with unique maximal ideal $N$ and let the charac-
teristic of $F_{0}$ be arbitrary.

THEOREM 2. If $N$ is nil and $F_{0}$ has a separating transcendence basis over
$K$, then $A$ has a K-coefficient field.

PROOF. Let $B_{0}$ be a separating transcendence basis of $F_{0}$ over $K$ and
$B\subseteqq A$ a counterimage of $B_{0}$ . Then $K[B]\cap N=(0)$ , otherwise the algebraic
independence of $B_{0}$ over $K$ is contradicted. Since $A$ is quasi-local, $K(B)\subseteqq A$ .
Let $F$ be a maximal field $\supseteqq K(B)$ . If $gF\subset F_{0}$ then $F_{0}$ is algebraic over $gF$

and there exists $a_{0}\in F_{0},$ $a_{0}\not\in gF,$ $a\in A,$ $a\not\in F$ such that $ga=a_{0}$ . Since $N$ is
nil, $A$ is algebraic over $F$ and it follows that $F(a)$ is quasi-local with unique
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maximal ideal $F(a)\cap N$. Since $Kerg|F(a)=F(a)\cap N=radica1$ of $F(a)$ and
$F(a)$ is finite dimensional over $F$ and $gF(a_{0})$ is separable over $gF$, it follows
that there exists a field $F^{*}\supset F$ such that $gF^{*}=gF(a_{0})$ by Wedderburn’s
Principal Theorem. This contradicts the maximality of $F$ . Hence $gF=F_{\mathfrak{g}}$ .

Q. E. D.
We also see that if $F_{0}$ is arbitrary over $K$, there exists a field $F,$ $K\subseteqq F\subseteqq A$ ,

such that $F_{0}$ is pure inseparable over $gF$.

Appendix

The following is an example of a quasi-local algebra which is such that
$A^{p^{i}}\cap K=F^{p_{0}^{i}}\cap K$ for all positive integers $i$ and yet $A$ does not have a K-
coefficient field.

Let $K=J_{p}(s, t, u, v)(s^{1/p}, t^{1/p})$ where $J_{p}=GF[p]$ and $s,$ $t,$ $u,$ $v$ are independent
indeterminates over $J_{p}$ . Let

$F_{0}=J_{p}(s^{1/p}, t^{1/p}, u^{1/p}, v^{1/p})(u^{1/p^{2}}, v^{1/p^{2}})(s^{1/P^{2}}u^{1/p^{2}}+t^{1/p^{2}}v^{I/p^{2}})$ .
Then

$F^{p_{0}}=J_{p}(s, t, u, v)(u^{1/p}, v^{\iota/p})(s^{1/p}u^{1/p}+t^{1/p}v^{1/p})$

and
$F^{p_{0}}\cap K=J_{p}(s, i, u, v)$ .

Let $K_{0}=F^{p_{0}}\cap K$ and consider the tensor product $A=F_{0}\times K$ over $K_{0}$ . Let $g$

be the homomorphism of $F_{0}\times K$ onto $F_{0}$ such that $gF_{0}\times 1=F_{0}$ and $g1\times K=K$.
Identify $1\times K$ and $K$ and let $N=Kerg$.

For any positive integer $i,$ $A^{p^{i}}\cap K\supseteqq A^{p^{i}}\cap(F^{p_{0}}\cap K)$ and since $A$ has a
$K_{0}$ -coefficient field, namely $F_{0}\times 1,$ $A^{p^{i}}\cap(F^{P_{0}}\cap K)=F^{p_{0}^{i}}\cap(F^{p_{0}}\cap K)$ by Remark 1
following Corollary 1. Thus, $A^{P^{i}}\cap K\supseteqq F^{p_{0}^{i}}\cap(F^{P_{0}}\cap K)=F^{p_{0^{i}}}\cap K$. Hence, $A^{p^{i}}$

$\cap K=F_{0^{i}\cap}^{p}K$.
Since $K^{p}\subseteqq K_{0},$ $N^{p}=(0)$ and thus $(N^{p})\subseteqq A^{p}(K)$ is the zero ideal. Now

$A^{p}(K)=(F^{P_{0}}\times 1)(K)=F^{P_{0}}\times K$ and since $F^{p_{0}},$ $K$ are not linearly disjoint over $K_{0}$ ,
$Kerg|A^{p}(K)\neq(0)$ . Hence, $Kerg|A^{P}(K)\neq(N^{P})$ and thus, by Remark 1, $A$

cannot have a K-coefficient field.
Creighton University
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