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\S 1. Introduction.

A Hurwitz function is a function of one variable $z$ whose derivatives of
all orders at $z=0$ are integrall).

It is nearly obvious that any transcendental entire Hurwitz function $mus\Gamma$

be at least of exponential order and type one. Various improvements on this
fact have been found by Kakeya [1] and P\’olya [2].

S. Kakeya proved that any entire Hurwitz function whose maximum
modulus $M(r)=\max_{|z|=}|f(z)|$ satisfies the relation

(1.1) $\lim_{r\rightarrow\infty}\frac{r^{1/2}M(r)}{e^{r}}=0$

must be a polynomial.
G. P\’olya sharpened this theorem to show that a transcendental entire

Hurwitz function must satisfy

(1.2) $\lim_{r\rightarrow}\sup_{\infty}M(r)e^{-r}\sqrt{r}\geqq\frac{1}{\sqrt{2\pi}}$

while the function

(1.3) $\varphi(z)=\sum_{\nu=0}^{\infty}\frac{z^{(2^{\nu})}}{(2^{\nu})!}$

satisfies

(1.4) $ M(r)e^{-r}\sqrt{r}<\frac{1}{\sqrt{2\pi}}+\epsilon$

for $r>r_{0}(\epsilon)$ and $\epsilon>0$ .
All these conditions are in terms of certain upper limits involving the

maximum function $M(r)$ . It may therefore be of interest to establish a pre-
cise dividing line for the growth of $M(r)$ below which one finds only polyno-
mials. We do this in the present paper and discuss certain generalizations on
the concept of entire Hurwitz functions.

*Research supported in part by a grant from the National Science Foundation.
1) All results discussed here are equally valid if we consider Gaussian integers

or integers in any imaginary quadratic number field instead of rational integers.
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\S 2. Transcendental entire Hurwitz function of slow growth.

DEFINITION.

$\varphi(r)=\max_{n}\frac{r^{n}}{\Gamma(n+1)}$ $(r\geqq 0)$ .

THEOREM 1. Let $\psi(r)$ be any increasing function such that for every $N$,

there exists an $r_{N}$ so that $\psi(r)>r^{N}$ for all $r>r_{N}$ , then there exists a non-
denumerable set of Hurwitz functions satisfying $M(r)<\varphi(r)+\psi(r)$ for all $r\geqq R$ ,

where $R$ is a suitable positive number depending only on $\psi$ .
PROOF. Let $ 0\leqq n_{1}<n_{2}<\ldots<n_{i}<\ldots$ be a sequence of integers such that

$n_{i+1}>4n_{i}$ and

\langle 2.1) $\psi(r)>2r^{n_{i^{-1}}}$

for any $r>n_{i}/4$ . Then the function

(2.2) $f(z)=\sum_{i=1}^{\infty}\frac{z^{n_{i}}}{n_{i}!}$

has the described property. For $\frac{n_{k}}{4}<r\leqq\frac{n_{k+1}}{4}$ we have

$\langle 2.2^{\prime})$ $M(r)=\sum_{i=1}^{\infty}\frac{r^{n_{i}}}{n_{i}!}=\sum_{i<k}\frac{r^{n_{i}}}{n_{i}!}+\frac{r^{n_{k}}}{n_{k}!}+\sum_{\triangleright k}\frac{r^{n_{i}}}{n_{i}!}=S_{1}+S_{2}+S_{3}$ .

We now estimate $S_{1},$ $S_{2}$ and $S_{3}$ . By (2.1) we have

\langle 2.3) $S_{1}=\Sigma\frac{r^{nt}}{n_{i}!}\leqq n_{k-1}\cdot\frac{r^{n_{k-1}}}{n_{k-1}!}\leqq r^{n_{k-1}}<\frac{1}{2}\psi(r)$ .

By the definition of $\varphi$ , we have

\langle 2.4) $S_{2}=\frac{\gamma^{n_{k}}}{n_{k}!}\leqq\varphi(r)$ .

Now, since $n!>(n/e)$“, we have

\langle 2.5) $S_{8}=\sum_{i>k}\frac{r^{n_{i}}}{n_{t}!}\leqq\frac{r^{n_{k+1}}}{n_{k+1}!}$ . $\sum_{\iota=0}^{\infty}(\frac{1}{4})^{\iota}$

$<2\cdot(\frac{e}{4})^{n_{k+1}}<1<\frac{1}{2}\psi(r)$

for $r$ sufficiently large, say $r>R$ .
Combining (2.3), (2.4) and (2.5), we get

$M(r)<\varphi(r)+\psi(r)$ for $r>R$ .
It is clear that any infinite subsequence of our sequence $\{n_{t}\}$ gives rise

to a transcendental entire Hurwitz function whose rate of growth is not greater
than that of $f(z)$ and there are $2^{\aleph 0}$ such subsequences.

F. Gross [15] has generalized this result to functions of several complex
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variables.

\S 3. Lower bounds for the growth of transcendental entire Hurwitz
functions.

THEOREM 2. If $M(r)<\varphi(r)+r^{n}$ for some $n$ and all $r>\gamma_{0}$ then $f(z)$ is a
polynomial.

PROOF. For

$f(z)=\sum_{k=0}^{\infty}\frac{a_{k}}{k!}z^{k}$

we have

(3.1) $[M(r)]^{2}\geqq\frac{1}{2\pi r}\oint_{|_{7},|=r}|f(z)|^{2}\cdot|dz|=\sum_{k-- 0}^{\infty}\frac{|a_{k}|^{2}}{(k!)^{2}}r^{2k}$ .

Now pick $r_{1}\geqq\gamma_{0}$ so that $\varphi(r)>r^{n}$ for all $\gamma>r_{1}$ , then for any $k>r_{1}$ we have
$|a_{k}|\leqq 1$ , since otherwise $(i. e. |a_{k}|\geqq 2)$ we should have

(3.2) $[M(r)]^{2}\geqq 4[\varphi(r)]^{2}>(\varphi(r)+r^{n})^{2}$

when $r^{k}/k!=\varphi(r)$ or $r\approx k+\frac{1}{2}>r_{1}$ , contrary to hypothesis.

Assume now $|a_{k}|=1$ for some sufficiently large $k$ and that $a_{\iota}\neq 0$ for $l<k$

then, if we pick $r$ so that $\varphi(r)=\gamma^{k}/k$ ! we have, from (3.1)

(3.3) $[\varphi(r)]^{2}+\frac{r^{2l}}{(l!)^{a}}<[\varphi(r)]^{2}+2r^{n}\varphi(r)+r^{2n}$

or cancelling $[\varphi(r)]^{2}$ , taking logarithm, considering $r\approx k+\frac{1}{2}$ and $\log l=O(\log r)$

we have

(3.4) 21 $\log r-21\log l+2l<r+O(\log r)$ .
Dividing by $r$ and setting $\lambda=r/l(>1)$ , we get

(3.5) $\frac{2(\log\lambda+1)}{\lambda}<1+O(\frac{\log r}{r})=1+o(1)$ .
The function $y=2(\log x+1)/x$ satisfies $y>1$ for $1\leqq x\leqq 5$ .

Since $\lambda>1$ this inequality leads to $\lambda>4$ for sufficiently large $r$ and hence
we get $l<k/4$ for all large $k$ . $\ln$ other words $a_{m}=0$ for all $k/4\leqq m<k$

whenever $a_{k}\neq 0,$ $k>k_{0}$ .
If $f(z)$ is transcendental we can pick $k_{0}<k_{1}<k_{2}$ so that $a_{k_{1}}\neq 0,$ $a_{k_{2^{\mp}}}^{\prime}0$

and $a_{m}=0$ for $k_{1}<m<k_{2}$ . If we pick $r$ so that $r^{k_{2}}/k_{2}!=\varphi(r)$ and $\arg(z)$ so
that $\arg(a_{k_{1}}z^{k_{1}})=arg(a_{k2}z^{k_{2}})$ , then $M(r)\geqq|f(z)|$ for this particular $z$ . Thus we
have

(3.6) $M(r)\geqq\varphi(r)+\frac{r^{k_{1}}}{k_{1}!}-\sum_{l<k_{1}/4}\frac{|a_{\iota}|}{l!}\cdot r^{\iota}-\sum_{k_{2}m>a}\frac{r^{m}}{m!}$ .
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Now we estimate these terms.
Since $r>k_{1}/4$ , we have

(3.7) $\sum_{\iota<k_{1}/4}\frac{|a_{l}|}{l!}$ . $r^{\iota}\leqq A\cdot\sum_{l<k_{1}/4}\frac{r^{\iota}}{l!}$

$\leqq A\cdot\frac{r^{k_{1}/4}}{\Gamma(\frac{k_{1}}{4}+1)}$

.
$\sum_{\iota<k_{1}/4}1=A\cdot\frac{k_{1}}{4}\frac{r^{k_{1}/4}}{\Gamma(\frac{k_{1}}{4}+1)}$

$=A\cdot\frac{\gamma^{k_{1}/4}}{\Gamma(\frac{k_{1}}{4})}<\frac{1}{2}$

. $\frac{r^{k_{1}}}{k_{1}!}$

where $ A=\max$ $\{|a_{\iota}|\}$ is bounded, since $|a_{\iota}|\leqq 1$ for sufficiently large $l$ .
$l=1,2,3,\cdots,(k_{1}/1)$

(3.8) $\sum_{\pi\iota>4k_{2}}\frac{r^{m}}{m!}<\frac{r^{4r}}{\Gamma(4r+1)}\sum_{s=0}^{\infty}(\frac{1}{4})^{s}<2\cdot(\frac{e}{4})^{4r}<1$

for sufficiently large $r$.
Now we must show that $r^{k_{1}}/k_{1}$ ! is greater than $r^{N}$ for sufficiently large $r$.
Here we have two possibilities. If $\sqrt{r}\leqq k_{1}<r/4$ , then

(3.9) $\frac{r^{k_{1}}}{k_{1}!}>(\frac{r}{k_{1}})^{k_{1}}>4^{k_{1}}>4^{\Gamma r}>2r^{N}$

for $r$ sufficiently large. If $k_{1}<\sqrt{\gamma}$ , then

(3.10) $\frac{r^{k_{1}}}{k_{1}!}>(\frac{r}{\sqrt{r}})^{k_{1}}=r^{k_{1}/2}>2r^{N}$

for $r$, and hence $k_{1}$ , sufficiently large.
Thus for sufficiently large choices of $k_{1},$ $k_{2}$ and suitable choices of $r$, we

get $M(r)>\varphi(r)+r^{N}$ contrary to hypothesis.
Using Stirling’s formula for $\Gamma(n)$ we can obtain an asymptotic expansion

for $\log\varphi(r)$ of the form

(3.11) $\log\varphi(r)=r-\frac{1}{2}\log r-\frac{1}{2}\log 2\pi+\frac{c_{1}}{r}+\frac{c_{2}}{\gamma^{2}}+\cdots$

$+\frac{c_{n}}{r^{n}}+O(\frac{1}{r^{n+1}})$

where the $c_{\nu}$ are rational and can be computed successively. In particular,
we have $c_{1}=1/24$ and $c_{2}=0$ which leads to the following improvement on the
results of Kakeya and P\’olya.

COROLLARY. For every $\epsilon>0$ there exists a transcendental entire Hurwitz
function with

(3.12)
$\lim_{r\rightarrow}\sup_{\infty}\frac{\sqrt{2\pi r}\cdot e^{-r}M(r)}{(1+\frac{1+\epsilon}{24r})}<1$
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while every entire Hurwitz function for which

(3.13)
$\lim_{r\rightarrow\infty}\sup\frac{\sqrt{2\pi r}\cdot e^{-r}M(r)}{(1+\frac{1-\epsilon}{24r})}\leqq 1$

is a polynomial.

\S 4. Two-point Hurwitz functions.

Both authors [3], [4] have considered functions all of whose derivatives
are integral valued at several integral points. While the results are satis-
factory in so far as the minimal order of such transcendental functions is
concerned, we have so far been able to determine the minimal type only in
the case of two points. In the particular case of functions which are entire
Hurwitz functions at two consecutive integers, say $0$ and 1, much of the
analysis of \S 2 and \S 3 can be carried out to give sharper results on their rate
of growth. In this and later sections we use $[x]$ to denote the greatest integer,
not exceeding $x$.

LEMMA. If $f(z)$ is an entire Hurwitz function with $M(r)=\psi(r)$ , then $g(z)$

$=f(z(z-1))$ is an entire Hurwitz function at $0$ and 1 with $M(r)\leqq\psi(r(r+1))$ .
PROOF. Obvious.
As a consequence of Theorem 1 we have, therefore,
THEOREM 3. Let $\varphi(r)$ and $\psi(r)$ be as in Theorem 1. Then there exis $ts$ a

non-denumerable set of entire Hurwitz functions at $0$ and 1 with $M(r)$

$<\varphi(r(r+1))+\psi(r)$ for $r>R$ where $R$ depends only on $\psi$ .
On the other hand, we can prove
THEOREM 4. If $g(z)$ is an entire Hurwitz function at $0$ and 1 and $M(r)$

$\leqq\varphi(r(r-1))$ for all $\gamma>\gamma_{0}$ then $g(z)$ is a polynominal.
PROOF. We can expand $g(z)$ in a series

(4.1) $g(z)=\sum_{n=0}^{\infty}a_{n}z^{[\frac{n+1}{2}]}\cdot(z-1)^{\subset n/2)}$

where

(4.2) $ a_{n}=\frac{1}{2\pi i}\oint_{|\zeta|=r}\frac{g(\zeta)}{\zeta^{[\frac{n+2}{2}]}(\zeta-1)^{[\frac{n+1}{2}]}}d\zeta$ .

Now, $[n/2]!$ . $a_{n}$ is an integer, because

(4.3) $(g^{([n/2])}(\zeta))_{\zeta=0,1}=\sum_{k=[n/2]}^{n-1}c_{k}a_{k}\pm[n/2]$ !. $a_{n}=integer$

and $c_{k}$ is divisible by $[n/2]$ !, so by induction hypothesis

(4.3) $\sum_{k=[n/2]}^{n-1}c_{k}a_{k}=integer$
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and $[n/2]$ ! . $a_{n}$ is an nteger. Thus $g(z)$ is an entire Hurwitz function at $0$

and 1 if and only if

(4.4) $g(z)=\sum_{n=()}^{\infty}\frac{b_{n}}{[n/2]!}z^{[\frac{n+I}{2}]}(z-1)^{[n/2]}$

with $b_{n}=integer$ for $n=0,1,2$ , $\cdot$ . . From (4.2) we get

(4.5) $|b_{n}|<\frac{[n/2]!M(r)}{r^{[n2]}(r-1)^{[\frac{n+1}{2}]}}\leqq\frac{M(r)}{\varphi(r(r-1))}$ ,

if we choose $r$ so that

(4.6) $\varphi(r(r-1))=\frac{(r(r-1))^{\subset n/21}}{[n/2]!}$ .
Thus, if $M(r)\leqq\varphi(r(r-1))$ for $r>r_{0}$ then $|b_{n}|<1$ , and hence $b_{n}=0$ , for $n>n_{0}$ .
This means that $g(z)$ is a polynomial.

REMARK. Comparing Theorems 3 and 4 we see that there exist trans-
cendental entire Hurwitz functions at $0$ and 1 with $M(r)<\exp(r^{2}+r-\log r+O(1))$

while there do not exist such functions with $M(r)<C\exp(r^{2}-r-\log r)$ for
some positive constant $C$ . Therefore, there remains the question of the best
constant $-1\leqq\sigma_{1}\leqq 1$ so that all transcendental entire Hurwitz functions at $0$

and 1 must satisfy $M(r)<\exp(r^{2}+\sigma_{1}r+o(r))$ for arbitrarily large $r$ .
We can recapture the precision attained in the one point case if we modify

the region in which we maximize $|f(z)|$ .
DEFINITION.

(4.7) $M^{*}(r)=\max_{|z(z-1)|\leqq r^{2}}|f(z)|$ .

THEOREM 5. If f$(z)$ is an entire function at $0$ and 1 and $M^{*}(r)<\varphi(r^{2})+r^{n}$

for some $n$ and all $r>R$ , then $f(z)$ is a polynomial. On the other hand, if $\psi(r)$

is as in Theorem 1. then there exists a non-denumerable set of entire Hurwitz
functions at $0$ and 1 with $M^{*}(r)<\varphi(r^{2})+\psi(r)$ .

PROOF. Equation (4.4) states that $f(z)$ is an entire Hurwitz function at $0$

and 1 if and only if it can be expressed in the form $f(z)=F_{1}(w)+zF_{2}(w)$ where
$w=z(z-1)$ and $F_{1},$ $F_{2}$ are entire Hurwitz functions. Since $M^{*}$ for $F_{1},$ $F_{2}$ is
the ordinary maximum function expressed in terms of $|w|^{1/2}$ if we consider
them as functions of $w$ , the second part of the theorem follows immediately
from Theorem 1 if we set $F_{2}=0$ and pick $F_{1}$ as one of the functions con-
structed there with $\psi(r)$ replaced by $\psi(r$” $)$ .

If $F_{2}$ is a polynomial, then the first part of the theorem follows immediately
from Theorem 2 applied to $F_{1}$ . If $F_{2}$ is transcendental, let $w_{0}$ be a point on
$|w|=r^{2}$ for which $|F_{2}(w)|$ is maximal.

To this $w_{0}$ there correspond the two values $z_{0}=\frac{1}{2}\pm\sqrt{w_{0}+\frac{1}{4}}$ whose

arguments differ by an amount which approaches $\pi$ as $ r\rightarrow\infty$ . All we need
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is that the angle is greater than $ 2\theta$ for some $\theta>0$ for $\gamma$ sufficiently large.
By the cosine theorem we have

(4.8) $|F_{1}(w_{0})+z_{0}F_{2}(w_{0})|^{2}\geqq|F_{1}(w_{0})|^{2}+|z_{0}|^{2}|F_{2}(w_{0})|^{2}-2|z_{0}||F_{1}(w_{0})||F_{2}(w_{0})|\cos\theta$

$=(|F_{1}(w_{0})|-|z_{0}||F_{2}(w_{0})|\cos\theta)^{2}+|z_{0}|^{2}|F_{2}(w_{0})|^{2}\sin^{2}\theta$

for at least one of the choices of $z_{0}$ , and hence $M^{*}(r)<\varphi(r^{2})+r^{n}$ would imply

(4.9) $\max_{|w|=r^{2}}|F_{2}(w)|<\frac{c}{r^{2}}(\varphi(r^{2})+r^{n})$ , $c=constant$

which would imply, by Theorem 2, that $F_{2}$ is a polynomial, contrary to hypo-
thesis.

\S 5. On the $p$-adic behavior of Hurwitz functions.

One of the main interests of Hurwitz functions is the fact that they
represent functions which are analytic, or at least formal power series, in
every completion of the rationals, or, more generally, the completion of the
field generated by the coefficients.

The classical results, like the P\’olya-Carlson theorem, have been success-
fully combined with p-adic analysis by B. Dwork in order to prove the
rationality of certain zeta-functions. Similarly, recent work by C. Pisot has
used p-adic analysis to generalize results by Salem and himself on closed sets
of algebraic numbers (P-V numbers), [11], [12].

In this section, we consider some simple consequences of the p-adic be-
havior of Hurwitz functions which generalize the results of the preceding
sections.

As usual, we define the p-adic valuation of a rational number $a/b$

$=p^{a}p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}$ $p_{s}^{\alpha_{s}}$ by $|a/b|_{p}=p^{-\alpha}$ .
The completion of the rational field $Q$ under this valuation is the p-adic

field $Q_{p}$ which can be considered analogous to the field of real numbers which
is the completion of $Q$ under the ordinary absolute value.

The analogue of the complex numbers is obtained by taking the algebraic
closure of $Q_{p}$ and then completing this field under the extension of the $p$-adic
valuation. We denote this field by $\Omega_{p}$ .

It is now possible to consider analytic functions over $\Omega_{p}$ . In particular,
entire functions are power series with coefficients in $\Omega_{p}$ which converge
(p-adically) for all values of the variable.

In the following, we use only the fact that Hadamard’s formula for the
radius of convergence of a power series remains valid in $\Omega_{p},$ $[11],$ $[12]$ .

Since a Hurwitz function has rational Taylor series coefficients $a_{n}/n$ ! where
$a_{n}’ s$ are integers, and $|a_{n}/n!|_{p}\leqq|1/s!|_{p}<p^{n/(p-1)}$ , it represents a function.
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analytic for $p$-adic numbers $z$ with $|z|_{p}<p^{-1/(p-1)}$ .
If the p-adic radius of convergence $R_{p}$ exceeds $p^{-1/(p-1)}$ , then the $a_{n}$ will

have to be divisible by increasing powers of $p$ , thereby increasing the lower
bound on the rate of growth of transcendental Hurwitz functions. More
precisely we have the following.

THEOREM 6. Let $f(z)=\sum_{n=0}^{\infty}a_{n}z^{n}/n$ ! represents a transcendental Hurwitz

function with p-adic radii of convergence $R_{p}$ , then $f(z)$ is $ai$ least of exponential
order and type

(5.1) $\sigma=\prod_{p}R_{p}p^{\frac{1}{p-1}}$ .
Conversely, assume $\sigma>1$ , then given any function $\chi(r)$ so that $\lim_{\tau\rightarrow}\inf_{\infty}\chi(r)/r$

$\geqq\sigma$ there exists a non-denumerable set of such Hurwitz functions with $M(r)$

$<e^{\chi(r)}$ for $r>R$ where $R$ depends only on $\chi$ .
PROOF. By Hadamard’s formula we have

(5.2) $R_{p}=\lim_{n\rightarrow\infty}\inf\sqrt[n]{|n!/a_{n}|_{p}}=p^{-\frac{1}{p-1}}\lim_{n\rightarrow}\inf_{\infty}\sqrt[n]{|1/a_{n}|_{p}}$ .

In other words

(5.2) $|a_{n}|_{p}<(R_{p}\cdot p^{\frac{1}{p-1}}-\epsilon)^{-n}$

for any $\epsilon>0$ and all $n>n_{\epsilon,p}$ . If $ R_{p}=\infty$ , this must be interpreted to mean
that $|a_{n}|_{p}<\epsilon^{n}$ for any $\epsilon>0$ and $n>n_{\epsilon,p}$ .

In case $ R_{p}=\infty$ for some $p$ , then for every $a_{n}\neq 0$ with $n>n_{\epsilon,p}$ we have
$\}$ $a_{n}|\geqq|a_{n}|_{p}^{-1}>\epsilon^{-n}$ so that the type of $f(z)$ is

(5.3) $\lim_{n\rightarrow}\sup_{\infty}|a_{n}|^{1/n}>1/\epsilon$ ,

that is, $f(z)$ is of at least maximal type of exponential order.
If $ R_{p}<\infty$ for all $p$ , we pick positive $N$ and $\delta$ . Define

(5.4) $\sigma_{N}=\prod_{p\leqq N}R_{p}\cdot p^{\frac{1}{p- 1}}$

(so that $\sigma_{N}\rightarrow\sigma$ as $ N\rightarrow\infty$) and pick $\epsilon>0$ so small that $\prod_{p_{=}^{\leq}V}(R_{p}p^{\frac{1}{p-1}}-\epsilon)>\sigma_{N}-\delta$ .
Finally let $n_{0}=\max_{p\leqq N}\{n_{e,p}\}$ . Then for every $a_{n}\neq 0$ with $n>n_{0}$ we have

(5.5) $|a_{n}|\geqq_{p\leqq N}II|a_{n}|_{p}^{-1}>(\sigma_{N}-\delta)^{n}$

so that the type of $f(z)$ satisfies

(5.5) $\sigma=\lim_{n\rightarrow}\sup_{\infty}|a_{n}|^{1/n}>\sigma_{n}-\delta$ .

If we let $ N\rightarrow\infty$ and $\delta\rightarrow 0$ , then we get the desired result.
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To construct functions with $M(r)<e^{\chi(r)},$ $r>r_{0}$ , we set $f(z)=\sum_{k}a_{n_{k}}z^{n_{k}}/n_{k}$ !

where $ 0<n_{1}<n_{2}<\ldots$ so that $n_{k}^{4}<n_{k+1}$ and the $a_{n_{k}}$ are positive integers so
that $a_{n_{k}}\leqq n_{k}^{n_{k}/4}$. Then for $\sqrt{n_{k}}<r\leqq\sqrt{n_{k+1}}$ we have

(5.6) $M(r)=\sum_{i=1}^{\infty}\frac{a_{n_{i}}}{n_{i}!}r^{n_{i}}=\sum_{i<k}\frac{a_{n_{i}}}{n_{i}!}$ . $r^{n_{i}}+\frac{a_{n_{k}}}{n_{k}!}\cdot r^{n_{k}}+\sum_{i>k}\frac{a_{n_{i}}}{n_{i}!}r^{n_{i}}$ .
Here

(5.7) $\sum_{i<k}\frac{a_{n_{i}}}{n_{i}!}r^{n_{i}}<n_{k-1}r^{n_{h-1}}<r^{\sqrt{r}+1}<\frac{1}{3}e^{r}<\frac{1}{3}e^{\chi(\gamma)}$

for $r>R$ , and

(5.8) $\sum_{i>k}\frac{a_{n_{i}}r^{n_{i}}}{n_{i}!}<\frac{n_{k+1}^{n_{k}+1^{\prime 4}}r^{n_{k+1}}}{n_{k+1}!}\sum_{s=0}^{\infty}(\frac{e}{\sqrt{r}})^{s}<2(\frac{e}{\sqrt{\gamma}})^{n_{k+1}}$

$<1<_{3}^{1}--e^{\chi(\gamma)}$

for $r>R$ . If we impose the additional condition

$(3a_{n_{k}})^{1/n_{k}}<\inf_{\sqrt{n_{k+1}}\prime_{n_{k}<r\leqq}}\chi(r)/r=b_{k}$
$(k>k_{0})$

we find that all three terms in (5.6) are less than $-3-e^{\chi(\gamma)}1$ and hence $M(r)<e^{\chi(r)}$

for $r>R$ .
If $\sigma=\infty$ , we set

1(5.9) $c_{k}=_{3}--\min\{b_{k}, n_{k}^{n_{k}/4}\}$

and choose

(5.10) $a_{n_{k}}=P\ddagger\prod_{P^{\Gamma 1}me}p[\frac{\log c_{k}}{p^{2}\log p}]n_{\dot{\kappa}}$

This satisfies $a_{n_{k}}^{1/n_{k}}<c_{k}$ since

(5.11) $p:\sum_{prime}\log p\cdot[\frac{\log c_{k}}{p^{2}\log p}]\leqq\log c_{k}\sum_{pp:rlme}\frac{1}{p^{2}}<\log c_{k}$

so that indeed $M(r)<e^{\chi(r)}$ . On the other hand we have

(5.12)
$|a_{n_{k}}|_{p}^{1/n_{k}}=p^{-[\frac{\log c_{k}}{p^{2}\log p}]}\rightarrow 0$

as $ k\rightarrow\infty$ so that $ R_{p}=\infty$ for all $p$ .
If $\sigma<\infty$ , we set $a_{n_{k}}=1$ for all $k$ with $b_{k}>n_{k}^{n_{lo}/4}$ and

(5.13) $a_{n_{k}}=_{p:}\coprod_{prlme}p[(\frac{\log R_{p}}{l\circ gp}+\frac{1}{p-1})\frac{n_{k}\log b_{k}-3}{1\circ g\sigma}]$

then clearly $a_{n_{k}}<\frac{1}{3}b_{k^{k}}^{n}$ and
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(5.14)
$|a_{n_{k}}|_{p^{/n_{k}}}^{1}=(R_{p}p^{\frac{1}{p-1}})^{-\frac{\log b_{k}}{\log\sigma}+o(\frac{1}{n_{k}})}$ .

Thus

(5.15) $\lim_{n_{k}}\sup_{\rightarrow\infty}|a_{n_{k}}|_{p}^{1/n_{k}}=(R_{p}p\frac{1}{p-1})^{-1}$

and the $p$ -adic radius of convergence is $R_{p}$ .
It may be worth emphasising a special case of our theorem.
COROLLARY. Every transcendental Hurwitz function which is entire in every

p-adic field is at least of exponential order, maxi $mal$ type. There exist such
Hurwitz functions satisfying $M(r)<e^{\chi(r)},$ $r>R$ , for any $\chi(r)$ with $\chi(r)/r\rightarrow+\infty$ .

The $p$-adic comments of this section can be extended to the two-point
case of \S 4 without difficulty.

THEOREM 7. Let $f(z)$ be a transcendental Hurwitz function at $0$ and 1 with
p-adic radii of convergence $R_{p}$ , then $f(z)$ is at least of order 2, and in case it
is of order 2, then its type is at least $\sigma$ , where

(5.16)
$\sigma=\prod_{R_{p}\leqq I}(R_{p}p^{1/(p-1)})\cdot\prod_{R_{p}>1}(R_{p}^{2}p^{1/(p-1)})$

.

Conversely, assume that $\sigma>1$ , then given any function $\chi^{*}(r)$ so that
$\lim_{r\rightarrow\infty}\inf\chi^{*}(r)/r^{2}\geqq\sigma$ , then there exists a non-denumerable set of such Hurwitz

functions with $M(r)<e^{\chi^{*}(\gamma)}$ for $r>R$ , where $R$ depends only on $\chi^{*}(\uparrow^{\prime})$ .
PROOF. As in the proof of Theorem 5, let $f(z)=F_{1}(w)+zF_{2}(w)$ where

$w=z(z-1)$ and $F_{i}(w),$ $(i=1,2)$ are Hurwitz functions, at least one of which is
transcendental. Then for $|z|_{p}<1$ we have $|w|_{p}=|z|_{p}\cdot|z-1|_{p}=|z|_{p}$ and for
$|z|_{p}>1$ , we have $|w|_{p}=|z|_{p}\cdot|z-1|_{p}=|z|_{p^{2}}$ . Therefore, the $p$ -adic radius of
convergence $R_{i,p}(w)$ of $F_{i}(u)$ is given by

(5.17) $R_{i,p}(w)=\left\{\begin{array}{l}R_{i,p}(z) if R_{i,p}(z)\leqq 1\\(R_{i,p}(z))^{2} if R_{i,p}(z)>1\end{array}\right.$

$(i=1,2)$

where $R_{i,p}(z)$ is the $p$ -adic radius of convergence of the function $G_{?}\cdot(z)$

$=F_{i}(z(z-1))$ .
Since $F_{i}(w),$ $(i=1,2)$ are Hurwitz functions with respect to $w$ , it is the

direct consequence of Theorem 6 that if $F_{i}(w)$ is transcendental, it is at least
of exponential order and type $\sigma_{i}$ where

(5.18) $\sigma_{i}=\prod_{p}R_{t,p}(w)p^{1/(p-1)}$

$=\prod_{R_{i,p}(z)\leqq 1}R_{i,p}(z)p^{1/(p-1)},\prod_{R_{tp}(z)>1}(R_{i,p}(z))^{2}p^{\iota/(p- 1)}$
.

Since $R_{p}=\min\{R_{1,p}(z), R_{2,p}(z)\}$ , we have
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(5.19)
$\sigma_{t}\geqq\prod_{R_{p}\leqq 1}R_{p}p^{1/(p-1)}\cdot\prod_{R_{p}>1}R_{p^{2}}p^{1/(p-1)}=\sigma$

.

This means that our function $f(z)$ is at least of order 2, and in case the
order $=2$ , then at least of type $\max(\sigma_{1}, \sigma_{2})\geqq\sigma$ , we get the desired result.

To construct functions with $M(r)<e^{\chi^{*}(\gamma)},$ $r>R$ , we use again the result of
Theorem 6. Let $w=z(z-1)$ , then, since $\sigma>1$ , we have $|w|=|z(z-1)|$

$\leqq r^{2}+r<(\sigma-\epsilon)r^{2}<\chi^{*}(r)$ for some $\epsilon>0,$ $r>R$ .
Form $f(w)=\sum_{k}a_{n_{k}}w^{n_{k}}/n_{k}$ ! by the method described in Theorem 6. Then,

for this $f(w)$ , we can estimate the series in a manner analogous to (5.6) by
replacing $r$ by $|w|$ and $\chi(r)$ by $\chi^{*}(r)$ . For example, (5.7) becomes

(5.7) $\sum_{i<k}\frac{a_{n_{i}}}{n_{i}!}$ . $|w|^{n_{i}}<|w|^{\sqrt{|w|+1}}<\frac{1}{3}e^{1wI}<\frac{1}{3}e^{\chi^{*}(r)}$ .

Similarly, all other terms of the series analogous to (5.6) are also estimated
as less than (1/3) $e^{\chi^{*}(r)}$ , and we have $M(r)<e^{\chi^{*}(r)}$ .

$CoROLLARY$ . Every transcendental Hurwitz function at $0$ and 1 which is
entire in every p-adic field is at least of order 2, maximal type. There exist
such Hurwitz functions satisfying $M(r)<e^{x^{*(r)}}$ , $\gamma>R$ for any $\chi^{*}(r)$ with
$\chi^{*}(r)/\gamma^{2}\rightarrow+\infty$ .

\S 6. Highly algebraic valued functions.

Our main interest so far has been in the fact that there are non-trivial
lower bounds for the rate of growth of the functions in question when we
restrict the set of functions by certain arithmetic conditions on their values
at one or more points.

One might ask whether these results can be extended to cases in which
the values of the functions satisfy arithmetic restrictions to values which do
not form a discrete set of numbers. In this section we show that some forms
of discreteness condition, such as restrictions on the denominators (of rational
values) or heights (of algebraic values) are needed to get analogous results.

The necessity of such restrictions was already shown in [3], [13] where
a transcendental entire function whose derivatives of all orders at any algebraic
points are algebraic numbers is constructed with arbitrary rate of growth
compatible with transcendentality.

We now show that even the addition of $p$ -adic restrictions gives no non-
trivial lower bounds on the rate of growth.

THEOREM 8. There exist series of polynomials with rational coefficients
that converge uniformly in every bounded region of every completion of an
algebraic number field to a transcendental function whose derivatives of all
orders at any algebraic point $\alpha$ lie in the field $Q(\alpha)$ . The functions can be
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constructed to be of arbitrarily slow rate of growth compatible with trans-
cendentality.

PROOF. Let $P_{1}(z)=z,$ $P_{2}(z),$ $\cdots$ be an enumeration of all irreducible polyno-
mials with integral coefficients so that, say, $\deg(P_{n}(z))\leqq n$ and height $(P_{n}(z))\leqq n$ .

Let
(6.1) $Q_{n}(z)=z^{n^{4}}(P_{1}(z)\cdot P_{2}(z) P_{n}(z))^{n}$ .

We now construct a sequence $c_{n}$ of rationals so that $c_{n}=(p_{1} p_{n})^{N}/p_{M}$

where $p_{k}$ is the k-th prime and $N,$ $M$ are functions of $n$ of sufficiently rapid
rate of increase so that $N$ is sufficiently large that for any prime $p_{k},$ $k\leqq n$ ,
we have for $|z|_{p_{k}}<n$ that
(6.2) $|c_{n}Q_{n}(z)|_{p_{k}}<p_{k}^{-N}n^{2n^{4}}$

goes to $0$ as rapidly as desired, while $M$ is chosen so large that for $|z|<n$

(6.3) $|c_{n}Q_{n}(z)|<(p_{1} p_{n})^{N}n^{2(n+1)n^{3}}/p_{M}$

goes to $0$ as rapidly as desired.

The function $f(z)=\sum_{n=1}^{\infty}c_{n}Q_{n}(z)$ now satisfies the condition of our theorem.

To see that it is transcendental, we only have to observe that the $Q_{n}(z)$ are
sections of the Taylor series of $f(z)$ since the term of lowest degree in $z$ in
$Q_{n}(z)$ is of degree

(6.4) $n^{4}>(n-1)^{4}+n^{S}>\deg Q_{n-1}$ .
If $\alpha$ is an algebraic number, then $P_{k}(\alpha)=0$ for some $k$ . Hence $Q_{n}^{(m)}(\alpha)=0$

for all $n>\max\{k, m\}$ and

(6.5) $f^{(m)}(\alpha)=\sum_{=n1}^{\max\{k,m\}}Q_{n}^{(m)}(\alpha)$

lies in the field of $\alpha$ .
PROBLEMS. Finally, we would like to propose problems which are related

to this paper.
Does there exist a transcendental entire function which (together with all

its derivatives) has algebraic values at every algebraic point and has trans-
cendental values at every transcendental point? [13]

This question can be interpreted as refering to the entire functions of a
complex variable or a p-adic variable. If we restrict our attention to functions
whose derivatives at $z=0$ belong to a fixed algebraic number field $K$, then
we can ask for the existence of such functions which are algebraic at algebraic
points and transcendental at transcendental points in several (even all) com-
pletions of $K$.

University of Saskatchewan, Regina Campus
and

University of California, Los Angeles
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