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E.S. Wolk [1], E. S. Northam [2], M. Kolibiar [3], and the author [4]

have studied the problem finding conditions for a lattice to be a Hausdorff
space in the interval topology. In papers [5-7], we have studied the concept
of $B(B^{*})$-covers in lattices, where

$B(a, b)=$ { $x|axb$ , that is, (a $Ux)\cap(bUx)=x=(a\cap x)U(b\cap x)$ } ,

$B^{*}(a, b)=\{x|abx\}$ .
We shall define the between-topology ( $\mathscr{D}(\mathscr{D}^{*})$ -topology) on a lattice $L$ by

taking the between sets $B(a, b)(B^{*}(a, b))$ as a sub-base for the closed sets.
We denote by 3 the interval topology, and by $\mathscr{D}(\mathscr{D}^{*})$ the $\mathscr{D}(\mathscr{D}^{*})$ -topology on $L$ .

In this note, we shall first consider the relations between the $9^{*}$-topology
and the J-topology, including the problem finding the conditions that 9*
coincides with $j$ . Next we shall consider the $\mathscr{D}^{*}$ -topology in lattices, and
then we shall apply our results to the theorems in the .9-topology.

We can easily prove that the $\mathscr{D}$ -topology coincides with the .5-topology in
a distributive lattice with $0,$ $I$ ([7]). We have $\mathscr{D}^{*}\geqq J$ in the sence that every

$c\mathcal{J}$ -closed set is $\mathscr{D}^{*}$ -closed in any lattice with $0,$ $I$. In a Boolean algebra we
have $J=\mathscr{D}^{*}$ [Th. 1.1]. In Theorems 1.2 and 1.3 we shall give the sufficient
conditions for $d=\mathscr{D}^{*}$ in some lattices.

Let $C(a)$ be the connected component containing $a$ . Then we shall call
that $L$ is totally disconnected if and only if $C(a)=a$ for any $a$ in $L$ . We shall
show in Theorem 2.1 that a modular lattice satisfying the ascending condition
is totally disconnected in the $\mathscr{D}^{*}$ -topology.

In Theorem 2.2 we shall find the sufficient condition for a modular lattice
to be a Hausdorff space in the $\mathscr{D}^{*}$ -topology.

We shall show the sufficient condition for an element of a lattice to be an
isolated element in the $\mathscr{D}^{*}$ -topology in Theorem 2.4 which is close connection
with the Northam’s theorem ([2]).

In a Boolean algebra $L$ , we have $(\beta)\rightarrow T$ . $D$ . $(J)$ and T. D. $(\mathscr{D}^{*})$ ,

where
$(\beta)$ : every element is over an atom,
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T. D. $(J)$ : $L$ is totally disconnected in the .9-topology,
T. D. $(\mathscr{D}^{*})$ : $L$ is totally disconnected in the $\mathscr{D}^{*}$-topology [Th. 3.1].

In a complemented modular lattice $L$ satisfying (a), we have
(1). $(\beta)\rightarrow H(J)$ and $H(\mathscr{D}^{*})$ (2). $H(J)\rightarrow H(\mathscr{D}^{*})$ ,

where
(a): the number of the complements of any element is finite,
$H(\mathscr{A})$ : $L$ is a Hausdorff space in the .9-topology,
$H(\mathscr{D}^{*})$ : $L$ is a Hausdorff space in the $\mathscr{D}^{*}$ -topology [Th. 3.2].

In a complemented modular lattice $L$ , satisfying (a), we have $(\beta)\rightarrow T$ . D. (Y)

and T. D. $(\mathscr{D}^{*})$ [Th. 3.3].

\S 1. Relations between the $\mathcal{J}$-topology and the $\mathcal{B}^{*}$-topology.
LEMMA 1.1. $J\leqq \mathcal{B}^{*}$ in a lattice with $0,$ $I$.
PROOF. Since $B^{*}(O, a)=\{x|x\geqq a\},$ $B^{*}(I, a)=\{x|x\leqq a\}$ , any $J$-closed set

is $\mathcal{B}^{*}$ -closed.
THEOREM 1.1. In a Boolean algebra, we have $J=\mathcal{B}^{*}$ .
PROOF. Let $L$ be a Boolean algebra, then we have the following equalities:

$B^{*}(a, b)=B(b, a^{\prime})=B(bUa^{\prime}, b\cap a^{\prime})$ , where $a^{\prime}$ is the complement of $a$ . Indeed
we can prove $abx\Leftrightarrow bxa^{\prime}$ as follows.

$b=(a\cap b)U(x\cap b)=(aUx)\cap b$ is equivalent to $b\leqq aUx,$ $a^{\prime}\cap b\leqq x$ and
$x=(a^{\prime}\cap b)Ux=(a^{\prime}Ux)\cap(bUx)$ . Dually $b=(aUb)\cap(xUb)$ is equivalent to
$x=(a^{\prime}\cap x)U(b\cap x)$ . $B(b, a^{\prime})=B(bUa^{\prime}, b\cap a^{\prime})$ is obtained in [6]. Now
$B(bUa^{\prime}, b\cap a^{\prime})$ is an .5-closed set, so that we have $\mathcal{B}^{*}\leqq j$ in a Boolean algebra.

THEOREM 1.2. In a complemented modular lattice $L$ satisfying (a), $we$

have $\mathcal{B}^{*}=J$ , where as above
(a): the number of complements of any element is finite.
PROOF. We shall prove that $B^{*}(a, b)$ is an .9-closed set for any two ele-

ments $a,$
$b$ of $L$ . Since it can be proved easily that $ B^{*}(a, b)=B^{*}(aUb, b)\cap$

$B^{*}(a\cap b, b)$ , it suffices to prove in the case $b\geqq a$ or $a\geqq b$ . Let $b\geqq a$ , and $a^{\prime}$

be a complement of $a$ . If we take $x\in[b\cap a^{\prime}, I]$ , then we have $b\geqq(a\cap b)$

$U(x\cap b)\geqq aU(b\cap a^{\prime})=(aUa^{\prime})\cap b=b$ by the modularity, and $(aUb)\cap(xUb)=b$ .
Thus $x\in B^{*}(a, b)$ , and hence we have $[b\cap a^{\prime}, I]\subset B^{*}(a, b)$ .

On the other hand we can prove that $ B^{*}(a, b)\subset[b\cap a^{\prime}, I]U[b\cap a^{\prime\prime}, I]U\cdots$ ,

where $a^{\prime},$ $a^{\prime\prime},$ $\cdots$ are the complements of $a$ , as follows.
Assume $x\in B^{*}(a, b)$ and $a\leqq b$ , that is, $b=aU(x\cap b)$ . Let $b^{\prime}$ be a com-

plement of $b,$ $y$ a complement of $a\cap X$, and put $a^{\prime}=b^{\prime}U(b\cap x\cap y)$ .
Then we get $a$ $Ua^{\prime}=aU(a\cap x)U(b\cap x\cap y)Ub^{\prime}=aU((b\cap x)\cap((a\cap x)Uy))Ub^{\prime}$

$=aU(b\cap x)Ub^{\prime}=bUb^{\prime}=I,$ $b\cap a^{\prime}=b\cap((b\cap x\cap y)Ub^{\prime})=(b\cap b^{\prime})U(b\cap x\cap y)$

$=b\cap x\cap y\leqq x$, and $a\cap a^{\prime}=a\cap x\cap y=0$ . Thus $x\in[b\cap a^{\prime}, I]$ with a comple-
ment $a^{\prime}$ of $a$ .
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It follows that $ B^{*}(a, b)\subset[b\cap a^{\prime}, I]U[b\cap a^{\prime\prime}, I]U\cdots$ , where $a^{\prime},$ $a^{\prime\prime},$ $\cdots$ are
the complements of $a$ .

Consequently, we have $ B^{*}(a, b)=[b\cap a^{\prime}, I]U[b\cap a^{\prime\prime}, I]U\cdots$ , where $a^{\prime},$ $a^{\prime/},$ $\cdots$

are the complements of $a$ . Thus, if $L$ satisfies the condition (a), then $B^{*}(a, b)$

is an .9-closed set for $b\geqq a$ . Similarly we can prove for $b\leqq a$ . This completes
the proof.

THEOREM 1.3. Let $L$ be any lattice with $0,$ $L$ If $L$ satisfies the conditions
$(b_{1}),$ $(b_{2})$ , then we have $J=\mathscr{D}^{*}$ , where

$(b_{1})$ : $a_{i}=\min\{x_{i,k}\}$ such that a $Ux_{i,k}=b,$ $x_{i,k}\geqq x_{i,k+1}$ for $b\geqq a$ ,
$i=1,2$ , $n,$ $k=1,2$ , $\cdot$ implies that $n$ is finite,

\langle $b_{2}$): $b_{i}=\max\{x_{i,k}\}$ such that $a\cap X_{i,k}=b,$ $x_{i,k}\leqq x_{i,k+1}$ for $b\leqq a$ ,
$i=1,2$ , $n,$ $k=1,2$, implies that $n$ is finite.

PROOF. Suppose that $abx$ for $b\geqq a$ . Then we have a $U(b\cap x)=b$ , so that
$b\cap X\in[a_{1}, I]U[a_{2}, I]$ U... from $(b_{1})$ , and hence $x\in[a_{1}, I]U[a_{2}, I]$ U....

On the other hand if we take any $x$ such that $a_{i}\leqq x\leqq L$ then $a_{i}=b\cap a_{i}$

$\leqq b\cap X\leqq b$ . We have $aU(b\cap x)=b$ since $aU(b\cap a_{i})=b$ , that is, $abx$ .
Consequently we have $ B^{*}(a, b)=[a_{1}, I]U[a_{2}, I]U\cdots$ for $b\geqq a$ .
Dually we have $ B^{*}(a, b)=[b_{1},0]U[b_{2},0]U\cdots$ for $b\leqq a$ . Thus if $L$ satisfies

$(b_{1}),$ $(b_{2})$ , then we have $d=\mathscr{D}^{*}$ .

\S 2. Theorems in the $\mathcal{B}^{*}$-topology.
LEMMA 2.1. Let $L$ be a modular lattice. If $a>b$ , then $B^{*}(a, b)\cap B^{*}(b,$ $ a\rangle$

$=\phi$ , where $\phi$ is the null set.
PROOF. Suppose that $abx$ and $bax$ for $a>b$ . Then we get $a\cap(bUx)=b$

from $abx$, and $bU(a\cap x)=a$ from $bax$. This is impossible, since $a\cap(bUx)$,

$=bU(a\cap x)$ by the modularity.
LEMMA 2.2. Let $L$ be a modular lattice. If $a$ covers $b(a\succ b)$ , that is, $azb$

implies $z=a$ or $z=b$ , then we have either $x\in B^{*}(a, b)$ or $x\in B^{*}(b, a)$ for any
$x\in L$ .

PROOF. Suppose that neither $abx$ nor $bax$. Then we have (a $Ub$) $\cap(bUx)\neq b$

and hence (a $Ub$) $\cap(bUx)>b$ , similarly we have $(a\cap b)U(a\cap x)<a$ .
From $a\succ b$ and $a\geqq a\cap(bUx)>b$ , we have $a\cap(bUx)=a$ , and also from

$a\succ b$ and $a>bU(a\cap x)\geqq b$ , we have $bU(a\cap x)=b$ . This is a contradiction,
since $a\cap(bUx)=bU(a\cap x)$ holds by the modularity. Moreover, $B^{*}(a, b)\cap B^{*}(b, a)$

$=\phi$ from Lemma 2.1, and hence we have the assertion.
THEOREM 2.1. Any modular lattice $L$ satisfying the ascending chain con-

dition $(\alpha)$ , is T. D. $(\mathcal{B}^{*})$ , that is, totally disconnected in the $\mathcal{B}^{*}$ -topology.
PROOF. For any two elements $a,$

$b$ of $L$ , we have $a(a\cap b)b$ . There exists
$c$ such that $a\succ c\geqq a\cap b$ from (a). $a(a\cap b)b,$ $ac(a\cap b)$ imply $acb$ by [6, Lem-
ma 8]. It follows that $b\in B^{*}(a, c)$ .
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By Lemmas 2.1 and 2.2, we have $B^{*}(a, c)\cap B^{*}(c, a)=\phi,$ $B^{*}(c, a)UB^{*}(a, c)$

$=L$ . Thus $L$ is totally disconnected in the $\mathscr{Q}^{*}$-topology.
COROLLARY 1. A modular lattice satisfying $(\gamma)$ is T. D. $(\mathscr{D}^{*})$ , where
$(\gamma)$ : every closed interval has a leap; that is, every closed interval has

two elements $a,$
$b$ such that $a\succ b$ or $b\succ a$ .

REMARK. M. Kolibiar [3] has proved that (1) $H(J)\rightarrow(\gamma)$ in a relatively
complemented lattice, (2) $(\beta)\rightarrow(\gamma)$ in a semi-modular relatively complemented
lattice with $0$, and (3) $(\gamma)\rightarrow(\beta)$ in a complemented modular lattice with $0$,
where as above

$(\beta)$ : every element is over an atom.
LEMMA 2.3. Let $L$ be a modular lattice. For any three elements $a,$ $b,$ $c$

of $L$ such that $a>c>b$ , if $c$ has no non-comparable relative complement in
any sub-interval of $[a, b]$ , then we have $B^{*}(a, c)UB^{*}(b, c)=L$ , where $B^{*}(a, c)\exists\ni a$ ,
$B^{*}(b, c)\exists\ni b$ .

PROOF. Let $a>c>b$ in a modular lattice $L$ . Then we have $B^{*}(a, c)\ni x$

if and only if $a\cap x=c\cap X$, and $B^{*}(b, c)\ni x$ if and only if $bUx=cUx$. Sup-
pose that $a\cap X>c\cap X,$ $cUx>bUx$ for $x\in L$ . Then we should have a con-
tradiction. Indeed, let $X=a\cap(bUx)=bU(a\cap x),$ $Y=c\cap(bUx)=bU(c\cap x)$ .
Then we have $b\leqq X\leqq a,$ $b\leqq Y\leqq c$ . Since $Y\cap(a\cap x)=c\cap X,$ $YU(a\cap x)$

$=X;[a\cap x, c\cap x]$ is isomorphic to [X, $Y$ ], and hence we have $X>Y$ from
$a\cap X>c\cap X$. Since $cU(bUx)=cUx,$ $c\cap(bUx)=Y$, we have $c>Y$ from
$cUx>bUx$. From $cUX=cU(a\cap x)=a\cap(cUx)\leqq a,$ $c\cap X=Y$ we have a
relative complement $X$ of $c$ in $[a\cap(cUx), Y]$ which is a sub-interval of
$[a, b]$ . This is a contradiction. Thus we have $x\in B^{*}(a, c)UB^{*}’(b, c)$ for any
element $x$ of $L$ . It is easily proved that $a$ does not belong to $B^{*}(a, c)$ .

THEOREM 2.2. A modular lattice $L$ is $H(\mathscr{D}^{*})$ if
$(\delta)$ : every closed interval of $L$ contains a chain as a sub-interval.
PROOF. Let $a,$

$b$ be any two distinct elements of $L$ and assume $a\not\equiv b$

without loss of generality. Then $[a\cap b, a]$ contains a sub-interval $[c, d]$

which is a chain. If an element $e$ exists with $c<e<d$, then it follows from
Lemma 2.3 that $B^{*}(c, e)UB^{*}(d, e)=L,$ $B^{*}(c, e)\ni\ni c$ and $B^{*}(d, e)\exists\ni d$ , whence
$B^{*}(c, e)\exists\ni a\cap b$ and $B^{*}(d, e)\exists\ni a$ . We have $B^{*}(c, e)\exists\ni b$ , since $ceb$ and $e(e\cap b)b$

imply ce $(e\cap b)$ ; namely $B^{*}(c, e)\ni e\cap b=a\cap b$ , which is a contradiction.
If $c\prec d$ , then we $getB^{*}(c, d)UB^{*}(d, c)=L$ from Lemma 2.2 and it can be

deduced in the same way as above that $B^{*}(c, d)\exists\ni b$ and $B^{*}(d, c)\exists\ni a$ .
$CoROLLARY$ . When $L$ is the direct product of a finite number of chains,

then $L$ is $H(\mathscr{D}^{*})$ .
LEMMA 2.4. Let $x$ be an element of a modular lattice $L$ such that $[x, I]$

satisfies $(\beta)$ and $[0, x]$ satisfies the dual of $(\beta)$ . Then any $y\in L$ different from
$x$ belongs to some $B^{*}(x, a)$ with $a\succ x$ or $x\succ a$ .
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PROOF. If $x\geqq y$ or $y\geqq x$, then $y\in B^{*}(x, a)$ since $y\leqq a\prec x$ or $y\geqq a\succ x$. If $y$

is non-comparable with $x$ , then $x(xUy)y$ and $xa(xUy)$ imply $xay$ [$6$ , Lemma 8].
THEOREM 2.3. Let be an element of a modular lattice $L$ such that $[x, I]$

satisfies $(\beta)$ and $[0, x]$ satisfies the dual of $(\beta)$ . If the number of elements
$a_{i},$ $b_{j}$ such that $a_{i}\succ x,$ $x\succ b_{j}$ is finite, then $x$ is an isolated element in the
$\mathscr{D}^{*}$ -topology.

PROOF. By Lemma 2.4, any element $y$ belongs to some $B^{*}(x, a)$ such that
$a\succ x$ or $x\succ a$ . Hence we have $L-x=B^{*}(x, a_{1})UB^{*}(x, a_{2})$ V... $UB^{*}(x, b_{1})U\cdots$ .
Then if the number of elements $a_{i}$ and $b_{j}$ is finite, $x$ is an isolated element
in the $g*$-topology.

LEMMA 2.5. In a modular lattice $B^{*}(a\cap b, b)\subseteqq B^{*}(a, aUb)$ and $B^{*}(aUb, b)$

$\subseteqq B^{*}(a, a\cap b)$ .
PROOF. $x\in B^{*}(a\cap b, b)$ implies $(a\cap b)U(x\cap b)=b,$ $((a\cap b)Ux)\cap b=b,$ $a$ $Ux$

$\geqq(a\cap b)Ux\geqq b,$ (a $Ux$)$\cap(aUb)=a)$ $b,$ $a$ $U(x\cap(aUb))=aUb$ and $x\in B$“$(a, aUb)$ .
THEOREM 2.4. Let $x$ be an element of a modular lattice $L$ such that

$[x, I]$ satisfies $(\beta)$ and $[0, x]$ satisfies the dual of $(\beta)$ , and $\{a_{i}\},$ $\{b_{j}\}$ the sets
of elements satisfying $a_{i}\succ x,$ $x\succ b_{j}$ respectively. If there exist $c$ and $d$ satisfy-
ing that $c\geqq a_{i}$ and $d\leqq b_{j}$ for all $i,$ $j$ and the interval $[d, c]$ has a finite length,
then $x$ is an isolated element in the $\mathscr{D}^{*}$ -topology.

PROOF. We can find $e$ and $f$ such that $c\geqq e=a_{i}$ and $d\leqq f=\wedge b_{j}$ . Since
$[x, e]$ has a finite length, we can choose a finite subsets $\{a_{1}, a_{2}, \cdots , a_{n}\}$ of $\{a_{i}\}$

so that $a_{1}\prec a_{1}Ua_{2}\prec\cdots\prec a_{1}Ua_{2}$ U... $Ua_{n}=e$ . Put $c_{0}=x$ and $ c_{\nu}=a_{1}Ua_{2}U\cdots$

$Ua_{\nu}$ .
Then for any $a_{\dot{t}}$ we can find $\nu$ such that $c_{\nu-1}\not\geqq a_{i}$ and $c_{\nu}\geqq a_{i}$ , and it fol-

lows from Lemma 2.5 that $B^{*}(x, a_{i})\subseteqq B^{*}(c_{\nu-1}, c_{\nu})$ . Similarly we can find $d_{0},$ $d_{1}$ ,

, $d_{m}$ , where $d_{0}=x,$ $d_{J}=b_{1}Ub_{2}$ U... $Ub_{l}$ , such that, for any $b_{j}B^{*}(x, b_{j})\subseteqq$

$B^{*}(d_{-1}, d_{\rho})$ holds for some $\mu$ . From Lemma 2.4 we obtain $L-x=\vee B^{*}(x, a_{i})$

V V $B^{*}(x, b_{j})\subseteqq B^{*}(c_{0}, c_{1})UB^{*}(c_{1}, c_{2})U\cdots UB^{*}(c_{n-1}, c_{n})UB^{*}(d_{0}, d_{1})U\cdots UB^{*}(d_{m-1}, d_{m})$ .
It is evident that $B^{*}(c_{\nu-1}, c_{\nu})\exists\ni x$ and $B^{*}(d_{-1}, d_{\mu})\exists\ni x$.

\S 3. Applications.
We shall apply our results in 1 and 2 to known results in the interval

topology.
EXAMPLE. Let $L$ be a lattice containing countably many element $0,$ $I$,

$x_{1},$ $x_{2},$
$\cdots$ , such that $I\succ x_{i}\succ 0$ for all $i$ . $0$ is not an isolated element in the

interval topology, but it is an isolated element in the $\mathscr{D}^{*}$ -topology by Theorem
2.4. $L$ is not $H(J)$ but $H(\mathscr{D}^{*})$ , moreover it is T. D. $(\mathscr{D}^{*})$ . Indeed, if we take
two distinct elements $a,$

$b$ of $L$ , and if they are non-comparable, then we
have $B^{*}(b, I)UB^{*}(I, b)=L,$ $B^{*}(b, I)\cap B^{*}(I, b)=\phi,$ $b\in B^{*}(I, b),$ $a\in B^{*}(b, I)$ .
Similarly we have the assertion in the case $a,$

$b$ are comparable.
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M. Katetov and E. S. Northam [2] have proved that $(\beta)$ is equivalent to
$H(\mathcal{J})$ in a Boolean algebra, where

$(\beta)$ : every element is over an atom.
THEOREM 3.1. In a Boolean algebra $L,$ $(\beta)$ implies T. D.(Y) and T. $D.(\mathscr{D}^{*})$ .
PROOF. For $x,$ $y(x\not\equiv y)$ of $L$ , let $z$ be the relative complement of $x\cap y$ in

$[x, 0]$ . Then we have an atom $p$ such that $z\geqq p\succ O$ . Since $[2, 0]$ is isomor-
phic to $[x, x\cap y]$ , there exists an element $w$ such that $x\geqq w\succ x\cap y$ . Hence
we have $B^{*}(w, x\cap y)UB^{*}(x\cap y, w)=L,$ $B^{*}(w, x\cap y)\cap B^{*}(x\cap y, w)=\phi,$ $x\in B^{*}(x$

$\cap y,$ $w$)
$,$

$y\in B^{*}(w, x\cap y)$ by Lemma 2.2. Thus $L$ is T. D. (Y) and T. D. $(\mathscr{D}^{*})$ by
Theorem 1.1.

M. Kolibiar [3] has proved that in any complemented modular lattice $L$

satisfying (c), $(\beta)$ is equivalent to $H(c\mathcal{J})$ , where
(c): if $L$ has an atom, then the number of its complements is finite.
We have proved in Theorem 1.2 that, in any complemented modular lattice

$L$ satisfying (a), $\mathscr{D}^{*}=\mathscr{L}$ .
THEOREM 3.2. In any complemented modular lattice $L$ satisfying (a) we

have the following:
(1). $(\beta)\rightarrow H(c\mathcal{J})$ and $H(\mathscr{D}^{*})$ ,
(2). $H(J)\rightarrow H(9^{*})$ .
PROOF. (1). Since it is easily seen that (a) implies (c), we have the asser-

tion from M. Kolibiar [3] and Theorem 1.2.
(2). From M. Kolibiar [3] and Theorem 1.2 we have $H(J)\rightarrow(\beta)\rightarrow(a)\rightarrow H(J)$

and $H(\mathscr{D}^{*})$ .
THEOREM 3.3. In any complemented modular lattice $L$ satisfying (a), $(\beta)$

implies T. D. $(J)$ and T. D. $(\mathscr{D}^{*})$ .
PROOF. From the remark of Corollary 1 of Theorem 2.1 we have $(\beta)\rightarrow\leftarrow(\gamma)$

in $L$ . From Corollary 1 and Theorem 1.2, we have the assertion.
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