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E.S. Wolk [1], E.S. Northam [2], M. Kolibiar [3], and the author
have studied the problem finding conditions for a lattice to be a Hausdorff
space in the interval topology. In papers [5-7], we have studied the concept
of B(B*)-covers in lattices, where

B(a, b)={x|axb, that is, U X)NODOIx)=x=(@nx)VOONx)},
B*(a, b)= {x]| abx} .

We shall define the between-topology (B(%*)-topology) on a lattice L by
taking the between sets B(a, b) (B*(a, b)) as a sub-base for the closed sets.
We denote by 4 the interval topology, and by $#(5*) the B($*)-topology on L.

In this note, we shall first consider the relations between the $*-topology
and the J-topology, including the problem finding the conditions that $*
coincides with 4. Next we shall consider the #*-topology in lattices, and
then we shall apply our results to the theorems in the J-topology.

We can easily prove that the $-topology coincides with the J-topology in
a distributive lattice with 0, 7 (7]). We have $*=J in the sence that every
Jg-closed set is B*-closed in any lattice with 0, 7. In a Boolean algebra we
have J=* [Th. 1.1]. In Theorems 1.2 and 1.3 we shall give the sufficient
conditions for 4 = $* in some lattices.

Let C(a) be the connected component containing a. Then we shall call
that L is totally disconnected if and only if C(a)=a for any a in L. We shall
show in Theorem 2.1 that a modular lattice satisfying the ascending condition
is totally disconnected in the B*-topology.

In Theorem 2.2 we shall find the sufficient condition for a modular lattice
to be a Hausdorff space in the $*-topology.

We shall show the sufficient condition for an element of a lattice to be an
isolated element in the $*-topology in Theorem 2.4 which is close connection
with the Northam’s theorem ([27]).

In a Boolean algebra L, we have (8)— T.D. (4) and T.D. (&%),
where

(B): every element is over an atom,
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T.D. (J): L is totally disconnected in the J-topology,

T.D. (#*%): L is totally disconnected in the $*-topology [Th. 3.1].

In a complemented modular lattice L satisfying (a), we have

D). BH—H) and H($*)  (2). HI)— H(P*),
where

(a): the number of the complements of any element is finite,

H(9): L is a Hausdorff space in the J-topology,

H(®*): L is a Hausdorff space in the #*-topology [Th. 3.2].

In a complemented modular lattice L, satisfying (a), we have (8)— T.D. (J)
and T.D. (&%) [Th. 3.31.

§1. Relations between the J-topology and the B*-topology.

LEMMA 1.1. J<* in a lattice with 0, T.

Proor. Since B¥*(0, a)={x| x=a}, B*{, a)={x|x=<a}, any J-closed set
is F*-closed.

THEOREM 1.1. In a Boolean algebra, we have 9= B*.

ProOOF. Let L be a Boolean algebra, then we have the following equalities:
B*(a, by= B, a")=B(b\Ja’, b a"), where a’ is the complement of a. Indeed
we can prove abx=bxa’ as follows.

b=nNnd)Jxnb)=@Ix)nb is equivalent to b=aUx,a’"b<x and
x=@nNbUx=@\IJx)yNnb\Yx). Dually b=(>@@Ib)N(xUb) is equivalent to
x=@ NOJbnNx). B, a)y=Bb\Ya', bna’) is obtained in [6]. Now
B(b\Ja’, b a')is an J-closed set, so that we have $* <4 in a Boolean algebra.

THEOREM 1.2. In a complemented modular lattice L satisfying (a), we
have #* =9, where as above

(@): the number of complements of any element is finite.

Proor. We shall prove that B*(q, b) is an J4-closed set for any two ele-
ments a, b of L. Since it can be proved easily that B*(a, b) = B*(a\Jb, b) N
B¥(anb, b), it suffices to prove in the case b=a or a=b. Let b=a, and «’
be a complement of a. If we take x=[bna’, ], then we have b=(ab)
Uanb)=aJbna)=(@\Ja’y"\b=>b by the modularity, and (a\Ub)N\{(x\Jb)=b.
Thus x < B*(a, b), and hence we have [bNa’, I]C B*a, b).

On the other hand we can prove that B*(a, b)c[bna’, ITI[bna”, I ---,
where a’, a”,--- are the'complements of a, as follows.

Assume xe B*(a,b) and a=<b, that is, b=a\J(x\b). Let b’ be a com-
plement of b, y a complement of ax, and put a’=0" UGN xNY).

Then we get a\Ja’ =a\Janx)JONxN)Jb' = a\J(bNnxNlan)\J y))\J b’
=aJbnNnVb' =bJb =L bnad =bNn{bNxnNI)Y=bNbYIbNxNY)
=bNnxNy=x,and ana=anxNy=0. Thus xe[bna’, ] with a comple-
ment a’ of a.
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It follows that B¥*(e,bycC[bna’, IJV[bNa”, IT\J -+, where a’, a”,--- are
the complements of a.

Consequently, we have B*(a,b)=[bNa’,I1J[bNa",I]J---, where a’,a”, ---
are the complements of a. Thus, if L satisfies the condition (a), then B*(a, b)
is an J-closed set for b=a. Similarly we can prove for 6 <a. This completes
the proof.

THEOREM 1.3. Let L be any lattice with 0, I. If L satisfies the conditions
(b)), (by), then we have S = B*, where

(by): a;=min {x;,} such that a\Jx;, =0, x;p = Xy 41 for b=a,
1=1,2,---,n, k=1,2,--- implies that n is finite,

(by): b;=max {x,z} such that aNx,,=0>b, X1 = X;p1 for b=aq,
1=1,2,---,n, k=1,2,--- implies that n is finite.

PROOF. Suppose that abx for b=a. Then we have a\U(bN\x)=10, so that
bnxela, ITUlLa,, I1\U--- from (b,), and hence x<= [a, IV [a,, I1\J---.

On the other hand if we take any x such that a;,=<x=1, then q;=bnaq;
=bnx=b. We have a\ (b x)=0b since a\J (b a;)=D>, that is, abx.

Consequently we have B*(a, b)=[a,, I1\J[a,, I\ --- for b=a.

Dually we have B*(a, b)=[b,, 0]\U[b,, 0]\U--- for b<a. Thus if L satisfies.
(b)), (by), then we have 9= B*.

§2. Theorems in the $*-topology.

LEMMA 2.1. Let L be a modular lattice. If a>b, then B*(a, b)n\B*(b, a)
= ¢, where ¢ is the null set.

PROOF. Suppose that abx and bax for a >b. Then we get an(b\Vx)=b
from abx, and b\J(anx)=a from bax. This is impossible, since aN\(H VU x)
=bU(an x) by the modularity.

LEMMA 2.2. Let L be a modular lattice. If a covers b(a>b), that is, azb
implies z=a or z=0>, then we have either x = B¥(a, b) or x € B¥(b, a) for any
xe L.

PROOF. Suppose that neither abx nor bax. Then we have (a\Ub)NB\Jx)=b
and hence (a¢\Jb)N(b\Jx) > b, similarly we have (an\b)U(an x) < a.

From a>b and a=an(b\Jx)>b, we have an(b\Ux)=aq, and also from
a>b and a> bU(amx)gb;we have b\U(a\x)=5b. This is a contradiction,
since an(d\Ux)=b\U(anx) holds by the modularity. Moreover, B*(a, b)) \B*(b, a).
=¢ from Lemma 2.1, and hence we have the assertion,

THEOREM 2.1. Any modular lattice L satisfying the ascending chain con-
dition («), is T.D. (B%), that is, totally disconnected in the B*-topology.

Proor. For any two elements a, b of L, we have a(a "\ b)b. There exists.
¢ such that a>c=anbd from (). alanb)b, ac(a\b) imply achb by [6, Lem-~
ma 8]. It follows that b B*(a, c).
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By Lemmas 2.1 and 2.2, we have B*(q, ) "\ B*(c, a) = ¢, B*(c, a)\J B¥(a, ¢)
= L. Thus L is totally disconnected in the $*-topology.

COROLLARY 1. A modular lattice satisfying (y) is T.D. (B*), where

() : every closed interval has a leap; that is, every closed interval has
two elements a, b such that a>>b or b>a.

REMARK. M. Kolibiar [3] has proved that (1) H(J)—(y) in a relatively
complemented lattice, (2) (8)—(y) in a semi-modular relatively complemented
lattice with 0, and (3) (y)—(B) in a complemented modular lattice with 0,
‘where as above

(B): every element is over an atom.

LEMMA 2.3. Let L be a wmodular lattice. For any three elements a, b, c
of L such that a>c>Db, if ¢ has no non-comparable relative complement in
any sub-interval of [a, b], then we have B*(a, ¢)\J B¥(b, ¢) = L, where B*(a,c)®a,
B¥*(b, c)y=» b.

PrOOF. Let a>c¢>b in a modular lattice L. Then we have B¥*(q,c¢)>x
if and only if annx=cnx, and B*®, ¢) = x if and only if b\Jx=c¢\Ux. Sup-
pose that anx>cnx, cUx>bUx for xe L. Then we should have a con-
tradiction. Indeed, let X=anN(GVx)=bU@anx), Y=cnGI)D=>bU(cN x.
Then we have b=X=Zaq, b=Y=c¢. Since YNn@nx=cnx YUlanx)
=X: [anx cnx] is isomorphic to [ X, Y], and hence we have X > Y from
anx>cnx Since cVOIUx)=c\Ux, cn(b\IUx)=Y, we have ¢>Y from
cJx>bUx, From cUX=cYlanx)=anlcUx)Za, cnX=Y we have a
relative complement X of ¢ in [an(c\Jx), Y] which is a sub-interval of
[a,b]. This is a contradiction. Thus we have x < B*(aq, ¢)\J B¥(, ¢) for any
element x of L. It is easily proved that a does not belong to B*(a, c).

THEOREM 2.2. A modular lattice L is H(B*) if

(0): every closed interval of L contains a chain as a sub-interval.

Proor. Let a,b be any two distinct elements of L and assume a£b
without loss of generality. Then [an b, a] contains a sub-interval [c, d]
which is a chain. If an element e exists with ¢<e<d, then it follows from
Lemma 2.3 that B*(c, e)\JUB*(d, e)=L, B¥c, ¢) ¢ and B*(d, ¢)» d, whence
B*¥(c,e) panb and B*(d, e)da. We have B*(c, e) b, since ceb and e(e N\ b)b
imply ce(e N\ b); namely B*(c,e) >enb=anb, which is a contradiction.

If ¢<d, then we get B*(c, d)\J B*(d, ¢)=L from Lemma 2.2 and it can be
deduced in the same way as above that B*(c, d) ® b and B*(d, ¢) ® a.

COROLLARY. When L 1s the direct product of a finite number of chains,
then L is H(B*).

LEMMA 2.4. Let x be an element of a modular lattice L such that [x, I]
satisfies (B) and [0, x] satisfies the dual of (B). Then any y € L different from
x belongs to some B¥(x, a) with a>x or x>a.
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Proor. If x=y or y=x, theny € B¥(x, @) sincey<a<xory=a>x Ify
is non-comparable with x, then x(x\Uy)y and xa(x\Uy) imply xay [6, Lemma 8].

THEOREM 2.3. Let be an element of a modular lattice L such that [x, I]
satisfies (B) and [0, x] satisfies the dual of (B). If the number of elements
a;, b; such that a;>>x, x>b; is finite, then x is an isolated element in the
B*-topology.

PrOOF. By Lemma 2.4, any element y belongs to some B*(x, a) such that
a>x or x>a. Hence we have L—x=B*(x, a,)\JB*(x, a,)\J - \U B¥(x, b))\ ---.
Then if the number of elements a; and b; is finite, x is an isolated element
in the @*-topology.

LEMMA 25. In a modular lattice B*lanb, b) € B*a, a\Jb) and B*(a\Jb, b)
< B*(a, anb).

PROOF. x& B*(an b, b) implies (anb)J(x\b) =b, ((anb)Jx)N\b=0b, a\Ux
=@nbJx=b, (aIx)N(@\ID)=a\Jb, a\J(x\(a\ID))=a\Jb and x & B*(a, a\Jb).

THEOREM 2.4. Let x be an element of a modular lattice L such that
[x, I] satisfies (B) and [0, x] satisfies the dual of (B), and {a;}, {b;} the sets
of elements salisfying a;>x, x>b; respectively. If there exist ¢ and d satisfy-
ing that c=a; and d<0b; for all i, and the interval [d, ¢] has a finite length,
then x is an isolated element in the B*-topology.

Proor. We can find ¢ and f such that c=ze=\a; and d<f= Ab,. Since
[x, e] has a finite length, we can choose a finite subsets {a,, a,, -, a,} of {a;}
so that ¢, <a,Va,< - <a;\Ja,\J---Ja,=e. Put ¢,=x and ¢, =a,\Ja,\J ---
U a,.

Then for any a; we can find v such that ¢,; % a; and ¢, = a;, and it fol-
lows from Lemma 2.5 that B*(x, a;) & B*(¢,~, ¢,). Similarly we can find d,, d,,
,dn, where dy=ux, d,=b,Jb,\U .- U b, such that, for any b; B*(x, b;) &
B*d,._,, d,) holds for some g. From Lemma 2.4 we obtain L—x=\/ B*(x, a;)
IV B¥(x, b;) S B*(cy, ¢)\IB*(cy, c)\ -+ \IB¥(Cpmy,y €)\IB¥(dy, d)\J -+-\IB¥(d s, di).
It is evident that B*(¢,-, ¢,) ® x and B*{,_,, d,) ® x.

§3. Applications.

We shall apply our results in 1 and 2 to known results in the interval
topology.

ExAMPLE. Let L be a lattice containing countably many element 0, I,
Xi, X, +-, such that I>x,>0 for all ¢. 0 is not an isolated element in the
interval topology, but it is an isolated element in the $#*-topology by Theorem
24. L is not H(Y) but H(#*), moreover it is T.D. (#*). Indeed, if we take
two distinct elements a, b of L, and if they are non-comparable, then we
have B*®, I)\UB*{, b) = L, B*®b, I)N\B*{, b) = ¢, b € B¥(, b), a = B¥*®, I).
Similarly we have the assertion in the case a, b are comparable.
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M. Katetov and E.S. Northam [2] have proved that (f) is equivalent to
H(9) in a Boolean algebra, where

(B): every element is over an atom.

THEOREM 3.1. In a Boolean algebra L, (B) implies T.D.(9) and T.D.(B*).

ProOF. For x,y (x£y) of L, let z be the relative complement of xN\y in
[x,0]. Then we have an atom p such that z=p>0. Since [z, 0] is isomor-
phic to [x, xy], there exists an element w such that x=w>xy. Hence
we have B*w, x"\y)\J B¥(xN\y, w) =L, B*w, x\y)N\B*xNy, w)=¢, x < B*x
Ny, w),y € B¥w, xN\y) by Lemma 22. Thus L is T.D. (4) and T.D. (8*) by
Theorem 1.1.

M. Kolibiar [3] has proved that in any complemented modular lattice L
satisfying (c), () is equivalent to H(J), where

(¢): if L has an atom, then the number of its complements is finite.

We have proved in Theorem 1.2 that, in any complemented modular lattice
L satisfying (a), #%=J.

THEOREM 3.2. In any complemented modular lattice L satisfying (a) we
have the following:

. (B—HW) and HS¥),

(2. H(Y9)— H(B*).

Proor. (1). Since it is easily seen that (a) implies (c), we have the asser-
tion from M. Kolibiar [3] and Theorem 1.2.

(2). From M. Kolibiar [3] and Theorem 1.2 we have H(9)— () — (a) — H(I)
and H($*).

THEOREM 3.3. In any complemented modular lattice L satisfying (@), (8)
implies T.D. (9) and T.D. (B*).

ProoF. From the remark of Corollary 1 of Theorem 2.1 we have (B) ()
in L. From Corollary 1 and Theorem 1.2, we have the assertion.
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