Between topology for lattices

By Yataro MATSUSHIMA

(Received Oct. 30, 1963) (Revised April 8, 1964)

E.S. Wolk [1], E.S. Northam [2], M. Kolibiar [3], and the author [4] have studied the problem finding conditions for a lattice to be a Hausdorff space in the interval topology. In papers [5-7], we have studied the concept of $B(B^*)$ -covers in lattices, where

 $B(a, b) = \{x \mid axb, \text{ that is, } (a \cup x) \cap (b \cup x) = x = (a \cap x) \cup (b \cap x)\},\$

 $B^*(a, b) = \{x \mid abx\}$.

We shall define the between-topology $(\mathscr{B}(\mathscr{B}^*)$ -topology) on a lattice L by taking the between sets B(a, b) $(B^*(a, b))$ as a sub-base for the closed sets. We denote by \mathscr{I} the interval topology, and by $\mathscr{B}(\mathscr{B}^*)$ the $\mathscr{B}(\mathscr{B}^*)$ -topology on L.

In this note, we shall first consider the relations between the \mathscr{B}^* -topology and the \mathscr{J} -topology, including the problem finding the conditions that \mathscr{B}^* coincides with \mathscr{J} . Next we shall consider the \mathscr{B}^* -topology in lattices, and then we shall apply our results to the theorems in the \mathscr{J} -topology.

We can easily prove that the \mathcal{B} -topology coincides with the \mathcal{S} -topology in a distributive lattice with 0, I ([7]). We have $\mathcal{B}^* \geq \mathcal{S}$ in the sence that every \mathcal{S} -closed set is \mathcal{B}^* -closed in any lattice with 0, I. In a Boolean algebra we have $\mathcal{S} = \mathcal{B}^*$ [Th. 1.1]. In Theorems 1.2 and 1.3 we shall give the sufficient conditions for $\mathcal{S} = \mathcal{B}^*$ in some lattices.

Let C(a) be the connected component containing a. Then we shall call that L is totally disconnected if and only if C(a) = a for any a in L. We shall show in Theorem 2.1 that a modular lattice satisfying the ascending condition is totally disconnected in the \mathscr{B}^* -topology.

In Theorem 2.2 we shall find the sufficient condition for a modular lattice to be a Hausdorff space in the \mathcal{B}^* -topology.

We shall show the sufficient condition for an element of a lattice to be an isolated element in the \mathcal{B}^* -topology in Theorem 2.4 which is close connection with the Northam's theorem ([2]).

In a Boolean algebra *L*, we have $(\beta) \rightarrow T. D. (\mathcal{I})$ and T. D. (\mathcal{B}^*) , where

 (β) : every element is over an atom,

T.D. (\mathcal{I}) : L is totally disconnected in the \mathcal{I} -topology,

T.D. (\mathcal{B}^*) : L is totally disconnected in the \mathcal{B}^* -topology [Th. 3.1].

In a complemented modular lattice L satisfying (a), we have

(1). $(\beta) \rightarrow H(\mathcal{S})$ and $H(\mathcal{B}^*)$ (2). $H(\mathcal{S}) \rightarrow H(\mathcal{B}^*)$,

where

(a): the number of the complements of any element is finite,

 $H(\mathcal{J})$: L is a Hausdorff space in the \mathcal{J} -topology,

 $H(\mathcal{B}^*)$: L is a Hausdorff space in the \mathcal{B}^* -topology [Th. 3.2].

In a complemented modular lattice L, satisfying (a), we have $(\beta) \rightarrow T. D. (\mathcal{S})$ and T. D. (\mathcal{B}^*) [Th. 3.3].

§1. Relations between the \mathcal{I} -topology and the \mathcal{B}^* -topology.

LEMMA 1.1. $\mathcal{I} \leq \mathcal{B}^*$ in a lattice with 0, *I*.

PROOF. Since $B^*(0, a) = \{x \mid x \ge a\}$, $B^*(I, a) = \{x \mid x \le a\}$, any \mathcal{J} -closed set is \mathcal{B}^* -closed.

THEOREM 1.1. In a Boolean algebra, we have $\mathcal{J} = \mathcal{B}^*$.

PROOF. Let L be a Boolean algebra, then we have the following equalities: $B^*(a, b) = B(b, a') = B(b \cup a', b \cap a')$, where a' is the complement of a. Indeed we can prove $abx \rightleftharpoons bxa'$ as follows.

 $b = (a \cap b) \cup (x \cap b) = (a \cup x) \cap b$ is equivalent to $b \le a \cup x, a' \cap b \le x$ and $x = (a' \cap b) \cup x = (a' \cup x) \cap (b \cup x)$. Dually $b = (a \cup b) \cap (x \cup b)$ is equivalent to $x = (a' \cap x) \cup (b \cap x)$. $B(b, a') = B(b \cup a', b \cap a')$ is obtained in [6]. Now $B(b \cup a', b \cap a')$ is an \mathcal{J} -closed set, so that we have $\mathcal{B}^* \le \mathcal{J}$ in a Boolean algebra.

THEOREM 1.2. In a complemented modular lattice L satisfying (a), we have $\mathcal{B}^* = \mathcal{J}$, where as above

(a): the number of complements of any element is finite.

PROOF. We shall prove that $B^*(a, b)$ is an \mathcal{J} -closed set for any two elements a, b of L. Since it can be proved easily that $B^*(a, b) = B^*(a \cup b, b) \cap B^*(a \cap b, b)$, it suffices to prove in the case $b \ge a$ or $a \ge b$. Let $b \ge a$, and a' be a complement of a. If we take $x \in [b \cap a', I]$, then we have $b \ge (a \cap b) \cup (x \cap b) \ge a \cup (b \cap a') = (a \cup a') \cap b = b$ by the modularity, and $(a \cup b) \cap (x \cup b) = b$. Thus $x \in B^*(a, b)$, and hence we have $[b \cap a', I] \subset B^*(a, b)$.

On the other hand we can prove that $B^*(a, b) \subset [b \cap a', I] \cup [b \cap a'', I] \cup ...,$ where a', a'', \cdots are the complements of a, as follows.

Assume $x \in B^*(a, b)$ and $a \leq b$, that is, $b = a \cup (x \cap b)$. Let b' be a complement of b, y a complement of $a \cap x$, and put $a' = b' \cup (b \cap x \cap y)$.

Then we get $a \cup a' = a \cup (a \cap x) \cup (b \cap x \cap y) \cup b' = a \cup ((b \cap x) \cap ((a \cap x) \cup y)) \cup b'$ = $a \cup (b \cap x) \cup b' = b \cup b' = I$, $b \cap a' = b \cap ((b \cap x \cap y) \cup b') = (b \cap b') \cup (b \cap x \cap y)$ = $b \cap x \cap y \leq x$, and $a \cap a' = a \cap x \cap y = 0$. Thus $x \in [b \cap a', I]$ with a complement a' of a.

336

It follows that $B^*(a, b) \subset [b \cap a', I] \cup [b \cap a'', I] \cup \cdots$, where a', a'', \cdots are the complements of a.

Consequently, we have $B^*(a, b) = [b \cap a', I] \cup [b \cap a'', I] \cup \cdots$, where a', a'', \cdots are the complements of a. Thus, if L satisfies the condition (a), then $B^*(a, b)$ is an \mathcal{J} -closed set for $b \ge a$. Similarly we can prove for $b \le a$. This completes the proof.

THEOREM 1.3. Let L be any lattice with 0, I. If L satisfies the conditions $(b_1), (b_2)$, then we have $\mathcal{J} = \mathcal{B}^*$, where

(b₁): $a_i = \min \{x_{i,k}\}$ such that $a \cup x_{i,k} = b$, $x_{i,k} \ge x_{i,k+1}$ for $b \ge a$, $i = 1, 2, \dots, n, k = 1, 2, \dots$ implies that n is finite,

(b₂): $b_i = \max \{x_{i,k}\}$ such that $a \cap x_{i,k} = b$, $x_{i,k} \le x_{i,k+1}$ for $b \le a$,

 $i=1, 2, \cdots, n, k=1, 2, \cdots$ implies that n is finite.

PROOF. Suppose that abx for $b \ge a$. Then we have $a \cup (b \cap x) = b$, so that $b \cap x \in [a_1, I] \cup [a_2, I] \cup \cdots$ from (b₁), and hence $x \in [a_1, I] \cup [a_2, I] \cup \cdots$.

On the other hand if we take any x such that $a_i \leq x \leq I$, then $a_i = b \cap a_i \leq b \cap x \leq b$. We have $a \cup (b \cap x) = b$ since $a \cup (b \cap a_i) = b$, that is, abx.

Consequently we have $B^*(a, b) = [a_1, I] \cup [a_2, I] \cup \cdots$ for $b \ge a$. Dually we have $B^*(a, b) = [b_1, 0] \cup [b_2, 0] \cup \cdots$ for $b \le a$. Thus if L satisfies. (b₁), (b₂), then we have $\mathcal{J} = \mathcal{B}^*$.

§2. Theorems in the \mathcal{B}^* -topology.

LEMMA 2.1. Let L be a modular lattice. If a > b, then $B^*(a, b) \cap B^*(b, a) = \phi$, where ϕ is the null set.

PROOF. Suppose that abx and bax for a > b. Then we get $a \cap (b \cup x) = b$ from abx, and $b \cup (a \cap x) = a$ from bax. This is impossible, since $a \cap (b \cup x) = b \cup (a \cap x)$ by the modularity.

LEMMA 2.2. Let L be a modular lattice. If a covers b (a > b), that is, azb implies z = a or z = b, then we have either $x \in B^*(a, b)$ or $x \in B^*(b, a)$ for any $x \in L$.

PROOF. Suppose that neither *abx* nor *bax*. Then we have $(a \cup b) \cap (b \cup x) \neq b$ and hence $(a \cup b) \cap (b \cup x) > b$, similarly we have $(a \cap b) \cup (a \cap x) < a$.

From a > b and $a \ge a \cap (b \cup x) > b$, we have $a \cap (b \cup x) = a$, and also from a > b and $a > b \cup (a \cap x) \ge b$, we have $b \cup (a \cap x) = b$. This is a contradiction, since $a \cap (b \cup x) = b \cup (a \cap x)$ holds by the modularity. Moreover, $B^*(a, b) \cap B^*(b, a) = \phi$ from Lemma 2.1, and hence we have the assertion.

THEOREM 2.1. Any modular lattice L satisfying the ascending chain condition (α), is T.D. (\mathcal{B}^*), that is, totally disconnected in the \mathcal{B}^* -topology.

PROOF. For any two elements a, b of L, we have $a(a \cap b)b$. There exists c such that $a > c \ge a \cap b$ from (α). $a(a \cap b)b$, $ac(a \cap b)$ imply acb by [6, Lemma 8]. It follows that $b \in B^*(a, c)$.

Y. MATSUSHIMA

By Lemmas 2.1 and 2.2, we have $B^*(a, c) \cap B^*(c, a) = \phi$, $B^*(c, a) \cup B^*(a, c) = L$. Thus L is totally disconnected in the \mathcal{B}^* -topology.

COROLLARY 1. A modular lattice satisfying (γ) is T.D. (\mathcal{B}^*), where

 (γ) : every closed interval has a leap; that is, every closed interval has two elements a, b such that a > b or b > a.

REMARK. M. Kolibiar [3] has proved that (1) $H(\mathcal{S}) \rightarrow (\gamma)$ in a relatively complemented lattice, (2) $(\beta) \rightarrow (\gamma)$ in a semi-modular relatively complemented lattice with 0, and (3) $(\gamma) \rightarrow (\beta)$ in a complemented modular lattice with 0, where as above

 (β) : every element is over an atom.

LEMMA 2.3. Let L be a modular lattice. For any three elements a, b, c of L such that a > c > b, if c has no non-comparable relative complement in any sub-interval of [a, b], then we have $B^*(a, c) \cup B^*(b, c) = L$, where $B^*(a, c) \oplus a$, $B^*(b, c) \oplus b$.

PROOF. Let a > c > b in a modular lattice L. Then we have $B^*(a, c) \ni x$ if and only if $a \cap x = c \cap x$, and $B^*(b, c) \ni x$ if and only if $b \cup x = c \cup x$. Suppose that $a \cap x > c \cap x, c \cup x > b \cup x$ for $x \in L$. Then we should have a contradiction. Indeed, let $X = a \cap (b \cup x) = b \cup (a \cap x)$, $Y = c \cap (b \cup x) = b \cup (c \cap x)$. Then we have $b \leq X \leq a, b \leq Y \leq c$. Since $Y \cap (a \cap x) = c \cap x, Y \cup (a \cap x) = X$; $[a \cap x, c \cap x]$ is isomorphic to [X, Y], and hence we have X > Y from $a \cap x > c \cap x$. Since $c \cup (b \cup x) = c \cup x, c \cap (b \cup x) = Y$, we have c > Y from $c \cup x > b \cup x$. From $c \cup X = c \cup (a \cap x) = a \cap (c \cup x) \leq a, c \cap X = Y$ we have a relative complement X of c in $[a \cap (c \cup x), Y]$ which is a sub-interval of [a, b]. This is a contradiction. Thus we have $x \in B^*(a, c) \cup B^*(b, c)$ for any element x of L. It is easily proved that a does not belong to $B^*(a, c)$.

THEOREM 2.2. A modular lattice L is $H(\mathcal{B}^*)$ if

 (δ) : every closed interval of L contains a chain as a sub-interval.

PROOF. Let a, b be any two distinct elements of L and assume $a \not\equiv b$ without loss of generality. Then $[a \cap b, a]$ contains a sub-interval [c, d]which is a chain. If an element e exists with c < e < d, then it follows from Lemma 2.3 that $B^*(c, e) \cup B^*(d, e) = L$, $B^*(c, e) \Rightarrow c$ and $B^*(d, e) \Rightarrow d$, whence $B^*(c, e) \Rightarrow a \cap b$ and $B^*(d, e) \Rightarrow a$. We have $B^*(c, e) \Rightarrow b$, since ceb and $e(e \cap b)b$ imply $ce(e \cap b)$; namely $B^*(c, e) \Rightarrow e \cap b = a \cap b$, which is a contradiction.

If $c \prec d$, then we get $B^*(c, d) \cup B^*(d, c) = L$ from Lemma 2.2 and it can be deduced in the same way as above that $B^*(c, d) \oplus b$ and $B^*(d, c) \oplus a$.

COROLLARY. When L is the direct product of a finite number of chains, then L is $H(\mathcal{B}^*)$.

LEMMA 2.4. Let x be an element of a modular lattice L such that [x, I] satisfies (β) and [0, x] satisfies the dual of (β) . Then any $y \in L$ different from x belongs to some $B^*(x, a)$ with a > x or x > a.

338

PROOF. If $x \ge y$ or $y \ge x$, then $y \in B^*(x, a)$ since $y \le a < x$ or $y \ge a > x$. If y is non-comparable with x, then $x(x \cup y)y$ and $xa(x \cup y)$ imply xay [6, Lemma 8].

THEOREM 2.3. Let be an element of a modular lattice L such that [x, I] satisfies (β) and [0, x] satisfies the dual of (β). If the number of elements a_i , b_j such that $a_i > x$, $x > b_j$ is finite, then x is an isolated element in the \mathscr{B}^* -topology.

PROOF. By Lemma 2.4, any element y belongs to some $B^*(x, a)$ such that a > x or x > a. Hence we have $L - x = B^*(x, a_1) \cup B^*(x, a_2) \cup \cdots \cup B^*(x, b_1) \cup \cdots$. Then if the number of elements a_i and b_j is finite, x is an isolated element in the \mathcal{B}^* -topology.

LEMMA 2.5. In a modular lattice $B^*(a \cap b, b) \subseteq B^*(a, a \cup b)$ and $B^*(a \cup b, b) \subseteq B^*(a, a \cap b)$.

PROOF. $x \in B^*(a \cap b, b)$ implies $(a \cap b) \cup (x \cap b) = b$, $((a \cap b) \cup x) \cap b = b$, $a \cup x \ge (a \cap b) \cup x \ge b$, $(a \cup x) \cap (a \cup b) = a \cup b$, $a \cup (x \cap (a \cup b)) = a \cup b$ and $x \in B^*(a, a \cup b)$.

THEOREM 2.4. Let x be an element of a modular lattice L such that [x, I] satisfies (β) and [0, x] satisfies the dual of (β) , and $\{a_i\}, \{b_j\}$ the sets of elements satisfying $a_i > x$, $x > b_j$ respectively. If there exist c and d satisfying that $c \ge a_i$ and $d \le b_j$ for all i, j and the interval [d, c] has a finite length, then x is an isolated element in the \mathcal{B}^* -topology.

PROOF. We can find e and f such that $c \ge e = \bigvee a_i$ and $d \le f = \bigwedge b_j$. Since [x, e] has a finite length, we can choose a finite subsets $\{a_1, a_2, \dots, a_n\}$ of $\{a_i\}$ so that $a_1 \lt a_1 \cup a_2 \lt \dots \lt a_1 \cup a_2 \cup \dots \cup a_n = e$. Put $c_0 = x$ and $c_{\nu} = a_1 \cup a_2 \cup \dots \cup a_{\nu}$.

Then for any a_i we can find ν such that $c_{\nu-1} \geqq a_i$ and $c_{\nu} \geqq a_i$, and it follows from Lemma 2.5 that $B^*(x, a_i) \sqsubseteq B^*(c_{\nu-1}, c_{\nu})$. Similarly we can find d_0, d_1, \cdots, d_m , where $d_0 = x, d_\mu = b_1 \cup b_2 \cup \cdots \cup b_\mu$, such that, for any $b_j \ B^*(x, b_j) \sqsubseteq B^*(d_{\mu-1}, d_\mu)$ holds for some μ . From Lemma 2.4 we obtain $L - x = \bigvee B^*(x, a_i) \cup \bigvee B^*(x, b_j) \subseteq B^*(c_0, c_1) \cup B^*(c_1, c_2) \cup \cdots \cup B^*(c_{n-1}, c_n) \cup B^*(d_0, d_1) \cup \cdots \cup B^*(d_{m-1}, d_m)$. It is evident that $B^*(c_{\nu-1}, c_{\nu}) \ni x$ and $B^*(d_{\mu-1}, d_{\mu}) \ni x$.

§3. Applications.

We shall apply our results in 1 and 2 to known results in the interval topology.

EXAMPLE. Let L be a lattice containing countably many element 0, I, x_1, x_2, \cdots , such that $I > x_i > 0$ for all i. 0 is not an isolated element in the interval topology, but it is an isolated element in the \mathcal{B}^* -topology by Theorem 2.4. L is not $H(\mathcal{S})$ but $H(\mathcal{B}^*)$, moreover it is T. D. (\mathcal{B}^*). Indeed, if we take two distinct elements a, b of L, and if they are non-comparable, then we have $B^*(b, I) \cup B^*(I, b) = L$, $B^*(b, I) \cap B^*(I, b) = \phi$, $b \in B^*(I, b)$, $a \in B^*(b, I)$. Similarly we have the assertion in the case a, b are comparable.

M. Katetov and E.S. Northam [2] have proved that (β) is equivalent to $H(\mathcal{S})$ in a Boolean algebra, where

 (β) : every element is over an atom.

THEOREM 3.1. In a Boolean algebra L, (β) implies T. D.(I) and T. D.(I). PROOF. For x, y $(x \leq y)$ of L, let z be the relative complement of $x \cap y$ in [x, 0]. Then we have an atom p such that $z \geq p > 0$. Since [z, 0] is isomorphic to $[x, x \cap y]$, there exists an element w such that $x \geq w > x \cap y$. Hence we have $B^*(w, x \cap y) \cup B^*(x \cap y, w) = L$, $B^*(w, x \cap y) \cap B^*(x \cap y, w) = \phi$, $x \in B^*(x \cap y, w)$, $y \in B^*(w, x \cap y)$ by Lemma 2.2. Thus L is T. D. (I) and T. D. (I) by Theorem 1.1.

M. Kolibiar [3] has proved that in any complemented modular lattice L satisfying (c), (β) is equivalent to $H(\mathcal{J})$, where

(c): if L has an atom, then the number of its complements is finite.

We have proved in Theorem 1.2 that, in any complemented modular lattice L satisfying (a), $\mathcal{B}^* = \mathcal{J}$.

THEOREM 3.2. In any complemented modular lattice L satisfying (a) we have the following:

(1). $(\beta) \rightarrow H(\mathcal{G}) \text{ and } H(\mathcal{B}^*),$

(2). $H(\mathcal{S}) \to H(\mathcal{B}^*)$.

PROOF. (1). Since it is easily seen that (a) implies (c), we have the assertion from M. Kolibiar [3] and Theorem 1.2.

(2). From M. Kolibiar [3] and Theorem 1.2 we have $H(\mathcal{J}) \rightarrow (\beta) \rightarrow (a) \rightarrow H(\mathcal{J})$ and $H(\mathcal{B}^*)$.

THEOREM 3.3. In any complemented modular lattice L satisfying (a), (β) implies T.D. (I) and T.D. (\mathcal{B}^*).

PROOF. From the remark of Corollary 1 of Theorem 2.1 we have $(\beta) \rightleftharpoons (\gamma)$ in L. From Corollary 1 and Theorem 1.2, we have the assertion.

Gunma University

References

- [1] E.S. Wolk, Order-compatible topology on a partially ordered set, Proc. Amer. Math. Soc., 9 (1958), 524-529.
- [2] E.S. Northam, The interval topology of a lattice, Proc. Amer. Math. Soc., 4 (1953), 824-827.
- [3] M. Kolibiar, Bemerkungen über Intervaltopogie in halbgeordneten Mengen, Proc. of the Symposium held in Prage, Sept., 1961.
- [4] Y. Matsushima, Hausdorff interval topology on a partially ordered set, Proc. Amer. Math. Soc., 11 (1960), 233-235.
- [5] Pitcher and Smiley, Transitivities of betweeness, Trans. Amer. Math. Soc., 52 (1942), 95-114.

- [6] Y. Matsushima, On the B-covers in lattices, Proc. Japan Acad., 32 (1956), 549-553.
- Y. Matsushima, Between-topology on a distributive lattice, Proc. Japan Acad., 35 (1959), 221-225.
- [8] G. Birkhoff, Lattice Theory, rev. ed., New York, 1948.