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\S 1. The purpose of this note is to give an analogue of the following
result of Herstein [1].

” For non-singular matrices $A,$ $B$, if AB–BA commutes with $A$ , then
$C=ABA^{\rightarrow 1}B^{-1}-I$ is nilpotent.”

We shall give a sufficient condition for the nilpotency of $C$ in terms of the
group-commutator $ABA^{-1}B^{-1}$ itself without taking recourse to additive com-
mutators AB–BA.

Throughout this note we shall restrict ourselves to a non-singular pair
$A,$ $B$ of $n\times n$ matrices for which $C=ABA^{-1}B^{-1}-I$ is supposed to commute
with both $A$ and $B$ . We shall also take the scalars to belong to the complex-
field always. We shall assume the terminology and results of [2].

\S 2. We shall need the following results:
LEMMA 1. If $C=ABA^{-1}B^{-1}-I$ commutes with $A$ and $B$ , then $AB^{m}-B^{m}A$

$=[(C+I)^{m}-I]B^{m}A$ , for all positive integers $m$ .
PROOF. $AB=(ABA^{-1}B^{-1})BA=(C+I)\cdot BA$ , and a simple induction on $m$

shows that

$AB^{m}=(C+I)^{m}B^{m}A$ .

Hence, $AB^{m}-B^{m}A=[(C+I)^{m}-I]B^{m}A$ . Q. E. D.
We shall now prove,
THEOREM. If (i) $ABA^{-1}B^{-1}$ commutes with both $A$ and B, and (ii) at least

one of $A$ and $B$ does not have a complete set of m-th roots of any scalar
amongst its characteristic roots for any integer $m$ greater than one, then
$C=ABA^{-1}B^{\leftrightarrow 1}-I$ is nilpotent.

PROOF. We prove the theorem by induction on the degree $n$ of the ma-
trices. Let us suppose that $B$ satisfies the hypothesis (ii) of the statement of
the theorem. The result is trivial for $n=1$ . Assume the validity of the
theorem for all degrees less than $n$ . We divide the proof in three parts.

(a) If all the characteristic roots of $C$ are not identical, then let
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$C=\left\{\begin{array}{ll}C_{11} & 0\\0 & C_{tt}\end{array}\right\}$ , be a decomposition of $C$ into primary components $C_{kk}$ belong-

ing to distinct characteristic roots of $C$. Thus the underlying vector space
$V$ decomposes with respect to $C$,

$V=V_{1}\oplus\cdots\oplus V_{t}$

such that the restriction of $C$ to $V_{k}$ is $C_{kk}$ . Since each $V_{k}$ corresponds to a
distinct root of $C$, and $C$ commutes with $A$ and $B$ , so each $V_{k}$ is also invariant
with respect to both $A$ and $B$ .

This implies that $A$ and $B$ simultaneously decompose into diagonal blocks
similar to those of $C$ :

$A=\left\{\begin{array}{ll}A_{11} & 0\\0 & A_{tt}\end{array}\right\}$ and $B=\left\{\begin{array}{ll}B_{11} & 0\\0 & B_{tt}\end{array}\right\}$ .

Since each collection of blocks $(A_{kk}, B_{kk}, C_{kk})$ clearly satisfy both the hy-
pothesis of the theorem, therefore by our induction hypothesis, we may assume
that each $C_{kk}$ is nilpotent, contrary to the assumption that each $C_{kk}$ belongs to
distinct characteristic root of $C$.

Therefore we may now assume that $C$ has all its characteristic roots
identical. Let $\lambda$ be this, and put $\omega=\lambda+1$ .

(b) By virtue of Lemma 1,

$AB^{r}-B^{r}A=[(C+I)^{r}-I]B^{r}A$ ,

for all positive integers $r$ . Hence,

Trace $[\{(C+I)^{r}-I\}B^{r}]=Trace(AB^{r}A^{\rightarrow 1})-$ Trace $B^{r}=0$ .
Let $\mu_{1},$

$\cdots$ , $\mu_{m}$ denote the distinct characteristic roots of $B$ with multiplicities
$\chi_{1}\chi_{2}\ldots$ , $x_{m}$ respectively. Since $C$ and $B$ commute, hence by a result in [2],

we can assume that

$C+I=\left\{\begin{array}{ll}C_{11} & 0\\0 & C_{mm}\end{array}\right\}$ and $B=\left\{\begin{array}{ll}B_{11} & 0\\0 & B_{mm}\end{array}\right\}$ ,

such that

$C_{kk}=\left\{\begin{array}{ll}\omega & *\\0 & \omega\end{array}\right\}$ and $B_{kk}=[\mu_{0^{k}}$ $\mu_{k}^{*}]$

are $x_{k}\times x_{k}$ matrices in the upper-triangular form having identical entries along
the diagonal.
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Let $A=\left\{\begin{array}{lll}A_{11} & \cdots & A_{1m}\\A_{m1} & \cdots & A_{mm}\end{array}\right\}$ , be a partition of $A$ conformal to those of $B$ and

$C$. Then from the above trace-relation we have,

$[(\lambda+1)^{\gamma}-1]\cdot(x_{1}\mu_{1}^{r}+\cdots+x_{m}\mu_{m}^{r})=0$ .
If $\omega=\lambda+1$ is not a root of unity, then $x_{1}$

. $\mu_{1}^{r}+\cdots+x_{m}\cdot\mu_{m}^{r}=0$ , for all positive
integers $r$ . Taking $r=1,2,3,$ $\cdots$ , $m$ , we get a non-trivial solution for the
equations,

$x_{1}\cdot\mu_{1}+\cdots+x_{m}\cdot\mu_{m}=0$ ,

$x_{1}\cdot\mu_{1}^{2}+\cdots+x_{m}\cdot\mu_{m}^{2}=0$ ,

$x_{1}\cdot\mu_{1}^{m}+\cdots+x_{m}\cdot\mu_{m}^{m}=0$ .
Hence using the Vandermonde-determinant theorem, and our hypothesis on
the characteristic roots of $B$ , we conclude that some $\mu_{i}=0$ . But this con-
tradicts the non-singularity of $B$ . Therefore, there exists a minimal positive
integer $q$ such that $\omega^{q}=(\lambda+1)^{q}=1$ . Also, if $q$ is greater than $m$ , then again
taking $ r=1,2,3\ldots$ , $m$ , we may repeat the above argument to reach at the
same contradiction. Hence $q$ is less than or equal to $m$ .

If $q=1$ , then $\lambda=0$ , and $C$ is already nilpotent.
(c) We therefore suppose that $q\neq 1,$ $q\leqq m$ . Now, since $C$ and $B$ commute,

so for every $\mu_{k}$ , there exists a vector $\mathfrak{U}_{k}$ of the underlying vector-space $V$ of
dimension $n$ over the complex-field, such that

$\mathfrak{U}_{k}B=\mu_{k}\cdot \mathfrak{U}_{k}$ and $\mathfrak{U}_{k}\cdot(C+I)=\omega\cdot \mathfrak{U}_{k}$ .
Therefore,

$(\mathfrak{U}_{k}A)B=\mathfrak{U}_{k}(C+I)BA$

$=\omega(\mathfrak{U}_{k}B)A$

$=\omega\mu_{k}(\mathfrak{U}_{k}A)$ .
Thus, together with each $\mu_{k}$ , we obtain $\omega\mu_{k}$ to be another characteristic root
of $B$ . Hence multiplication by $\omega$ induces a permutation of the set $(\mu_{1}, \cdots , \mu_{m})$ .
Therefore, this set can be decomposed into disjoint cycles with respect to our
permutation. If there were more than one distinct cycles, then let these be
$(\mu_{1}, \cdots \mu_{k}),$ $\cdots$ $(\mu_{l}, \cdots \mu_{m})$ .

Now from the relation, $AB=(C+I)BA$ , and the assumption made on the
forms of $C+I,$ $B$ and $A$ , we get,

$A_{kl}\cdot B_{\iota\iota}=C_{kk}B_{kk}A_{kl}$ .
It is well-known that $A_{kl}$ is non-null only if $B_{ll}$ and $C_{kk}B_{kk}$ have common
characteristic roots. Hence here $A_{kl}$ is non-null only if the characteristic root
of $B_{\iota\iota}$ is the characteristic root of $C_{kk}B_{kk},$ $i$ . $e.,$ $\mu_{l}=\omega\mu_{k}$ .

Then from the decomposition of the set $(\mu_{1}, \cdots \mu_{m})$ defined above, it
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follows at once that $A$ has the form,

$A=\left\{\begin{array}{lllll}A_{11} & \cdots & A_{1k} & & \\\cdots & 0 & & & \\ & & A_{kk} & & \\ & & A_{ll} & \cdots & A_{lm}\\ & 0 & A_{ml}\cdot & \cdots & A_{mm}\end{array}\right\}$ .

Thus the triple $(A, B, C)$ again decomposes into similar blocks of smaller
dimensions. Using induction hypothesis again we obtain that $\lambda=0$ , contrary
to our assumption.

Therefore, let us assume that the only cycle of permutation is given by,
$\mu_{1},$ $\omega\cdot\mu_{1},$ $\omega^{2}\cdot\mu_{1},$ $\cdots$ $\omega^{m-1}\cdot\mu_{1}$ .

Since the order of the permutation is the least common multiple of the
lengths of its cycles, so the order of $\omega$ is $m$ . Hence $q=m$ , and the distinct
characteristic roots of $B$ are the $m$ distinct m-th roots of the number $\mu_{1}^{m}$ ,

contrary to our hypothesis (ii) for $B$ .
Thus in all cases $\lambda=0$ , and $C$ is nilpotent. Q. E. D.
\S 3. In this section we shall show by means of a simple example that

the commuting of $ABA^{-1}B^{-1}$ with both $A$ and $B$ is far weaker a condition
than the commuting of AB–BA with $A$ and $B$ . Consider

$A=\left\{\begin{array}{llll}0 & 0 & 1 & 0\\0 & 0 & 0 & 1\\1 & 0 & 0 & 0\\0 & 1 & 0 & 0\end{array}\right\}$ and $B=\left\{\begin{array}{llll}-1 & 0 & 0 & 0\\0 & -1 & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1\end{array}\right\}$ .

Then $B^{2}=I$ so that $B=B^{-1}$ , and also $A^{2}=I$, so that $A=A^{-1}$ .

Hence $ABA^{-1}B^{-1}-I=\left\{\begin{array}{llll}-2 & 0 & 0 & 0\\0 & -2 & 0 & 0\\0 & 0 & -2 & 0\\0 & 0 & 0 & -2\end{array}\right\}$ , which commutes with both

$A$ and $B$ . Now if AB–BA were to commute with $A$ and $B$ , then by Jacobson’s
lemma in [3], AB–BA will belong to the radical of the polynomial algebra
generated by the pair $\{A, B\}$ . Since the inverses of $A$ and $B$ can be repre-
sented as polynomials in $A$ and $B$ , so we conclude that $(AB-BA)A^{-1}B^{-1}$

$=ABA^{-1}B^{-1}-I$ is also nilpotent. But by the above counterexample we know
that it is not always the case.
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