On characteristic roots of group commutators of non-singular matrices

By Indranand Sinha

(Received March 9, 1964)
§ 1. The purpose of this note is to give an analogue of the following result of Herstein [1].
" For non-singular matrices A, B, if $A B-B A$ commutes with A, then $C=A B A^{-1} B^{-1}-I$ is nilpotent."

We shall give a sufficient condition for the nilpotency of C in terms of the group-commutator $A B A^{-1} B^{-1}$ itself without taking recourse to additive commutators $A B-B A$.

Throughout this note we shall restrict ourselves to a non-singular pair A, B of $n \times n$ matrices for which $C=A B A^{-1} B^{-1}-I$ is supposed to commute with both A and B. We shall also take the scalars to belong to the complexfield always. We shall assume the terminology and results of [2].
$\S 2$. We shall need the following results:
Lemma 1. If $C=A B A^{-1} B^{-1}-I$ commutes with A and B, then $A B^{m}-B^{m} A$ $=\left[(C+I)^{m}-I\right] B^{m} A$, for all positive integers m.

Proof. $A B=\left(A B A^{-1} B^{-1}\right) B A=(C+I) \cdot B A$, and a simple induction on m shows that

$$
A B^{m}=(C+I)^{m} B^{m} A .
$$

Hence, $A B^{m}-B^{m} A=\left[(C+I)^{m}-I\right] B^{m} A$.
Q.E.D.

We shall now prove,
Theorem. If (i) $A B A^{-1} B^{-1}$ commutes with both A and B, and (ii) at least one of A and B does not have a complete set of m-th roots of any scalar amongst its characteristic roots for any integer m greater than one, then $C=A B A^{-1} B^{-1}-I$ is nilpotent.

Proof. We prove the theorem by induction on the degree n of the matrices. Let us suppose that B satisfies the hypothesis (ii) of the statement of the theorem. The result is trivial for $n=1$. Assume the validity of the theorem for all degrees less than n. We divide the proof in three parts.
(a) If all the characteristic roots of C are not identical, then let
$C=\left[\begin{array}{ccc}C_{11} & & 0 \\ & \ddots & \\ & & \\ & & C_{t t}\end{array}\right]$, be a decomposition of C into primary components $C_{k k}$ belonging to distinct characteristic roots of C. Thus the underlying vector space V decomposes with respect to C,

$$
V=V_{1} \oplus \cdots \oplus V_{t}
$$

such that the restriction of C to V_{k} is $C_{k k}$. Since each V_{k} corresponds to a distinct root of C, and C commutes with A and B, so each V_{k} is also invariant with respect to both A and B.

This implies that A and B simultaneously decompose into diagonal blocks similar to those of C :

$$
A=\left[\begin{array}{cc}
A_{11} & 0 \\
& \ddots \\
0 & \\
A_{t t}
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
B_{11} & \\
& 0 \\
& \ddots \\
0 & \\
B_{t t}
\end{array}\right]
$$

Since each collection of blocks ($A_{k k}, B_{k k}, C_{k k}$) clearly satisfy both the hypothesis of the theorem, therefore by our induction hypothesis, we may assume that each $C_{k k}$ is nilpotent, contrary to the assumption that each $C_{k k}$ belongs to distinct characteristic root of C.

Therefore we may now assume that C has all its characteristic roots identical. Let λ be this, and put $\omega=\lambda+1$.
(b) By virtue of Lemma 1,

$$
A B^{r}-B^{r} A=\left[(C+I)^{r}-I\right] B^{r} A
$$

for all positive integers r. Hence,

$$
\text { Trace }\left[\left\{(C+I)^{r}-I\right\} B^{r}\right]=\operatorname{Trace}\left(A B^{r} A^{-1}\right)-\operatorname{Trace} B^{r}=0
$$

Let μ_{1}, \cdots, μ_{m} denote the distinct characteristic roots of B with multiplicities $x_{1}, x_{2}, \cdots, x_{m}$ respectively. Since C and B commute, hence by a result in [2], we can assume that

$$
C+I=\left[\begin{array}{ccc}
C_{11} & & 0 \\
& \ddots & \\
0 & & C_{m m}
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
B_{11} & & 0 \\
& \ddots & \\
0 & & B_{m m}
\end{array}\right] \text {, }
$$

such that

$$
C_{k k}=\left[\begin{array}{ccc}
\omega & & * \\
& \ddots & \\
0 & & \omega
\end{array}\right] \quad \text { and } \quad B_{k k}=\left[\begin{array}{cc}
\mu_{k} & * \\
& \ddots \\
0 & \\
\mu_{k}
\end{array}\right]
$$

are $x_{k} \times x_{k}$ matrices in the upper-triangular form having identical entries along the diagonal.

Let $A=\left[\begin{array}{c}A_{11} \cdots A_{1 m} \\ \cdots \cdots \cdots \cdots \cdots \\ A_{m 1} \cdots A_{m m}\end{array}\right]$, be a partition of A conformal to those of B and C. Then from the above trace-relation we have,

$$
\left[(\lambda+1)^{r}-1\right] \cdot\left(x_{1} \mu_{1}^{r}+\cdots+x_{m} \mu_{m}^{r}\right)=0 .
$$

If $\omega=\lambda+1$ is not a root of unity, then $x_{1} \cdot \mu_{1}^{r}+\cdots+x_{m} \cdot \mu_{m}^{r}=0$, for all positive integers r. Taking $r=1,2,3, \cdots, m$, we get a non-trivial solution for the equations,

$$
\begin{aligned}
& x_{1} \cdot \mu_{1}+\cdots+x_{m} \cdot \mu_{m}=0, \\
& x_{1} \cdot \mu_{1}^{2}+\cdots+x_{m} \cdot \mu_{m}^{2}=0, \\
& \ldots \\
& x_{1} \cdot \mu_{1}^{m}+\cdots+x_{m} \cdot \mu_{m}^{m}=0 .
\end{aligned}
$$

Hence using the Vandermonde-determinant theorem, and our hypothesis on the characteristic roots of B, we conclude that some $\mu_{i}=0$. But this contradicts the non-singularity of B. Therefore, there exists a minimal positive integer q such that $\omega^{q}=(\lambda+1)^{q}=1$. Also, if q is greater than m, then again taking $r=1,2,3 \cdots, m$, we may repeat the above argument to reach at the same contradiction. Hence q is less than or equal to m.

If $q=1$, then $\lambda=0$, and C is already nilpotent.
(c) We therefore suppose that $q \neq 1, q \leqq m$. Now, since C and B commute, so for every μ_{k}, there exists a vector \mathfrak{l}_{k} of the underlying vector-space V of dimension n over the complex-field, such that

$$
\mathfrak{U}_{k} B=\mu_{k} \cdot \mathfrak{u}_{k} \quad \text { and } \quad \mathfrak{n}_{k} \cdot(C+I)=\omega \cdot \mathfrak{H}_{k}
$$

Therefore,

$$
\begin{aligned}
\left(\mathfrak{l}_{k} A\right) B & =\mathfrak{u}_{k}(C+I) B A \\
& =\omega\left(\mathfrak{l}_{k} B\right) A \\
& =\omega \mu_{k}\left(\mathfrak{l}_{k} A\right) .
\end{aligned}
$$

Thus, together with each μ_{k}, we obtain $\omega \mu_{k}$ to be another characteristic root of B. Hence multiplication by ω induces a permutation of the set (μ_{1}, \cdots, μ_{m}). Therefore, this set can be decomposed into disjoint cycles with respect to our permutation. If there were more than one distinct cycles, then let these be $\left(\mu_{1}, \cdots, \mu_{k}\right), \cdots,\left(\mu_{l}, \cdots, \mu_{m}\right)$.

Now from the relation, $A B=(C+I) B A$, and the assumption made on the forms of $C+I, B$ and A, we get,

$$
A_{k l} \cdot B_{l l}=C_{k k} B_{k k} A_{k l} .
$$

It is well-known that $A_{k l}$ is non-null only if $B_{l l}$ and $C_{k k} B_{k k}$ have common characteristic roots. Hence here $A_{k l}$ is non-null only if the characteristic root of $B_{l l}$ is the characteristic root of $C_{k k} B_{k k}$, i. e., $\mu_{l}=\omega \mu_{k}$.

Then from the decomposition of the set $\left(\mu_{1}, \cdots, \mu_{m}\right)$ defined above, it
follows at once that A has the form,

Thus the triple (A, B, C) again decomposes into similar blocks of smaller dimensions. Using induction hypothesis again we obtain that $\lambda=0$, contrary to our assumption.

Therefore, let us assume that the only cycle of permutation is given by, $\mu_{1}, \omega \cdot \mu_{1}, \omega^{2} \cdot \mu_{1}, \cdots, \omega^{m-1} \cdot \mu_{1}$.

Since the order of the permutation is the least common multiple of the lengths of its cycles, so the order of ω is m. Hence $q=m$, and the distinct characteristic roots of B are the m distinct m-th roots of the number μ_{1}^{m}, contrary to our hypothesis (ii) for B.

Thus in all cases $\lambda=0$, and C is nilpotent.
Q. E. D.
$\S 3$. In this section we shall show by means of a simple example that the commuting of $A B A^{-1} B^{-1}$ with both A and B is far weaker a condition than the commuting of $A B-B A$ with A and B. Consider

$$
A=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Then $B^{2}=I$ so that $B=B^{-1}$, and also $A^{2}=I$, so that $A=A^{-1}$.
Hence $A B A^{-1} B^{-1}-I=\left[\begin{array}{rrrr}-2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2\end{array}\right]$, which commutes with both
A and B. Now if $A B-B A$ were to commute with A and B, then by Jacobson's lemma in [3], $A B-B A$ will belong to the radical of the polynomial algebra generated by the pair $\{A, B\}$. Since the inverses of A and B can be represented as polynomials in A and B, so we conclude that $(A B-B A) A^{-1} B^{-1}$ $=A B A^{-1} B^{-1}-I$ is also nilpotent. But by the above counterexample we know that it is not always the case.

Michigan State University, U. S. A.
Bhagalpur University, India

References

[1] I. N. Herstein, On a theorem of Putnam and Winter, Proc. Amer. Math. Soc., 9 (1958), 363-364.
[2] N. Jacobson, Lectures on abstract algebra, Vol. II.
[3] N. Jacobson, Rational methods in the theory of Lie algebras, Ann. of Math., 36 (1935), 875-881.

