On 1-cohomology groups of infinite dimensional representations of semisimple Lie algebras

By Akira HATTORI

(Received Feb. 22, 1964)

Let g be a semisimple Lie algebra over an algebraically closed field K of characteristic 0. Then all finite dimensional representations of g are completely reducible. In homological language, this well-known theorem of Weyl is expressed by saying that $H^1(\mathfrak{g}, V) = 0$ for every finite dimensional g-module V. Harish-Chandra [2] showed that the usual Cartan-Weyl theory is extendible in a large extent to some wide class of infinite dimensional representations. But the complete reducibility fails to hold for them. Indeed, simple examples show that $\operatorname{Ext}^1(K, V) = H^1(\mathfrak{g}, V) \neq 0$ for certain irreducible spaces V(see below). The purpose of the following lines is to determine the structure of $H^1(\mathfrak{g}, V)$ for irreducible spaces of that type.

Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} . We shall make use of the following simple exact sequence (established in more general setting in Hirata [4] and Hattori [3]):

(1)
$$0 \to H^{1}(\mathfrak{g}, \mathfrak{h}, V) \to H^{1}(\mathfrak{g}, V) \to H^{1}(\mathfrak{h}, V).$$

In the general setting, the relative cohomology group $H^1(\mathfrak{g}, \mathfrak{h}, V)$ is the one defined by Hochschild [5]. In the present case, \mathfrak{h} is a reductive subalgebra of \mathfrak{g} , and the relative cohomology groups coincide with those defined by Chevalley and Eilenberg [1] as is shown in [5].

The structure of $H^1(\mathfrak{h}, V)$ is quite simple. In general, we have

LEMMA 1. Let \mathfrak{h} be an abelian Lie algebra, and V^{μ} be an \mathfrak{h} -module such that $hv = \mu(h)v$ for every $h \in \mathfrak{h}$, $v \in V^{\mu}$, where μ is a linear form on \mathfrak{h} . Then we have, for $n = 0, 1, 2, \cdots$,

$$H^{n}(\mathfrak{h}, V^{\mu}) = \begin{cases} \operatorname{Hom}_{\kappa} (E^{n}(\mathfrak{h}), V^{\mu}) & (\mu = 0), \\ 0 & (\mu \neq 0), \end{cases}$$

where $E^{n}(\mathfrak{h})$ is the homogeneous component of degree n of the exterior algebra of \mathfrak{h} .

PROOF. An *n*-cochain $f \in C^n(\mathfrak{h}, V^{\mu})$ is an *n*-cocycle if and only if

$$\mu(h_0)f(h_1, \dots, h_n) - \mu(h_1)f(h_0, h_2, \dots, h_n) + \dots \pm \mu(h_n)f(h_0, \dots, h_{n-1}) = 0$$

for every $h_0, h_1, \dots, h_n \in \mathfrak{h}$. When $\mu \neq 0$, there is an $h_* \in \mathfrak{h}$ such that $\mu(h_*) \neq 0$. Put $g(h_1, \dots, h_{n-1}) = \mu(h_*)^{-1} f(h_*, h_1, \dots, h_{n-1})$, then we see immediately $\delta g = f$. When $\mu = 0$, our assertion is evident.

COROLLARY. Assume that a g-module V admits a (finite or infinite) direct sum decomposition into weight spaces V^{μ} with respect to \mathfrak{h} . If 0 is not a weight of V, then $H^n(\mathfrak{h}, V) = 0$, $n = 0, 1, 2, \cdots$.

We now fix a lexicographic ordering in the rational vector space \mathfrak{h}_0^* , and let $\alpha_1, \dots, \alpha_l$ be the system of simple roots relative to this ordering. We denote the positive roots generally by α , a non-zero vector belonging to the root α (resp. $-\alpha$) by x_{α} (resp. y_{α}), and the half sum of positive roots by $\delta: \delta = \frac{1}{2} \sum \alpha^{10}$.

For any $\lambda \in \mathfrak{h}_0^*$, there exists one and only one irreducible g-space having λ as the highest weight, which we denote by V_{λ} . V_{λ} admits a direct sum decomposition into weight spaces: $V_{\lambda} = \sum_{\mu} V_{\lambda}^{\mu}$, where each weight μ has the form $\mu = \lambda - \sum n_i \alpha_i$, n_i 's being non-negative integers, and V_{λ}^{λ} is 1-dimensional (cf. Harish-Chandra [2], Séminaire Sophus Lie [8]). We shall prove

THEOREM. $H^1(\mathfrak{g}, V_{\lambda})$ is 1-dimensional over K for $\lambda = -\alpha_i$, $i = 1, \dots, l$, and reduces to 0 for other λ 's.

As is well-known, the Casimir operator C of V_{λ} is given by $C(v) = \gamma_{\lambda} v$ $(v \in V_{\lambda})$, where

(2)
$$\gamma_{\lambda} = \langle \lambda + \delta, \lambda + \delta \rangle - \langle \delta, \delta \rangle = \langle \lambda, \lambda \rangle + 2 \langle \lambda, \delta \rangle.$$

If $\gamma_{\lambda} \neq 0$, $H^{n}(\mathfrak{g}, V_{\lambda})$ vanish for all $n = 0, 1, 2, \cdots$, as in the finite dimensional representations. Therefore we shall restrict our considerations to the case $\gamma_{\lambda} = 0$. Furthermore we may assume $\lambda \neq 0$, since $H^{1}(\mathfrak{g}, K) = 0$.

LEMMA 2. Let $\lambda = \sum m_i \alpha_i \neq 0$, $m_i \ge 0$, $i = 1, \dots, l$. Then $\gamma_{\lambda} > 0$.

Indeed, we see immediately that

$$\gamma_{\lambda} = \langle \lambda, \lambda \rangle + \sum m_i \langle \alpha_i, \alpha_i \rangle > 0$$
.

By this Lemma, if $H^1(\mathfrak{g}, V_{\lambda}) \neq 0$, then 0 is not a weight of V_{λ} . Hence $H^1(\mathfrak{h}, V_{\lambda}) = 0$ by the Corollary of Lemma 1. It follows from the exactness of (1), that $H^1(\mathfrak{g}, V_{\lambda}) \cong H^1(\mathfrak{g}, \mathfrak{h}, V)$. So we shall study now $H^1(\mathfrak{g}, \mathfrak{h}, V_{\lambda})$. Assume that f is a non-zero relative 1-cocycle. f satisfies

(3)
$$hf(g) = f[h, g] \qquad (h \in \mathfrak{h}, g \in \mathfrak{g}).$$

Putting $g = x_{\alpha}$ in (3), we see $f(x_{\alpha}) \in V_{\lambda}^{\alpha}$. Similarly $f(y_{\alpha}) \in V_{\lambda}^{-\alpha}$. Since the set $\{x_{\alpha_1}, y_{\alpha_1}, \dots, x_{\alpha_l}, y_{\alpha_l}\}$ generates the whole g, one of $f(x_{\alpha_i})$'s, or $f(y_{\alpha_i})$'s is non-zero. This means that one of α_i 's or $-\alpha_i$'s is a weight of V_{λ} . If α_{i_0} would

¹⁾ Concerning basic facts on semisimple Lie algebras, see [6] and [8].

A. HATTORI

be a weight, then $\lambda = \sum m_i \alpha_i$, $m_i \ge 0$, $m_{i_0} > 0$, and we should have $\gamma_{\lambda} > 0$ by Lemma 2, contrary to the assumption. Hence $f(x_{\alpha}) = 0$ for all positive α , while $f(y_{\alpha i}) \ne 0$ for a certain *i*, say i_0 . As above, we have $\lambda = \sum m_i \alpha_i$, where m_i 's are integers such that $m_{i_0} + 1 \ge 0$, $m_i \ge 0$ $(i \ne i_0)$. Since $\sum m_i \langle \alpha_i, \alpha_i \rangle = -\langle \lambda, \lambda \rangle$ < 0, m_{i_0} must be -1: $\lambda = \nu - \alpha_{i_0}$, $\nu = \sum_{i \ne i_0} m_i \alpha_i$. Let *S* be the reflection determined by the vector α_{i_0} , and put $\lambda' = S(\nu)$. Since $\lambda' = S(\lambda + \delta) - \delta$, we have $\gamma_{\lambda'} = \gamma_{\lambda} = 0$. Since $S(\alpha_i)$, $i \ne i_0$, are positive roots, all m_i 's must be 0. Hence $\lambda = -\alpha_{i_0}$. It is then clear that $f(y_{\alpha i}) = 0$ $(i \ne i_0)$, and *f* is determined by the value $f(y_{\alpha i_0}) \in V_{\lambda}^{1}$. Since V_{λ}^{1} is 1-dimensional, $H^{1}(\mathfrak{g}, \mathfrak{h}, V_{\lambda})$ is at most 1-dimensional. Since there is no non-zero relative 1-coboundary for $\lambda = -\alpha_{i_0}$, our proof of Theorem will be completed, if we show that there is a relative 1cocycle *f* such that $f(y_{\alpha i_0}) \ne 0$.

For simplicity, let $i_0 = 1$. Denote also x_{α_i} (resp. y_{α_i}) as x_i (resp. y_i). x_i 's (resp. y_i 's) generate the nilpotent subalgebra n^+ (resp. n^-) spanned by the vectors belonging to positive (resp. negative) roots: $g = n^- + h + n^+$. Let U^+ (resp. U^-) be the universal enveloping algebra of n^+ (resp. n^-), and I^+ (resp. I⁻) the kernel of the canonical epimorphism $U^+ \rightarrow K$ (resp. $U^- \rightarrow K$). We have $I^{-} = U^{-}y_{1} + \dots + U^{-}y_{l}$. Put $J = U^{-}y_{2} + \dots + U^{-}y_{l}$. Then $I^{-} = U^{-}y_{1} + J$, and I^{-}/J is generated by y_1+J as a U⁻-module. Now, let Kw be the 1-dimensional zerorepresentation of \mathfrak{h} , and construct the *induced* g-module $U^-U^+ \otimes w^{\mathfrak{D}}$. Put $V = (U^-U^+ \otimes w)/(U^-I^+ \otimes w)$, and $w_1 = (1 \otimes w) + (U^-I^+ \otimes w)$. Then V is a g-module generated by w_1 as U⁻-module, and is isomorphic to U⁻ as U⁻-module by the correspondence $uw_1 \leftrightarrow u$ ($u \in U^-$). I^-w_1 and Jw_1 are g-submodules of V, and I^-w_1/Jw_1 is generated by $v = y_1w_1 + Jw_1$. v is annihilated by I^+ and belongs to the weight $-\alpha_1$. Hence I^-w_1/Jw_1 has a (unique) irreducible factor $V_{-\alpha_1}$ (see [8, exposé 17]). Thus, we have an h-trivial extension M of $V/I^-w_1 = K$ with the kernel $V_{-\alpha_1}$, and the characteristic cocycle of this extension satisfies $f(y_1) = v$, as desired.

REMARKS 1. In [3] we introduced the subspace $H^1(\mathfrak{h}, V)^{\mathfrak{s}}$ of $H^1(\mathfrak{h}, V)$ consisting of the *stable* cohomology classes. A simple calculation shows that

$$H^{1}(\mathfrak{h}, V_{\lambda})^{\mathfrak{g}} = \begin{cases} \mathfrak{h}^{\ast} & (\lambda = 0), \\ 0 & (\lambda \neq 0). \end{cases}$$

Therefore the isomorphism $H^1(\mathfrak{g}, V_{\lambda}) \cong H^1(\mathfrak{g}, \mathfrak{h}, V_{\lambda})$ can also be deduced from the exactness of the following sequence [3]:

²⁾ Let U and U⁰ be the universal enveloping algebras of \mathfrak{g} and \mathfrak{y} respectively. Then $U = U^-U^+U^0$. Any \mathfrak{y} -module $(= U^0$ -module)W induces a \mathfrak{g} -module $W^{\mathfrak{g}} = U \otimes_{U^0} W$ $= U^-U^+ \otimes_K W$. We see that $hy_1 \otimes w = -\alpha_1(h)y_1 \otimes w$ for $h \in \mathfrak{y}$, $w \in W$, and $x_i y_1 \otimes w$ $= y_1 x_i \otimes w$, $i = 1, \dots, l$.

 $0 \to H^{1}(\mathfrak{g}, \mathfrak{h}, V) \to H^{1}(\mathfrak{g}, V) \to H^{1}(\mathfrak{h}, V)^{\mathfrak{g}}.$

2. The study of general $\operatorname{Ext}_{{}_{d}}^{1}(U, V)$ is closely related to the study of tensor products and of the multiplicity of weights. A forthcoming paper of H. Kimura [7] deals with these subject-matters.

Tokyo University of Education

References

- [1] C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 63 (1948), 85-124.
- [2] Harish-Chandra, Some applications of the universal enveloping algebra of a semi-simple Lie algebra, Trans. Amer. Math. Soc., 70 (1951), 28-99.
- [3] A. Hattori, On fundamental exact sequences, J. Math. Soc. Japan, 12 (1960), 65-80.
- [4] K. Hirata, On module extensions, Sci. Rep. Tokyo Kyôiku Daigaku Sect. A., 6 (1959), 265-269.
- [5] G. Hochschild, Relative homological algebra, Trans. Amer. Math. Soc., 82 (1956), 246-269.
- [6] N. Jacobson, Lie algebras, Interscience, 1962.
- [7] H. Kimura, On some infinite dimensional representations of semi-simple Lie algebras, to appear.
- [8] Séminaire "Sophus Lie", 1 (1954/55), Ecole Norm. Sup.