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Let $\mathfrak{g}$ be a semisimple Lie algebra over an algebraically closed field $K$ of
characteristic $0$ . Then all finite dimensional representations of $\mathfrak{g}$ are completely
reducible. In homological language, this well-known theorem of Weyl is ex-
pressed by saying that $H^{1}(\mathfrak{g}, V)=0$ for every finite dimensional $\mathfrak{g}$ -module $V$ .
Harish-Chandra [2] showed that the usual Cartan-Weyl theory is extendible
in a large extent to some wide class of infinite dimensional representations.
But the complete reducibility fails to hold for them. Indeed, simple examples
show that $Ext^{1}(K, V)=H^{1}(\mathfrak{g}, V)\neq 0$ for certain irreducible spaces $V$($see$ below).

The purpose of the following lines is to determine the structure of $H^{1}(\mathfrak{g}, V)$

for irreducible spaces of that type.
Let $\mathfrak{h}$ be a Cartan subalgebra of $\mathfrak{g}$ . We shall make use of the following

simple exact sequence (established in more general setting in Hirata [4] and
Hattori [3]):

\langle 1) $0\rightarrow H^{1}(\mathfrak{g}, \mathfrak{h}, V)\rightarrow H^{1}(\mathfrak{g}, V)\rightarrow H^{1}(\mathfrak{h}, V)$ .
In the general setting, the relative cohomology group $H^{1}(\mathfrak{g}, \mathfrak{h}, V)$ is the one
defined by Hochschild [5]. In the present case, $\mathfrak{h}$ is a reductive subalgebra
of $\mathfrak{g}$ , and the relative cohomology groups coincide with those defined by
Chevalley and Eilenberg [1] as is shown in [5].

The structure of $H^{1}(\mathfrak{h}, V)$ is quite simple. In general, we have
LEMMA 1. Let $\mathfrak{h}$ be an abelian Lie algebra, and $V^{\prime x}$ be an f-module such

that $hv=\mu(h)v$ for every $h\in \mathfrak{h},$ $v\in V^{\prime 1}$, where $\mu$ is a linear form on $\mathfrak{h}$ . Then
we have, for $n=0,1,2,$ $\cdots$ ,

$H^{n}(\mathfrak{h}, V^{\prime t})=\left\{\begin{array}{l}Hom_{K}(E^{n}(\mathfrak{h}),V^{/J}) (\mu=0),\\0 (\mu\neq 0),\end{array}\right.$

where $E^{n}(\mathfrak{h})$ is the homogeneous component of degree $n$ of the exterior algebra

of $\mathfrak{h}$ .
PROOF. An n-cochain $f\in C^{n}(\mathfrak{h}, V‘‘)$ is an n-cocycle if and only if

$\mu(h_{0})f(h_{1}, \cdots h_{n})-\mu(h_{1})f(h_{0}, h_{2}, \cdots h_{n})+\cdots\pm\mu(h_{n})f(h_{0}, \cdots h_{n-1})=0$
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for every $h_{0},$ $h_{1},$ $\cdots$ , $h_{n}\in \mathfrak{h}$ . When $\mu\neq 0$ , there is an $h_{*}\in \mathfrak{h}$ such that $\mu(h_{*})\neq 0$ .
Put $g(h_{1}, \cdot , h_{n-1})=\mu(h_{*})^{-1}f(h_{*}, h_{1}, \cdots , h_{n-1})$ , then we see immediately $\delta g=f$.
When $\mu=0$ , our assertion is evident.

COROLLARY. Assume that a g-module $V$ admits a (finite or infinite) direct
sum decomposition into weight spaces $V^{\prime 1}$ with respect $lo\mathfrak{h}$ . If $0$ is not a
weight of $V$ , then $H^{n}(\mathfrak{h}, V)=0,$ $ n=0,1,2_{J}\ldots$

We now fix a lexicographic ordering in the rational vector space $\mathfrak{h}_{0}^{*}$ , and
let $\alpha_{1},$ $\cdots,$ $\alpha_{\iota}$ be the system of simple roots relative to this ordering. We
denote the positive roots generally by $\alpha$ , a non-zero vector belonging to the
root $\alpha$ (resp. $-\alpha$) by $x_{\alpha}$ (resp. $y_{\alpha}$), and the half sum of positive roots by

$\delta:\delta=\frac{1}{2}\Sigma\alpha^{1)}$ .
For any $\lambda\in b_{10}^{*}$ , there exists one and only one irreducible $\mathfrak{g}$ -space having

$\lambda$ as the highest weight, which we denote by $V_{\lambda}$ . $V_{\lambda}$ admits a direct sum
decomposition into weight spaces:

$V_{\lambda}=\sum_{\mu}V_{\lambda}^{\mu}$
, where each weight $\mu$ has the

form $\mu=\lambda-\sum n_{i}\alpha_{i},$ $n_{i}’ s$ being non-negative integers, and $V_{\lambda}^{\lambda}$ is l-dimensional
(cf. Harish-Chandra [2], S\’eminaire Sophus Lie [8]). We shall prove

THEOREM. $H^{1}(\mathfrak{g}, V_{\lambda})$ is l-dimensional over $K$ for $\lambda=-\alpha_{i},$ $i=1,$ $\cdots$ , 1, and
reduces to $0$ for other $\lambda’ s$ .

As is well-known, the Casimir operator $C$ of $V_{\lambda}$ is given by $C(v)=\gamma_{\lambda}v$

$(v\in V_{\lambda})$ , where
(2) $\gamma_{\lambda}=\langle\lambda+\delta, \lambda+\delta\rangle-\langle\delta, \delta\rangle=\langle\lambda, \lambda\rangle+2\langle\lambda, \delta\rangle$ .
If $\gamma_{\lambda}\neq 0,$ $H^{n}(\mathfrak{g}, V_{\lambda})$ vanish for all $n=0,1,2,$ $\cdots$ , as in the finite dimensional
representations. Therefore we shall restrict our considerations to the case
$\gamma_{\lambda}=0$ . Furthermore we may assume $\lambda\neq 0$ , since $H^{1}(\mathfrak{g}, K)=0$ .

LEMMA 2. Let $\lambda=\sum m_{i}\alpha_{i}\neq 0,$ $m_{i}\geqq 0,$ $i=1,$ $\cdots$ , $l$ . Then $\gamma_{\lambda}>0$ .
Indeed, we see immediately that

$\gamma_{\lambda}=\langle\lambda, \lambda\rangle+\Sigma m_{i}\langle\alpha_{i}, \alpha_{i}\rangle>0$ .

By this Lemma, if $H^{1}(\mathfrak{g}, V_{\lambda})\neq 0$, then $0$ is not a weight of $V_{\lambda}$ . Hence
$H^{1}(\mathfrak{h}, V_{\lambda})=0$ by the Corollary of Lemma 1. It follows from the exactness of
(1), that $H^{1}(\mathfrak{g}, V_{\lambda})\cong H^{1}(\mathfrak{g}, \mathfrak{h}, V)$ . So we shall study now $H^{1}(\mathfrak{g}, \mathfrak{h}, V_{\lambda})$ . Assume
that $f$ is a non-zero relative l-cocycle. $f$ satisfies

(3) $hf(g)=f[h, g]$ $(h\in \mathfrak{h}, g\in \mathfrak{g})$ .
Putting $g=x_{\alpha}$ in (3), we see $f(x_{a})\in V_{\lambda}^{\alpha}$ . Similarly $f(y_{\alpha})\in V_{\lambda}^{-\alpha}$ . Since the set
$\{x_{a_{1}}, y_{a_{1}}, \cdot.. , x_{a_{l}}, y_{a_{l}}\}$ generates the whole $\mathfrak{g}$ , one of $f(x_{\alpha_{i}})s$ , or $f(y_{a_{i}})s$ is non-
zero. This means that one of $\alpha_{i}’ s$ or $-\alpha_{i}’ s$ is a weight of $V_{\lambda}$ . If $\alpha_{i_{0}}$ would

1) Concerning basic facts on semisimple Lie algebras, see [6] and [8].
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be a weight, then $\lambda=\sum m_{i}\alpha_{t},$ $m_{i}\geqq 0,$ $m_{i_{0}}>0$ , and we should have $\gamma_{\lambda}>0$ by
Lemma 2, contrary to the assumption. Hence $f(x_{a})=0$ for all positive $\alpha$ , while

$f(y_{\alpha_{i}})\neq 0$ for a certain $i$ , say $i_{0}$ . As above, we have $\lambda=\sum m_{i}\alpha_{i}$ , where $m_{\iota}’ s$

are integers such that $m_{i_{0}}+1\geqq 0,$ $m_{i}\geqq 0(i\neq i_{0})$ . Since $\sum m_{i}\langle\alpha_{i}, \alpha_{i}\rangle=-\langle\lambda, \lambda\rangle$

$<0,$ $m_{i_{0}}$ must be $-1:\lambda=1$) $-\alpha_{i_{0}},$
$\nu=\sum_{i\neq i_{0}}m_{i}\alpha_{i}$ . Let $S$ be the reflection deter-

mined by the vector $\alpha_{i_{0}}$ , and put $\lambda^{\prime}=S(1))$ . Since $\lambda^{\prime}=S(\lambda+\delta)-\delta$ , we have
$\gamma_{\lambda}’=\gamma_{\lambda}=0$ . Since $S(\alpha_{i}),$ $i\neq i_{0}$ , are positive roots, all $m_{i}’ s$ must be $0$ . Hence
$\lambda=-\alpha_{i_{0}}$ . It is then clear that $f(y_{\alpha_{i}})=0(i\neq i_{0})$ , and $f$ is determined by the
value $f(y_{a_{i_{0}}})\in V_{\lambda}^{\lambda}$ . Since $V_{\lambda}^{\lambda}$ is l-dimensional, $H^{1}(\mathfrak{g}, \mathfrak{h}, V_{\lambda})$ is at most l-dimen-
sional. Since there is no non-zero relative l-coboundary for $\lambda=-\alpha_{i_{0}}$ , our
proof of Theorem will be completed, if we show that there is a relative 1-
cocycle $f$ such that $f(y_{\alpha_{i_{0}}})\neq 0$ .

For simplicity, let $i_{0}=1$ . Denote also $X_{t\lambda}i$ (resp. $y_{\alpha_{\dot{t}}}$) as $x_{i}$ (resp. $y_{i}$). $x_{i}’ s$

(resp. $y_{i}’ s$) generate the nilpotent subalgebra $\mathfrak{n}^{+}$ (resp. $\mathfrak{n}^{-}$) spanned by the
vectors belonging to positive (resp. negative) roots: $\mathfrak{g}=\mathfrak{n}^{-}+\mathfrak{h}+\iota\iota^{+}$ . Let $U^{+}$

\langle resp. $U^{-}$) be the universal enveloping algebra of $\mathfrak{n}^{+}$ (resp. $n^{-}$), and $I^{+}$ (resp.
$I^{-})$ the kernel of the canonical epimorphism $U^{+}\rightarrow K$ (resp. $U^{-}\rightarrow K$). We have
$I^{-}=U^{-}y_{1}+\cdots+U^{-}y_{l}$ . $PutJ=U^{-}y_{2}+\cdots+U^{-}y_{l}$ . Then $I^{-}=U^{-}y_{1}+J$, and $I^{-}/J$ is
generated by $y_{1}+J$ as a $U^{-}$-module. Now, let $Kw$ be the l-dimensional zero-
representation of $\mathfrak{h}$ , and construct the induced g-module $U^{-}U^{+}\otimes w^{2)}$ . Put
$V=(U^{-}U^{+}\otimes w)/(U^{-}I^{+}\otimes w)$ , and $w_{1}=(1\otimes w)+(U^{-}I^{+}\otimes w)$ . Then $V$ is a g-module
generated by $w_{1}$ as $U^{-}$ -module, and is isomorphic to $U^{-}$ as $U^{-}$-module by the
correspondence $uw_{1}\leftrightarrow u(u\in U^{-})$ . $I^{\vee}w_{1}$ and $Jw_{1}$ are g-submodules of $V$ , and
$I^{-}w_{1}/Jw_{1}$ is generated by $v=y_{1}w_{1}+Jw_{1}$ . $v$ is annihilated by $I^{+}$ and belongs to
the weight $-\alpha_{1}$ . Hence $I^{-}w_{1}/Jw_{1}$ has a (unique) irreducible factor $V_{-\alpha_{1}}$ (see
[8, expos\’e 17]). Thus, we have an $\mathfrak{h}$-trivial extension $M$ of $V/I^{-}w_{1}=K$ with
the kernel $V_{-\alpha_{1}}$ , and the characteristic cocycle of this extension satisfies
$f(y_{1})=v$ , as desired.

REMARKS 1. In [3] we introduced the subspace $H^{1}(\mathfrak{h}, V)^{\mathfrak{g}}$ of $H^{1}(\mathfrak{h}, V)$

consisting of the stable cohomology classes. A simple calculation shows that

$H^{1}(\mathfrak{h}, V_{\lambda})^{\mathfrak{g}}=\left\{\begin{array}{l}\mathfrak{y}* (\lambda=0),\\0 (\lambda\neq 0).\end{array}\right.$

Therefore the isomorphism $H^{1}(\mathfrak{g}, V_{\lambda})\cong H^{1}(\mathfrak{g}, \mathfrak{h}, V_{\lambda})$ can also be deduced from
the exactness of the following sequence [3]:

2) Let $U$ and $U^{0}$ be the universal enveloping algebras of $\mathfrak{g}$ and $\mathfrak{h}$ respectively.
Then $U=U^{-}U^{+}U^{0}$ . Any $\mathfrak{h}$-module ( $=U^{0}$-module)W induces a g-module $W^{\mathfrak{g}}=U\otimes_{U^{\Phi}}W$

$=U^{-}U^{+}\otimes_{K}W$. We see that $hy_{1}\otimes w=-\alpha_{1}(h)y_{1}\otimes w$ for $h\in \mathfrak{h},$ $w\in W$, and $x_{i}y_{1}\otimes w$

$=y_{1}x_{i}\otimes w,$ $i=1,$ $\cdots$
$l$ .
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$0\rightarrow H^{1}(\mathfrak{g}, \mathfrak{h}, V)\rightarrow H^{1}(\mathfrak{g}, V)\rightarrow H^{1}(\mathfrak{h}, V)^{\mathfrak{g}}$ .
2. The study of general $Ext|(U, V)$ is closely related to the study of

tensor products and of the multiplicity of weights. A forthcoming paper of
H. Kimura [7] deals with these subject-matters.

Tokyo University of Education
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