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Introduction.

Let $\mathfrak{O}(x)=\mathfrak{Q}(x_{1},\cdots, x_{\gamma})$ be a positive definite quadratic form with rationai
integral coefficients. Any homogeneous polynomial $f(x)=f(x_{1},\cdots, x_{\gamma})$ in $r$ vari-
ables will be called a spherical function with respect to $\mathfrak{Q}$ if $\Delta f=0,$ $\Delta$ being
the Laplacian with respect to the metric Q. For each positive integer $n$ , let
$G_{n}$ be the totality of all $r\times r$ matrices $g$ with rational integral coordinates
satisfying $\mathfrak{Q}(xg)=n\mathfrak{Q}(x)$ .

We shall consider such spherical functions $f$ as satisfying

(a) $f(xg)=f(x)$ for any $g\in G_{1}$

(b) for each $n=1,2,\cdots,\sum_{g\in G_{n}}f(xg)$ is a constant multiple of $f(x)$ .

For each spherical function $f$ satisfying (a) (b), we denote by $\tau_{f}(n)(n=1,2,\cdots)$

the constant multiplicator in (b) divided by the cardinal number of $G_{1}$ , and
put

$Z_{f}(s)=\sum_{n=1}^{\infty}\tau_{f}(n)n^{-s}$ .

Under a certain condition for $\mathfrak{Q},$ $Z_{f}(s)$ has an Euler-product expression, $i$ . $e$ .
it is the product of

$E_{f}^{(p)}(x)=\sum_{n=0}^{\infty}\tau_{f}(p^{n})x^{n}$ ; $x=p-s$

for all primes $p$ , and it is often the case that $E_{f^{(p)}}(x)$ are rational functions of
$x$ . We are interested in the zeros and poles of such $E_{f^{(p)}}(x)$ , since we expect
“ Riemann conjectures “ about them. Many questions arise, but before attack-
ing them, we wish to develop the arguments and find out our functions more
explicitly for the simplest non-trivial cases. One of which is the case of
$r=5^{1)}$ . But the isomorphism between 0(5) and $sp(4)$ suggests that we shall

1) A certain reformulation of several works of Eichler [1], [2], [3], [4] shows
that in the case $r=3$ , our $Z_{f}(s)$ are essentially the same as the Dirichlet series cor-
responding (by Mellin transformation) to modular forms, hence we cannot obtain
anything new out of the case $r=3$ . The case $r=4$ is reduced to that of $r=3$ .
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obtain essentially the same functions $Z_{f}(s)$ if we consider two dimensional
positive definite quaternion-hermitian spaces instead.

So, the purpose of this brief note is:
(i) To develop the arguments explicitly in the latter cases. We will find
that, the functions $f$ that provide us with actually interesting $Z_{f}(s)$ are those
with the property that the so-called it $\theta$ -series ” vanish identically.

$\theta_{f}(\tau)=\sum_{(x)}f(x)e^{2\pi t\tau Q(x)}\equiv 0$ .

But as for the non-trivial properties of such $Z_{f}(s)$ , we can only conjecture
one or two of them. The precise form of the rational functions $E_{f^{(p)}}(x)$ will
be determined. When the $\theta$ -series does not vanish, our $Z_{f}(s)$ can be ex-
pressible by the product of Dirichlet series which are already well-known.

The spherical functions $f$ whose $\theta$ -series vanish, namely those with the
property that the sum of the values of $f$ at the integral points which are
equidistant from the original point always vanishes, will be called of type
C. (Since they play a role analogous to that of modular cusp forms in the
theory of Hecke operators.) We will find a lot of them even under the condi-
tions (a), (b).
(ii) To give some numerical examples of the rational functions $E_{f}^{(p)}(x)$ , which
suggest a certain conjecture about the absolute values of their poles when $f$

is of type C. (Zeros are, in our case, rather trivial.)

The first two sections are preliminaries. In the first section, we write
down explicitly the space of spherical functions with respect to our quaternion
-hermitian spaces, and in the second section, we apply the local theory of
quaternion-hermitian spaces (cf. Shimura [6]) to obtain what is necessary for
our purposes. The main statements are in the third section, and numerical
examples and conjectures, in the final section.

The author wishes to express his hearty thanks to Professor S. Iyanaga
and Professor I. Satake for their useful advice.

Throughout the following, let $D$ be a definite quaternion algebra over the
field of rational numbers $Q$ with discriminant $d_{D}$ whose class number is one.
Put $D\bigotimes_{Q}R=K$ (the real quaternion field). For any $x\in K,$ $n(x)=x\overline{x}$ denotes the

reduced norm of $x$ .
Let $(K, K)$ be the two dimensional left K-vector space with hermitian

metric:

$\mathfrak{Q}(x, y)=n(x)+n(y)$ $(x, y)\in(K, K)$ .

It contains the left D-vector space $(D, D)$ with the metric $\mathfrak{Q}$ .
$M_{2}(K),$ $M_{2}(D)$ etc. will mean the set of $2\times 2$ matrices over $K,$ $D$ , etc.
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\S 1 Geometrical preliminaries.

Put $G_{K}^{1}=\{g\in M_{2}(K);{}^{t}\overline{g}g=1\}$ .
Then, $(x, y)\rightarrow(x, y)g$ , $g\in G_{K}^{1}$

give all the K-linear transformations of $(K, K)$ which leave $\mathfrak{Q}$ invariant. Since
$G_{K}^{I}$ operates on $(K, K)$ from the right, it operates also on the projective line:

$L_{K}=K^{\times}\backslash (K, K)-\{(0,0)\}$

and it can be easily seen that the latter operation is transitive. $L_{K}$ can be
regarded as a compact symmetric Riemannian space of rank one with respect
to its unique $G_{K}^{1}$-invariant metric (up to constant).

Now, $(x, y)\in(K, K)$ can be regarded as the variable over the 8 dimensional
vector space over $R$ . For each $ k=0,1,2,\cdots$ , we denote by $\mathfrak{M}_{k}$ the R-vector
space of homogeneous real valued polynomial functions $f(x, y)$ of degree $2k$ of
this variable, such that

$f(zx, zy)=n(z)^{k}f(x, y)$ $z\in K$

and satisfying

$\Delta f=0$

where $\Delta$ denotes the ordinary Laplacian in the metric space $(K, K)$ with respect
to Q. Then the family

$\{f(x, y)\mathfrak{Q}(x,y)^{-k} ; f\in \mathfrak{M}_{k}, k=0,1,2,\cdots\}$

coincides with that of all spherical functions on $L_{K}$ . Accordingly, $\mathfrak{M}_{k}$ can be
regarded as representation spaces of $G_{K}^{1}$ ; namely, $g\in G_{K}^{1}$ operates on $\mathfrak{M}_{k}$ as

$\mathfrak{M}_{k}\ni f(x, y)\rightarrow f((x, y)g)\in \mathfrak{M}_{k}$ .
This representation is equivalent to the irreducible representation of

$US_{p}(4)\cong G_{K}^{1}$ corresponding to the Young diagram:

$\overline{|\frac{1}{1}|\frac{2}{2}||\frac{k}{k}|}$

and $\dim \mathfrak{M}_{k}=\frac{1}{6}(k+1)(k+2)(2k+3)$ .

\S 2 Arithmetical preliminaries.

(A) Let $G_{D}$ be the group of all similitudes of the metric space $(D, D)$

which operates on $(D, D)$ . from the right: namely,
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$G_{D}=\{g\in M_{2}(D);{}^{t}\overline{g}g=scalar\}$ .
For $g\in G_{D}$ , the scalar ${}^{t}\overline{g}g$ is denoted by $n(g)$ .

Let $O$ be a maximal order of $D$ . We regard $(O, O)$ as a lattice in our metric
space $(D, D)$ and assume once for all that the $G_{D}$-genus containing $(0,0)$ con-
sists of only one class2), so that, roughly speaking, the structure of $G_{D}$ with
respect to $(O, O)$ is the direct product of their local extensions. More precisely,
if we put

$G_{o}=\{g\in G_{D} ; (O, O)g\subset(O, O)\}=G_{D}\cap M_{2}(O)$

$G_{\Gamma}=\{g\in G_{D} ; (O, O)g=(O, O)\}=\{(\gamma 0\gamma 0),$ $(_{\gamma}^{0},$ $\gamma 0)$ ; $\gamma,$

$\gamma^{\prime}\in\Gamma\}$ (finite) ,

where $\Gamma$ denotes once for all the unit group of $O$ , and if $n=p_{1}^{a_{1}}\cdots p_{r}^{\alpha_{r}}$ is the
prime factor decomposition of $n$ , every $g\in G$ with $n(g)=n$ can be written
uniquely in the form

(1) $g=\gamma g_{1}g_{2}\cdots g_{r}$ ,

where $g_{i}$ are given representatives of the left coset space $G_{\Gamma}\backslash G_{o}$ ,

$n(g_{i})=p_{i}^{a_{\dot{t}}}$ $(1 \leqq i\leqq r)$ and $\gamma\in G_{\Gamma}$ .
(B) We mean by $G_{\Gamma}$-invariant cycle a formal sum of any finite set of

points of $(K, K)$ which is $G_{\Gamma}$-invariant as a whole. For any $G_{\Gamma}$ -invariant cycle
$X$ and any $ n=1,2,\cdots$ , we put

$T(n)X=$
$\sum_{g,\{\in G_{\Gamma}\backslash G_{O}}Xg$

$S(n)X=\{_{n(\lambda)=n}\sum_{\lambda\in 0/\Gamma}\lambda X$

(formal sums).

It is clear that $T(n)X,$ $S(n)X$ are again $G_{\Gamma}$-invariant cycles, and that by (1),

we have

(2) $T(mn)=T(m)T(n)$ for $(m, n)=1$ .

(C) The determination of the multiplication laws between $T(p^{r})$ and $\tau(p^{s})$

for fixed $p$ is reduced to the determination of the structure of the so-called
“local double-coset rings”. Let us denote by suffix $p$ the local extension,
( $e$ . $g$ . $(G_{\Gamma})_{p}$ is the group of all similitudes of the metric space $(D_{p}, D_{p})$ which
leave $(O_{p}, O_{p})$ invariant). There is a canonical bijection between two left-coset
spaces.

2) $i$ . $e$ . if $L$ is an O-lattice such that $L_{p}=(O_{p}, O_{p})g_{p},$ $g_{p}\in(G_{D})_{p}$ for all primes $p$ ,
then $L=(O, O)g,$ $g\in G_{D}$ , (where the suffix $p$ denote local extensions). This assump-
tion is for the sake of simplicity. If it is not satisfied, we should consider the direct
sum of a finite number of $(D, D)$ instead of one.



218 Y. IHARA

$G_{\Gamma}\backslash $ { $g\in G_{o}$ ; $n(g)=power$ of $p$ } $\approx(G_{\Gamma})_{p}\backslash (G_{o})_{p}$ .
Consider the double-coset rings3) formed with respect to the above two

coset spaces. Since any $(G_{\Gamma})_{p}$-double-coset corresponds to a finite ” sum ” of
$G_{\Gamma}$-double-cosets by this bijection, the double-coset ring with respect to $(G_{o})_{pr}$

$(G_{\Gamma})_{p}$ , which we denote by $\ovalbox{\tt\small REJECT}((G_{o})_{p}, (G_{\Gamma})_{p})$ , can be regarded as the subring of the
other double-coset ring. By this way, the determination of the multiplication
laws between $\tau(p^{r}),$ $\tau(p^{s})$ can be reduced to that of $\ovalbox{\tt\small REJECT}((G_{o})_{p},(G_{\Gamma})_{p})$ . In par-
ticular, the commutativity of $\ovalbox{\tt\small REJECT}((G_{o})_{p}, (G_{\Gamma})_{p})$ (essentially Shimura [6]) implies.
that $\tau(p^{r}),$ $T(p^{s})$ commutes with each other. From this, and (2), we have

(3) $T(m)T(n)=T(n)T(m)$ for any $m,$ $n$ .
(D) Moreover, if $p$ is a prime such that $p+d_{D}$ , our double-coset ring.

$\ovalbox{\tt\small REJECT}((G_{o})_{p}, (G_{\Gamma})_{p})$ is isomorphic with the double-coset ring with respect to the
semi-group of all similitude symplectic matrices of rank two over $Z_{p}$ , and its
obvious maximal compact subgroup. This enable us to apply a result of
Shimura [7] from which we get the following symbolical formulae.

(4) $\sum_{n=0}^{\infty}T(p^{n})t^{n}=(1-p^{2}R(p)t^{2})\{1-T(p)t+(T(p)^{2}-T(p^{2})-p^{2}R(p))t^{2}$

$-p^{8}R(p)T(p)t^{3}+p^{6}R(p)^{2}t^{4}\}^{-1}$

where $t$ is a variable and $R(p)X=\sum_{i}px_{i}$ for any $G_{\Gamma}$-invariant cycle $X=\sum_{i}x_{i-}$

($px$ is the scalar multiplication of a vector $x$, and the summation is the formal
$\cdot$

sum.)

On the other hand, if $p$ is a prime such that $p|d_{D}$ , analogous calculations.
show that

(5) $\sum_{n=0}^{\infty}T(p^{n})t^{n}=(1+p^{2}R^{\prime}(p)t)\{1+(p^{2}R^{\prime}(p)-T(p))t+p^{3}R^{\prime}(p^{2})t^{2}\}^{-1}$

where $R^{\prime}(p)X=Xu,$ $n(u)=p$ for any $G_{\Gamma}$ -invariant cycle $X$, which is well-defined
because for such $p$ , elements $u$ of $D$ of norm $p$ are contained in $O$ and they
belong to the same (left and right) $\Gamma$ -coset.

(E) Put $X_{n}=\{(x, y)\in(O, O);Q(x,y)=n\}$

$Y_{n}=\{(x, y)\in X_{n} ; xO+yO=O\}$ $ n=1,2,\cdots$ .
$X_{n},$ $Y_{n}$ can be regarded as $G_{\Gamma}$ -invariant cycles and by our first assumption that
the class number of $D$ is one, we get

3) Or ‘ Hecke ring. It is a free Z-module generated by all double-cosets sup-
plied with “convolution product.”
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(6) $X_{n}=\sum_{a|n}S(n/d)Y_{a}$

(7) $T(n)X_{1}=\sum_{d|n}\sigma_{D}(n/d)S(n/d)Y_{d}$ ,

where $\sigma_{D}(n)$ denotes the sum of divisors of $n$ which are relatively prime to $d_{D}$ .

\S 3 Spherical eigenfunctions and Dirichlet series.

(A) Put now
$\mathfrak{M}_{k}^{\Gamma}=\{f\in \mathfrak{M}_{k} ; f((x, y)\gamma)=f(x, y)\forall\gamma\in G_{\Gamma}\}$

$=\{f\in \mathfrak{M}_{k} ; f(\gamma_{1}x\gamma_{2}, \gamma_{3}y\gamma_{4})=f(x,y)=f(y, x)\forall\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\in\Gamma\}$ .
We define linear endomorphisms $ T_{k}(n)n=1,2,\cdots$ of $\mathfrak{R}$? as

$T_{k}(n)$ :
$\mathfrak{M}_{k}^{\Gamma}\ni f(x, y)\rightarrow n(g)\sum_{g\in G\gamma_{-}\backslash _{n^{G\circ}}}f((x,y)g)\in \mathfrak{M}_{k}^{\Gamma}$

.

Then, it is clear that for any $G_{I’}$-invariant cycle $X=\sum_{i}x_{i}$ and $f\in \mathfrak{M}_{k}^{\Gamma}$ , we have

(8) $f(T(n)X)=T_{k}(n)f(X)$

(9) $f(S(n)X)=\sigma_{D}(n)n^{k}f(X)$

where $f(X)_{d}=_{ef}\sum_{i}f(x_{i})$ .

So, by \S 2, (3), we have

(10) $T_{k}(m)T_{k}(n)=T_{k}(n)T_{k}(m)$ for any $m,$ $n$ .
Moreover, if we denote by $(f, h)$ for $f,$ $h\in \mathfrak{M}_{k}$ the $G_{K}^{1}$-invariant positive sym-
metric bilinear form in $\mathfrak{M}_{k}$ (unique up to constant), we have

(11) $(T_{k}(n)f, h)=(f, T_{k}(n)h)$ for any $f,$ $h\in \mathfrak{M}_{k}^{\Gamma}$ $ n=1,2,\cdots$ .
Therefore $\mathfrak{M}_{k}^{\Gamma}$ is spanned by functions each of which is an eigenfunction for
all $T_{k}(n),$ $ n=1,2,\cdots$ , and the eigenvalues of $T_{k}(n)$ are real numbers. (Moreover,

we can deduce without any difficulty from the definitions of $\mathfrak{M}_{k}^{\Gamma}$ and of $T_{k}(n)$

that the eigenvalues are totally real algebraic numbers.)

(B) Let $f\in \mathfrak{M}_{k}^{\Gamma}$ be an eigenfunction of $T_{k}(n)$ for all $ n=1,2,\cdots$ , and put

$T_{k}(n)f=\tau_{f}(n)f$ $n=1,2,$ $\cdots$

$Z_{f}(s)=\sum_{n=1}^{\infty}\tau_{f}(n)n^{-s}$ .

When $k=0,$ $\mathfrak{M}_{0}^{\Gamma}=\mathfrak{M}_{0}=constant$ , and so,

$T_{0}(n)=\frac{|g\in G}{1}\frac{;n(g)=n|}{G_{\Gamma}|}$ (scalar) ,

where, in general, $|S|$ denotes the cardinal number of the finite set S. To
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determine the exact values of $T_{0}(n)$ , we need only to calculate them when $n$

is a prime number or the square of a prime number because of (2), (4), (5),

(and (8)). The result is

$T_{0}(p)=(1+p)(1+p^{2})$ for $p+d_{D}$ ,

$=1+p^{2}+p^{3}$ for $p|d_{D}$ ,

$T_{0}(p^{2})=p(p+1)(p^{2}+1)^{2}+1$ for $p\lrcorner Td_{D}$ ,

$=p^{2}(p+1)(p^{3}+1)+1$ for $p|d_{D}$ .
From this follows

(12) $Z_{const}$ . $(s)=\sum_{n-1}^{\infty}T_{0}(n)n^{-s}=\zeta(s)\zeta(s-2)\zeta(s-3)\zeta(2s-2)^{-1}\prod_{p|tl_{D}}\frac{1-p^{4-2S}}{1-p^{2-2S}}$

where $\zeta(s)$ is the zeta function of Riemann.
Returning to the general case, choose $(x_{0}, y_{0})\in(K, K)$ such that $|f(x_{0}, y_{0})|_{\downarrow}$

$=_{\mathfrak{Q}(x,y)=}{\rm Max}_{\mathfrak{O}(x_{0},y_{0})}|f(x, y)|=1$ . Then, we have

$|\tau_{f}(n)|\leqq\frac{1}{|f(x_{0},y_{0})|}$

$\sum_{\gamma,g\in Gr\backslash _{n^{(xO}}}|f((x_{0}, y_{0})g)n(g)--|\leqq n^{k}T_{0}(n)$
.

Since $\sum_{n=1}^{\infty}T_{0}(n)n^{-s}$ is absolutely convergent when $R(s)>4$ , so is $Z_{f}(s)=\sum_{n=1}^{\infty}\tau_{f}(n)n^{-s}$

when $R(s)>k+4$ . The Euler-product expression for our $Z_{f}(s)$ is the direct
consequence of (4), (5), (and (8)).

(C) $f,$ $Z_{f}(s)$ being as in \S 3 (B), let us suppose now that

$f(X_{1})\neq 0$ .
Then our $Z_{f}(s)$ breaks up into the product of Dirichlet series which are
already known. To see this, we apply the equality

(13) $\sum_{m=0}^{\infty}(\frac{y^{m+1}-1}{y-1})^{2}x^{m}=\frac{1+xy}{(1-x)(1-xy)(1-xy^{2})}$ .

Put $x=p^{-s},$ $y=p$ in (13), and multiply over all $p$ such that $p$ } $d_{D}$ . Then we
obtain

(14) $\sum_{n=1}^{\infty}\sigma_{D}(n)^{2}n^{-s}=\zeta(s)\zeta(s-1)^{2}\zeta(s-2)\zeta(2s-2)^{-1}\prod_{p|a_{D}}\frac{(1-p^{\rightarrow s})(1-p^{1-s})^{2}(1-p^{2-s})}{(1-p^{2-2s})}$ .

Since $f(X_{1})\neq 0,$ $\tau_{f}(n)=f(X_{1})^{-1}f(T(n)X_{1})$ and applying (7), we obtain

$Z_{f}(s)=f(X_{1})^{-1}\sum_{n=1}^{\infty}f(T(n)X_{1})n^{-s}=f(X_{1})^{-1}\sum_{n=1}^{\infty}n^{-s}(\sum_{a|n}\sigma_{D}(n/d)^{2}(n/d)^{k}f(Y_{a}))$ .

So, if we put $\phi_{f}(s)=f(X_{1})^{-1}\sum_{n-1}^{\infty}f(X_{n})n^{-s},$ $\phi_{f}^{\prime}(s)=f(Y_{1})^{-1}\sum_{n=1}^{\infty}f(Y_{n})n^{-s}$ , and remark
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that $X_{1}=Y_{1}$ , we obtain

(15) $Z_{f}(s)=\sum_{n=1}^{\infty}\sigma_{D}(n)^{2}n^{k-s}\phi_{f}^{\prime}(s)$ .

On the other hand, we have by (6),

(16) $\phi_{f}(s)=\sum_{n=1}^{\infty}\sigma_{D}(n)n^{k-s}\phi_{f^{\prime}}(s)=\zeta(s-k)\zeta(s-k-1)\phi_{f}^{\prime}(s)\prod_{p|d_{D}}\frac{1-p^{k-s}}{1-p^{k+1-S}}$ .

Therefore, by (14), (15), (16), we obtain finally, if $f(X_{1})\neq 0$

(17) $Z_{f}(s)=\zeta(s-k-1)\zeta(s-k-2)\zeta(2s-2k-2)^{-1}\phi_{k}(s)$ ,

up to finite number of factors which are rational functions of $p^{-s}$ for $p|d_{D}$ .
$\phi_{f}(s)$ is nothing but the Dirichlet series which correspond to the $\theta$ -series

$S_{f}(\tau)=f(X_{1})^{-1}\{f(O, 0)+\sum_{n=1}^{\infty}f(X_{n})e^{2\pi i\tau n}\}$

by Mellin transformation, and we can verify without difficulty by applying
the result of Schonberg (cf. the complete work of E. Hecke, p. 855) that the
above $\theta_{f}(\tau)$ is a modular form of weight $2k+4$ which belongs to the following
Fuchsian group,

$\{\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in SL(2, Z)$ ; $c\equiv 0$ $(mod d_{D})\}$ .

REMARK: The equality (12) for $k=0$ is the special case of (17).

(D) What about $Z_{f}(s)$ if $f(X_{1})=0$ then ? Since $f$ is a simultaneous eigen-
function for $ T_{k}(n);n=1,2,\cdots$ , we have

$f(T(n)X_{1})=T_{k}(n)f(X_{1})=0$ $ n=1,2,\cdots$ .
So, applying (6) and (7) , we obtain

(18) $f(X_{n})=0$ $ n=1,2,\cdots$ .
In other words, for such eigenfunctions $f,$ $\beta_{f}(\tau)$ vanishes identically (we have
also $f(O, 0)=0$ since $k=0$ is not the case now), and so, our $Z_{f}(s)-$ for which
the ” integral similitudes ” of norm $n$ play essential roles–cannot be ex-
pressed by means of known Dirichlet series such as $\phi_{f}(s)$ for which the
” integral vectors ” of norm $n$ are essential.

(E) The above arguments suggest that our $Z_{f}(s)$ has essentially different
properties according to whether

$f(X_{1})=0$ or $\neq 0$ .
We shall call a function in $\mathfrak{M}_{k}^{\Gamma}$ as of type $C$ (resp. type $E$). if it is a linear
combination of the eigenfunctions $f$ such that $f(X_{1})=0$ , (resp. $\neq 0$). They are

4) Eliminate $Y_{d}$ from (6) and (7).
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orthogonal to each other according to (11). By \S 3 (D), it is obvious that if
any $f\in \mathfrak{M}_{k}^{\Gamma}$ (which is not necessarily an eigenfunction) is of type $C$, the simulta-
neous equation (18) holds for it. We can prove that (18) is also sufficient for
\langle any) $f\in \mathfrak{M}_{k}^{\Gamma}$ to be of type $C^{5)}$ .

To see that there exists actually $0\neq f\in \mathfrak{M}_{k}^{\Gamma}$ which satisfies (18), let us con-
sider the linear map

$\mathfrak{M}_{k}^{\Gamma}\ni f\rightarrow\theta_{f}(\tau)\sum_{(x.y)\in(0,0)}f(x,y)e^{2\pi i\tau \mathfrak{Q}(x,y)}$

’of $\mathfrak{M}_{k}^{\Gamma}$ into the space of all modular forms of weight $2k+4$ belonging to the
Fuchsian group given in \S 3 (C). Since the dimension of $\mathfrak{M}_{k}^{\Gamma}$ increases as $ k\rightarrow\infty$

at the order of $k^{3}$ , while the dimension of the latter space increases at the
order of $k$ , we can conclude that if $k$ is large enough, most functions $f\in \mathfrak{M}_{k}^{\Gamma}$

satisfy (18), $i$ . $e$ . they are of type $C$ .
We may roughly say that the spherical functions of type $C$ (resp. type $E$)

play a role analogous to that of “ cusp forms” (resp. “ Eisenstein series”) in
the theory of original Hecke operators. Thus we are interested in $Z_{f}(s)$ when
$f$ is of type $C$ . We give some numerical examples of them in the final
section.

(F) We give an additional remark that if $k$ is odd, every $f\in \mathfrak{M}_{k}^{\Gamma}$ is of
type $C$ . The proof is as follows.

Since $G_{K}^{1}/\pm 1\cong US_{p}(4)/\pm 1\equiv SO(5, R)$

we have $L_{K}=KU\{\infty\}\cong 4$-dimensional sphere-surface

as (symmetric) Riemannian spaces, and we can check easily that $x$ and $-\overline{x}^{-1}$

on $L_{K}$ correspond to the antiposal points of the four dimensional sphere. From
this, we conclude that if $f\in \mathfrak{M}_{k}^{\Gamma}$ , we have

(19) $f(x, 1)=(-1)^{k}n(x)^{k}f(-\overline{x}^{-1},1)$ .
By the definition of $\mathfrak{M}_{k}^{\Gamma},$ (19) implies for $f\in \mathfrak{M}_{k}^{\Gamma}$,

(20) $f(1, -\overline{x})=(-1)^{k}f(1, x)$ .
So, if $k$ is odd, we have

(21) $f(1,0)=0$ for $f\in \mathfrak{M}_{k}^{\Gamma}$ .
Since $X_{1}=\{(\gamma, 0), (0, \gamma);\gamma\in\Gamma\}$ and since $f$ is $G_{\Gamma}$-invariant, $f$ takes the same
value at all points of $X_{1}$ , hence (21) is equivalent to

5) For any generator $T$ of the double coset ring
$\bigotimes_{p}\ovalbox{\tt\small REJECT}((G_{0})_{p}, (G_{\Gamma})_{p})$ and $G_{\Gamma^{-}}$

invariant cycle $X$, we can define $TX$ in the same way as $T(n)X$. It suffices to show
that for any $T,$ $TX_{1}$ is the sum of $G_{\Gamma}$-invariant cycles of the form $S_{0}(n)R(m)R^{\prime}(l)Y_{(1}$

where $ S(n)=\Sigma$ $S_{0}(n/d^{2})R(d)$ . The latter follows from the elementary arithmetic of
$a^{2}|n$

quaternion algebra of class number one.
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(22) $f(X_{1})=0$ for $f\in \mathfrak{M}_{k}^{\Gamma},$ $k$ : odd.

This proves that if $k$ is odd, any eigenfunction in $\mathfrak{M}_{k}^{\Gamma}$ is of type $C$, and con-
sequently, any function in $\mathfrak{M}_{k}^{\Gamma}$ is of type $C$ .

\S 4. Numerical examples.

Let $D$ be such that $d_{D}=3$ . Then, the class number of $D$ is one, and if $O$

is the unique maximal order (up to conjugates) of $D$ , we can verify that the
$G_{D}$-genus containing $(O, O)$ consists of only one class, hence the necessary
assumptions are satisfied.

If we denote by $\mathfrak{M}_{k}^{\Gamma}(C)$ the space of all functions (in $\mathfrak{M}_{k}^{\Gamma}$) of type $C$, the
table of $\dim \mathfrak{M}_{k}^{\Gamma},$ $\dim \mathfrak{M}_{k}^{\Gamma}(C)$ for small $k’ s$ is

$\frac{k}{k}\frac{\dim \mathfrak{M}^{\Gamma}}{\dim \mathfrak{M}_{k}(C)}\Gamma|^{\frac{012345678910111213}{11236171134}}\frac{}{2121\underline{74}}$

where the blank columns stand for dimension zero. So, the smallest $k$ for
which we have a spherical function of type $C$ is $k=8$ .

Represent $D$ , explicitly as

$D=Q+Qi+Qj+Qk$ $i^{2}=-1$ $j^{2}=-3$ $ij=-ji=k$ ,

$O=Z+Zi+Z\frac{1+j}{2}+Z\frac{i+k}{2}$ .
Denote $D\ni x=x_{1}+x_{2}i+x_{3}j+x_{4}k$ .

$\underline{h=8}$ $\dim \mathfrak{M}_{8}^{\Gamma}=6,$ $\dim \mathfrak{M}_{8}^{\Gamma}(C)=2$ . A base of $\mathfrak{M}_{8}^{\Gamma}$ is given by

$F(x, 1)=t^{8}+1-36(t^{7}+t)+336(t^{6}+t^{2})-1176(t^{5}+t^{3})+1764t^{4}$

$G(x, 1)=14\{2(-t^{6}+t^{5}+r^{8}-t^{2})-9t^{4}+A(r^{4}+4r^{3}+6t^{2}+4t+1)-2B(t+1)^{2}\}+17C$

$H(x, 1)=(5t^{3}-5At+B)(4t^{2}-9t+4)$

$I(x, 1)=9t^{4}-15At^{2}+7Bt-C$

$J(x, 1)=153t^{4}-150At^{2}+35A^{2}$

$K(x, 1)=x_{3}x_{4}(x_{1}^{2}-x_{3}^{2})(x_{2}^{2}-x_{4}^{2})(x_{1}^{2}-x_{2}^{2}+3x_{\delta}^{2}-3x_{4}^{2})$ ,

where 1/6
$\sum_{\gamma\in\Gamma/\pm 1}(tr(\gamma x))^{2r}=t,$

$A,$ $B,$ $C$ according to $r=1,2,3,4$ (respectively). (In

particular, $t=n(x).)$

A base of $\mathfrak{M}_{8}^{\Gamma}(C)$ is given by

$f(x, 1)=K(x, 1)$
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$g(x, 1)=-3-G(x, 1)+7H(x, 1)+9I(x, 1)-2\frac{5}{18}J(x, 1)$ .

The formulae (4), with numerical computations show that both $f$ and $g$ are
eigenfunctions of the operators $ T(2^{r})r=1,2,\cdots$ with the same eigenvalues, hence
the Euler-factor of $Z_{f}(s),$ $Z_{g}(s)$ coincides for $p=2$ , denominator of which is
given by (numerator is rather trivial)

$\{1-12(-9+\sqrt{}\overline{1489})2^{-S}+2^{19-2S}\}\{1-12(-9-\sqrt{}\overline{1489)}2^{-S}+2^{19-2S}\}$ .
$\underline{k=9}$ $\dim \mathfrak{M}_{9}^{\Gamma}=\dim \mathfrak{M}_{9}^{\Gamma}(C)=1$ , and its base is given by

$f(x, 1)=x_{1}x_{2}(x_{1}-9x_{3}^{2})(x_{2}^{2}-9x_{4}^{2})(x_{1}^{2}-x_{2}^{2}+3x_{3}^{2}-3x_{4}^{2})(1-n(x))$ .

The denominator of the Euler factor of $Z_{f}(s)$ for $p=2$ is given by

$\{1-24(-69+\sqrt{}\overline{1049})2^{-S}+2^{21-2S}\}\{1-24(-69-\sqrt{}\overline{1049)}2^{-S}+2^{21-2S}\}$ .
$\underline{k=11}$ $\dim \mathfrak{M}_{11}^{\Gamma}=\dim \mathfrak{M}_{11}^{\Gamma}(C)=1$ , and its base is given by

$f(x, 1)=x_{1}x_{2}(x_{1}^{2}-9x_{3}^{2})(x_{2}^{2}-9x_{4}^{2})(\chi_{1}^{2}-\chi_{2}^{2}+3x_{3}^{2}-3X_{4}^{2})(1-n(x))(5-13n(x)+5n(x)^{2})$ .

The denominator of the Euler factor of $Z,(s)$ for $p=2$ is given by

$\{1-48(-69+\sqrt{}\overline{22297})2^{-S}+2^{25-2S}\}\{1-48(-69-\sqrt{}\overline{22297})2^{-S}+2^{25-2S}\}$ .

The above examples suggest the following conjecture. When $f\in \mathfrak{M}_{k}^{\Gamma}$ is an
eigenfunction of type $C$, and when $p+d_{D}$ , the roots of the denominator of the
$p$ -Euler factor of $Z_{f}(s)$–which is a polynomial of $x=p-s$ of degree four–

have the absolute values $|\chi|=p^{-(k-)_{?}}2^{-}3$

REMARK. Similarity of trace-formula suggests some connections between
our $Z_{f}(s),$ $f\in \mathfrak{M}_{k}^{\Gamma}$ and Dirichlet series given by “ Hecke operator theory “ in
the space of Siegel modular forms of degree 2, weight $k+3$ , but as yet, we
cannot ascertain it.

University of Tokyo
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