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Introduction.

J. Milnor [8] and S. Smale [11] have proved that the oriented differenti-
able homotopy $(4k-1)$-spheres $(k>1)(i$ . $e$ . $(4k-1)$-manifolds which have the
homotopy type of the $(4k-1)$-sphere), which are boundaries of $\pi$ -manifolds,
are homeomorphic to the natural sphere $S^{4k-1}$ and their diffeomorphism classes
form a cyclic group $\Theta^{4k-1}(\partial\pi)$ of a finite order under the connected sum
operation. It is known (cf. [8]) that in general any 7 or 11 dimensional closed
( $i$ . $e$ . compact unbounded) oriented differentiable $\pi$ -manifold always bounds a
z-manifold. Thus the group $\Theta^{7}$ (resp. $\Theta^{11}$ ) of diffeomorphism classes of
oriented differentiable homotopy 7-spheres (resp. ll-spheres) coincides with
$\Theta^{7}(\partial\pi)$ (resp. $\Theta^{11}(\partial\pi)$) and hence homotopy 7-spheres (resp. ll-spheres) have
been completely classified diffeomorphically as oriented manifolds. So it has
turned out that there exist precisely 28 (resp. 992) distinct diffeomorphism
classes of homotopy 7-spheres (resp. ll-spheres). (In the following we shall
express this situation by saying: there exist precisely 28 (resp. 992) distinct
differentiable manifolds on homotopy 7-spheres (resp. ll-spheres).)

In this paper we shall consider $(2k-2)$-connected closed oriented differenti-
able $(4k-1)$-manifolds which bound $\pi$ -manifolds and whose $(2k-1)$ -th homology
groups are cyclic groups of orders $n$ which are products of distinct prime
numbers. They are all boundaries of so-called handlebodies (S. Smale [11],
[12]). We shall denote the set of such manifolds with $\partial\ovalbox{\tt\small REJECT}_{n}^{\prime}(2k)$ . We shall
see that the homotopy type of such manifolds is uniquely determined by $k$

and $n$ , and shall be able to determine the numbers of differentiable manifolds
of such homotopy types, when $n=p$ (a prime number).

I. Tamura [17] has proved that there exist precisely 56 differentiable
7-manifolds of the homotopy type of manifolds of $\partial\ovalbox{\tt\small REJECT}_{3}^{\prime}(4)$ and that they are
obtained from the standard one by forming connected sums with elements of
$\Theta^{7}$ and the orientation-reversing. In the following we shall show that there
exist precisely 1984 differentiable 4-connected ll-manifolds of the homotopy
type of manifolds of $\partial\ovalbox{\tt\small REJECT}_{p}^{\prime}(6)$ for each prime $p$ (resp. precisely 56 differentiable
2-connected $\pi$ -manifolds of dimension 7 of the homotopy type of manifolds of
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$\partial\ovalbox{\tt\small REJECT}_{p}^{\prime}(4))$ and that they are homeomorphic to each other if $p=2$ or $p\equiv 3(mod 4)$

and there are at most two distinct topological manifolds if $p\equiv 1(mod 4)$ and
that they are obtained from the standard ones by forming connected sums
with elements of $\Theta^{11}$ (resp. $\Theta^{7}$ ) and the orientation-reversing.

The author wishes to express her sincere gratitude to Professor S. Iyanaga
for his constant encouragement and valuable remarks. The author also ex-
presses her hearty thanks to Dr. Akio Hattori and Dr. G. Fujisaki for their
valuable suggesions and helpful criticisms, and to Professor N. Shimada and
Professor I. Tamura for reading this paper in manuscript, and for suggesting
a number of improvements.

\S 1. On handlebodies.

In this note we shall make free use of notations and results of Smale
[11], [12].

Let $D^{m}$ and $\partial D^{m}$ denote the m-cell and its boundary. The set $\ovalbox{\tt\small REJECT}(2m, r, m)$

of handlebodies is the set of manifolds of the form $H=\chi(D^{2m}, f_{1}, \cdots , f_{\gamma}, m)$ or
simply $H=\chi(F),$ $F=(f_{1}$ , $\cdot$ . , $f_{r})$ , where the $f_{i}$ : $\partial D_{i}^{m}\times D_{i}^{m}\rightarrow\partial D^{2m}(1\leqq i\leqq r)$ are
imbeddings with disjoint images and $H$ is obtained from the disjoint union

$D^{2m}\cup(\bigcup_{i=1}^{7}D_{i}^{m}\times D_{i}^{m})$ by identifying points under the $f_{i}’ s$ and smoothing. $\ovalbox{\tt\small REJECT}(m)$

denotes the disjoint union $\bigcup_{r=0}^{\infty}\ovalbox{\tt\small REJECT}(2m, r, m)$ for all non-negative integers $r$. If

$W$ is a handlebody in $\ovalbox{\tt\small REJECT}(m)(m>2)$ , then it is an $(m-1)$-connected compact
manifold with non-vacuous $(m-2)$-connected boundary. $\partial\ovalbox{\tt\small REJECT}(m)$ denotes the set
of these boundaries. For two presentations $F=$ $(f_{1}, \cdots , f_{r}),$ $F^{\prime}=(f_{1^{\prime}}, \cdots , f_{r^{\prime}})$ of
$\chi(F),$ $\chi(F^{\prime})$ in $\ovalbox{\tt\small REJECT}(2m, r, m)$ , we call them equivalent if there exists a homotopy
$F_{t}$ of presentations, $F_{t}=$ $(f_{1l}, \cdot , f_{rt}),$ $0\leqq t\leqq 1,$ $F_{0}=F,$ $F_{1}=F^{\prime}$ , where $F_{c}$ for
each $t$ is a presentation and each $f_{it}$ has a continuous differential. Let
$\hat{\ovalbox{\tt\small REJECT}}(2m, r, m)$ denote the set of equivalence classes of presentations fixing $m,$ $r$

and $\hat{\ovalbox{\tt\small REJECT}}(m)$ denote the union $\bigcup_{r=0}^{\infty}\hat{\ovalbox{\tt\small REJECT}}(2m, r, m)$ . If $F$ is equivalent to $F^{\prime}(F\sim F^{\gamma})$

then $\chi(F)$ is diffeomorphic to $\chi(F^{\prime})$ so they determine one element in $\ovalbox{\tt\small REJECT}(m)$ .
Thus we have a natural projection $\pi;\hat{\ovalbox{\tt\small REJECT}}(2m, r, m)\rightarrow\ovalbox{\tt\small REJECT}(2m, r, m)$ and $\pi;\hat{\ovalbox{\tt\small REJECT}}(m)$

$\rightarrow\ovalbox{\tt\small REJECT}(m)$ .
LEMMA 1. Any manifold $W$ in $\ovalbox{\tt\small REJECT}(m)$ for $m\equiv 6(mod 8)$ is parallelizable.
PROOF. The obstruction for constructing a cross-section of the tangent

$2m$ -frame bundle over $W$ vanishes always, since $W$ is an $(m-1)$-connected
manifold with boundary and $\pi_{m-1}(SO(2m))$ is trivial.

Let $F=$ $(f_{1}, , f_{r})\in\hat{\ovalbox{\tt\small REJECT}}(2m, r, m)$ be a presentation of $W$ . The $f_{i^{\prime}}s$ define
a base for $H_{m}(W, D^{2m})$ . Let $\varphi_{i}$ be the inverse image of $f_{i}$ under the canonical
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isomorphism $H_{m}(W)\rightarrow H_{m}(W, D^{2m})$ . Then $\hat{\varphi}(F)$ will denote the intersection
matrix $(\langle\varphi_{i}, \varphi_{j}\rangle)$ . For $m>2,$ $\varphi_{i}\in H_{m}(W)$ can be regarded as a homotopy
class of an imbedding $\tilde{\varphi}_{i}$ : $S^{m}\rightarrow W$ under the Hurewitz isomorphism $H_{m}(W)$

$\cong\pi_{m}(W)$ . We shall identify $HJ:\pi_{m-1}(SO(m))\rightarrow Z$ with the natural homomor-
phism $p_{*}:$ $\pi_{m-1}(SO(m))\rightarrow\pi_{m-J}(S^{m-1})$ where $H;\pi_{2m-1}(S^{m})\rightarrow Z$ is the Hopf invariant,

and $J:\pi_{m-1}(SO(m))\rightarrow\pi_{2m-1}(S^{m})$ is the J-homomorphism. If $T_{i}\in\pi_{m-1}(SO(m))$ will
denote the characteristic map of the normal sphere bundle $\nu(\tilde{\varphi}_{i}(S^{m}))$ of $\tilde{\varphi}_{i}(S^{m})$

in $W$ , then the self-intersection number $\langle\varphi_{i}, \varphi_{i}\rangle$ of $\varphi_{i}$ coincides with $p_{*}T_{i}$ .
From now on we suppose $m>2$ and $m=2k$ . Let $\ovalbox{\tt\small REJECT}^{\prime}(2m, r, m)$ denote the

set of all parallelizable manifolds in $\ovalbox{\tt\small REJECT}(2m, r, m)$ and $\ovalbox{\tt\small REJECT}^{\prime}(m)$ the disjoint union

$\bigcup_{r=0}^{\infty}\ovalbox{\tt\small REJECT}^{\prime}(2m, r, m)$ . $\ovalbox{\tt\small REJECT}^{\prime}(m)$ is a proper subset of $\ovalbox{\tt\small REJECT}(m)$ for $m\neq 6(mod 8)$ (or $k\not\equiv 3$

$mod 4)$ . Let $\hat{\ovalbox{\tt\small REJECT}}^{\prime}(2m, r, m),\hat{\ovalbox{\tt\small REJECT}}^{\prime}(m)$ be the inverse images of $\ovalbox{\tt\small REJECT}^{\prime}(2m, r, m),$ $\ovalbox{\tt\small REJECT}^{\prime}(m)$

under the natural projection $\pi$ , respectively.

LEMMA 2. Let $F=(f_{1}, \cdots f_{r})$ be an element in $\hat{\ovalbox{\tt\small REJECT}}(2m. r, m)$ . $F$ belongs to
$\hat{\ovalbox{\tt\small REJECT}}^{\prime}(2m, r, m)$ if and only if $T_{i}(1\leqq i\leqq r)$ are in the kernel of $i_{*}:$ $\pi_{m-1}(SO(m))$

$\rightarrow\pi_{m-1}(SO(m+1))$ induced by the natural inclusion map.
PROOF. For $W=\pi(F)$ , the only possible obstruction for constructing a

cross-section of the tangent $2m$ -frame bundle over $W$ is in $H^{m}(W, \pi_{m-1}(SO(2m)))$ .
So $F$ belongs to $\hat{\ovalbox{\tt\small REJECT}}^{\prime}(2m, r, m)$ if and only if a cross-section is extendable over
$\tilde{\varphi}_{i}(S^{m})(1\leqq i\leqq r)$ . The restriction over $\tilde{\varphi}_{i}(S^{m})$ of the tangent $2m$ -frame bundle
over $W$, is the $SO(2m)$-bundle associated with the Whitney sum $\tau(\tilde{\varphi}_{i}(S^{m}))$

$\oplus 1)(\tilde{\varphi}_{i}(S^{m}))$ where $\tau(\tilde{\varphi}_{i}(S^{m}))$ is the tangent sphere bundle over $\tilde{\varphi}_{i}(S^{m})$ . $\tau(\tilde{\varphi}_{i}(S^{m}))$

$\oplus 1)(\tilde{\varphi}_{i}(S^{m}))$ is trivial if and only if $T_{i}$ is in the kernel of $i_{*}$ since the Whitney
sum of $\tau(\tilde{\varphi}_{i}(S^{m}))$ and trivial line bundle is trivial. This completes the proof.

Thus for $F\in\hat{\ovalbox{\tt\small REJECT}}^{\prime}(2m, r, m),$
$\langle\varphi_{i}, \varphi_{i}\rangle$ is even since $T_{i}$ belongs to the image

of the boundary homomorphism $\partial$ : $\pi_{m}(S^{m})\rightarrow\pi_{m-1}(SO(m))$ and the image of $ HJ\partial$

consists of even elements.
Let $\hat{Q}(r)$ be the set of all $r$ by $\gamma$ symmetric integral matrices whose

diagonal entries are all even. $Q(r)$ denotes the set of equivalence classes
of $\hat{Q}(r)$ and $\pi_{1}$ : $\hat{Q}(r)\rightarrow Q(r)$ the projection. If we put $\hat{\varphi}^{f}(F)=\hat{\varphi}(F)$ for
$F\in\hat{\ovalbox{\tt\small REJECT}}^{\prime}(2m, r, m),$

$\varphi_{i}’ s$ define a transformation $\hat{\varphi}^{f}$ : $\hat{\ovalbox{\tt\small REJECT}}^{\prime}(2m, r, m)\rightarrow\hat{Q}(r)$ . Let $\varphi^{\prime}$

be the induced transformation by $\hat{\varphi}^{\prime}$ such that the diagram is commutative:

$\hat{\varphi}^{\prime}$

$\hat{\ovalbox{\tt\small REJECT}}^{\prime}(2m, r, m)\rightarrow\hat{Q}(r)$

$\pi\downarrow$

$\varphi^{\prime}\pi_{1}\downarrow$

$\ovalbox{\tt\small REJECT}^{\prime}(2m, r, m)\rightarrow Q(r)$ .
THEOREM 3. $\varphi^{\prime}$ is bijective for $m=2k(k>1)$ .
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REMARK. Let $\hat{Q}_{m}(r)$ be the set of all $r$ by $r$ integral matrices, anti-
symmetric if $m$ is odd, symmetric if $m$ is even and furthermore whose diagonal
entries are all even if $m$ is even except in case $m=4$ , or 8. In these cases,
we can define the transformations $\hat{\varphi}$ : $\hat{\ovalbox{\tt\small REJECT}}(2m, r, m)\rightarrow\hat{Q}(r),$

$\varphi;\ovalbox{\tt\small REJECT}(2m, r, m)\rightarrow Q(r)$ ,

respectively, whose restrictions over $\hat{\ovalbox{\tt\small REJECT}}^{\prime}(2m, r, m)$ and $\ovalbox{\tt\small REJECT}^{\prime}(2m, r, m)$ coincide
with $\hat{\varphi}^{\prime}$ and $\varphi^{\prime}$ for $m=2k$ , and it is shown that $\varphi$ is surjective. S. Smale
proved that $\varphi$ is bijective for $m=3,7$ and remarked without proof that it is
also valid for $m\equiv 6(mod 8)$ (cf. [12]).

To prove this theorem, it suffices to show ([12], Th. 3.1 and Remark about
it) that $\hat{\varphi}^{\gamma}$ : $\hat{\ovalbox{\tt\small REJECT}}^{\prime}(2m, r, m)\rightarrow\hat{Q}(r)$ is bijective.

We restate here some results by C. T. C. Wall [19]: The complete in-
variants for $F=$ $(f_{1}$ , $\cdot$ . , $f_{r})$ in $\hat{\ovalbox{\tt\small REJECT}}(2m, r, m)$ are $c_{ij}=\langle\varphi_{i}, \varphi_{j}\rangle(1\leqq i, j\leqq r)$ and
$\alpha(\varphi_{i})\in\pi_{m-1}(SO(m))$ $(1\leqq i\leqq r)$ where $\varphi_{1},$

$\cdots$ , $\varphi_{r}$ are corresponding homology
classes of $\chi(F)$ to $f_{1},$ $\cdots$ , $f_{r}$ and $\alpha(\varphi_{?})$ is the characteristic map $T_{i}$ of the
normal sphere bundle $\nu(\tilde{\varphi}_{i}(S^{m}))$ of $\tilde{\varphi}_{i}(S^{m})$ in $\chi(F)$ . Furthermore if we regard
$H_{m}(\chi(F))\rightarrow\pi_{m-1}(SO(m))$ as a correspondence, we have the following relations:

$ HJ\alpha(\varphi_{i})=\langle\varphi_{i}, \varphi_{i}\rangle$ $(1\leqq i\leqq r)$ ,

$\alpha(x+y)=\alpha(x)+\alpha(y)+\langle x, y\rangle\partial’$ ,

where $x,$ $y$ are elements in $H_{m}(\chi(F)),$ $\zeta$ is a generator of $\pi_{m}(S^{m})$ and $\partial$ is
the boundary homomorphism $\pi_{m}(S^{m})\rightarrow\pi_{m-1}(SO(m))$ . For $m=2k$ , $i_{*}\oplus HJ$ :
$\pi_{2k-1}(SO(2k))\rightarrow\pi_{2k-1}(SO(2k+1))\oplus Z$ is injective since we have $HJ\partial_{\zeta}=2$ by
choosing a suitable orientation. So by Lemma 2, we can adopt invariants
$\langle\varphi_{i}, \varphi_{i}\rangle$ in place of $\alpha(\varphi_{i})=T_{i}(1\leqq i\leqq r)$ for $F$ in $\hat{\ovalbox{\tt\small REJECT}}^{\prime}(2m, r, m)$ . Clearly $\hat{\varphi}^{\prime}$ is
surjective and for $F,$ $F^{\prime}$ in $\hat{\ovalbox{\tt\small REJECT}}^{\prime}(2m, r, m),$ $F$ is equivalent to $F^{\prime}$ if and only if
$\hat{\varphi}^{\prime}(F)$ coincides with $\hat{\varphi}^{\prime}(F^{\prime})$ .

REMARK. Let $\tau=\{T, \pi^{4k-1}, S^{2k}, S^{2k-1}\}$ be the tangent sphere bundle over
$S^{2k}$ and $\overline{\tau}=\{\overline{T},\overline{\pi}^{4k}, S’’, D^{2k}\}$ the $2k$-cell bundle associated with $\tau$ . The total
spaces $T$ and $\overline{T}$ have differentiable structures naturally induced from their
bundle structures. The characteristic map of $\tau$ and hence of $\overline{\tau}$ is a generator

of the kernel of the homomorphism $i_{*}:$ $\pi_{2k-1}(SO(2k))\rightarrow\pi_{2k-l}(SO(2k+1))$ (N. E.
Steenrod [14], \S 23). It follows from this and Lemma 2, that $\overline{T}$ is parallelizable
and hence $T$ is a manifold in $\partial\ovalbox{\tt\small REJECT}^{\prime}(4k, 1,2k)$ . Since $\varphi^{\prime}(\overline{T})$ is the matrix defined
by the image of the characteristic map of $\tau$ under the projection $p_{*}$ , the
matrix $\varphi^{\prime}(\overline{T})$ is (2) of rank 1 by choosing a suitable orientation of $\overline{T}$ .

\S 2. The invariant $\lambda^{\overline}$ .
Let $W$ be a handlebody in $\ovalbox{\tt\small REJECT}(m)(m=2k)$ and $M$ be its boundary. By the

exact homology sequence of $(W, M)$ and the Poincar\’e-Lefschetz duality, we
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have non-trivial part

$0\rightarrow H_{m}(M)\rightarrow H_{m}(W)\rightarrow H_{m}(W, M)\rightarrow H_{m-1}(M)\rightarrow 0$ ,

where first three groups are free abelian.
Let $\phi$ denote the quadratic form over the group $H_{m}(W)$ defined by the

formula $x\rightarrow\langle x, x\rangle(x\in H_{m}(W))$ . The signature of this form $\phi$ will be denoted
by $I(W)$ . Clearly $\phi$ defines a matrix $A$ of $\hat{Q}(r)$ , where $r$ is the Betti number
of $H_{m}(W)$ by choosing a base of $H_{m}(W)$ over $Z$ and $I(W)$ is the signature of
$A,$ $i$ . $e$ . the number of positive eigenvalues minus the number of negative ones,
considering $A$ as a matrix in real coefficients.

LEMMA 4. The residue class of $I(W)$ modulo $2^{2k+2}(2^{2k-1}-1)$ is a diffeomorphy
invariant of a rational sphere $M(i. e. H_{m-1}(M, Q)=0)$ for odd $k>1$ .

PROOF. We suppose $M$ in $\partial\ovalbox{\tt\small REJECT}(2k)$ , and we suppose that $M$ is the boundary
of two oriented $(2k-1)$ -connected manifolds $W_{1}$ and $W_{2}$ in $\ovalbox{\tt\small REJECT}(2k)$ . Let $V$ be
the closed oriented differentiable $4k$-manifold obtained from $W_{1}$ and $-W_{2}$ by
pasting together the common boundary. As is easily seen, $V$ is $(2k-1)-$

connected and hence the i-th Pontrjagin class $p_{i}(V)$ of $V$ vanishes for $i<k$ .
Therefore the index theorem

$I(V)=\frac{2^{2k}(2^{2k-1}-1)}{(2k)!}B_{k}p_{k}(V)[V]$

(Hirzebruch [5]) and the fact that $\hat{A}$ -genus

$\hat{A}(V)=-\frac{1}{2(2k)!}B_{k}p_{k}(V)[V]$

is an even integer (Borel-Hirzebruch [2]), where [V] denotes the fundamental
class of $H_{4k}(V)$ , imply

$I(V)\equiv 0(mod 2^{2k+2}(2^{2k-1}-1))$ .
Since $I(V)=I(W_{1})-I(W_{2})$ we have

$I(W_{1})\equiv I(W_{2})$ $mod 2^{2k+2}(2^{2k-1}-1)$ .
This completes the proof.

If $M$ and $W$ are manifolds in $\partial\ovalbox{\tt\small REJECT}^{\prime}(2k)$ and $\ovalbox{\tt\small REJECT}^{\prime}(2k)$ for even $k\geqq 2$ , and
furthermore if $M$ is a rational sphere, we have the following for such a pair
$(M, W)$ by the integrality of $\hat{A}$ -genus for a $4k$-manifold with $w_{2}=0$ .

LEMMA 4’. The residue class of $I(W)$ modulo $2^{2k+1}(2^{2k-1}-1)$ is a diffeomor-
phy invariant of $M$.

DEFINITION. The residue class of $I(W)mod 2^{2k+1}(2^{2k-1}-1)a_{k}$ will be denoted
by $\overline{\lambda}(M)$ for a rational sphere $M\in\partial\ovalbox{\tt\small REJECT}(2k)$ with odd $k>1$ , for $M\in\partial\ovalbox{\tt\small REJECT}^{f}(2k)$

with even $k\geqq 2$ , respectively, where $a_{k}$ is 2 for odd $k$ and 1 for even $k$ .
REMARK. It is easily seen by our definition and $I_{k}=2^{2k+1}(2^{2k-1}-1)a_{k}$ for
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$k=2,3,4$ and 5 (cf. Milnor [8], Lemmas 3.5, 3.6 and Toda [18]), where $I_{k}$ is
the greatest common divisor of indices for all closed almost parallelizable
$4k$-manifolds, that $\overline{\lambda}$ coincides with 8 times the Milnor invariant $\lambda^{\prime}$ for homo-
topy $(4k-1)$-spheres which bound $\pi$ -manifolds [8]. Furthermore this invariant
was adopted by Tamura for $k=2$ and for a certain special type of $M[17]$ .

From now on, we consider $M\in\partial\ovalbox{\tt\small REJECT}^{\prime}(2k)$ such that $H_{2k-1}(M)$ is a cyclic group
of order $n=p_{1}$ $p_{s}$ , having mutually distinct prime factors $p_{i}(1\leqq i\leqq s)$ and
$W\in\ovalbox{\tt\small REJECT}^{\prime}(2k)$ with such boundary. The following lemma can be proved analo-
gously as in [17], Lemma 6.

LEMMA 5. The determinant of the matrix of the quadratic from $\phi$ over
$H_{2k}(W)$ is $\pm n$ corresponding to $H_{2k-1}(\partial W)\cong Z/nZ$, where $n=p_{1}$ $p_{s}$ .

\S 3. On quadratic forms.
In this section, we shall state some results from the theory of quadratic

forms.
Let $\hat{Q}^{n}(r)$ denote the set of all matrices in $\hat{Q}(r)$ (i. e. the set of all $r$ by $\gamma$

symmetric integral matrices whose diagonal entries are all even) whose
determinants are $\pm n$ . Let $\overline{Q}^{n}(r)$ denote the set of all indefinite matrices in
$\hat{Q}^{n}(r)$ . Let $\hat{Q}^{n},\hat{Q},\overline{Q}^{n},\overline{Q}$ denote the disjoint unions $r=0U\hat{Q}^{n}(r)\infty,$ U $\hat{Q}^{n}$

n
$\gamma=0U\overline{Q}^{n}(r)\infty$ ,

U $\overline{Q}^{n}$

n
respectively, where $n$ runs over 1 and all positive integers which have

mutually distinct prime factors. Let $r(A)$ be the rank of a matrix $A,$ $\det A$

the determinant of $A$ and $I(A)$ the signature.
$Z_{p}$ and $F_{p}$ for a finite or the infinite prime $p$ , will denote the ring of

$p$ -adic integers and its quotient field, $i$ . $e$ . the field of $p$ -adic numbers. $Z_{\infty}$ and
$F_{\infty}$ are both the field of real numbers. (From now on, we shall mean by a
prime $p$ , a finite prime or the infinite prime $\infty.$) Furthermore $c_{p}(A)$ for a
prime $p$ will denote the Hasse’s symbol of the quadratic form corresponding
to $A$ (cf. Jones [6], Chap. II, 11). For non-zero numbers $a,$

$b$ in $F_{p},$ $(a, b)_{p}$ will
denote the Hilbert’s symbol, $i$ . $e$ . $1$ or $-1$ according as $ax^{2}+by^{2}=1$ has or has
not a solution in $F_{p}$ (cf. [6], Chap. II, 10).

We shall restate here a result from Theorems 29 and 45 in [6].

LEMMA 6. Given a positive integer $r$, a non-zero integer $d$ , a set of values
1 or $-1$ for $c.(A)$ for all primes and an integer I whose absolute value is not
greater than $r$, there is a symmetric integral matrix $A$ with rank $\gamma$ determinant
$d$ , and with Hasse’s symbols of the given values and signature $I$, if and only

if the following conditions hold:
(1) $c_{p}(A)=1$ for a finite prime $p$ not dividing $2d$ .
(2) $\Pi c_{p}(A)=1$ , the product extending over all primes.
(3) If $r=1,$ $c_{p}(A)=(-1, -d)_{p}$ for all prime $p$ .
(4) If $r=2,$ $c_{p}(A)=1$ for all prime $p$ , for which $-d$ is a square.
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(5) $\frac{1}{2}(r-I)\equiv c_{\infty}(A)+\frac{1}{2}\{1+(-1, d)_{\infty}\}$ $(mod 4)$ .
Furthermore, there is a matrix A whose diagonal entries are all even if

(6) $r$ is even and $d\equiv(-1)^{r/2}(mod 4)$ .

Let $U,$ $U^{\prime}$ denote the matrices $\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)$ and $\left(\begin{array}{ll}2 & 1\\1 & 2\end{array}\right)$ , respectively.

LEMMA 7. An integer I is the signature of a matrix $A$ in $\hat{Q}^{n}(n=1$ or
$n=p_{1}$ $p_{s}(s\geqq 1)$ having mutually distinct prime factors) if and only if one
of the following conditions is satisfied:

(1) $I\equiv 0(mod 8)$ for $n=1$ (Milnor),
(2) $I\equiv\pm 1(mod 8)$ for $n=2$ ,

(3) $I\equiv 0(mod 4)$ for $n>1$ and $n\equiv 1(mod 4)$ ,

(4) $I\equiv 2(mod 4)$ for $n\equiv 3(mod 4)$ , and
(5) $I\equiv 1(mod 2)$ for $n>2$ and $n\equiv 2(mod 4)$ .
PROOF. First we shall show that $I$ is even if and only if $n$ is odd. For

any matrix $A$ , we have $r(A)\equiv I(A)(mod 2)$ so it suffices to show that
$r$ is even if and only if $n$ is odd. Since an odd integer $n$ is a unit in $Z_{2}$ ,

a matrix $A$ in $\hat{Q}^{n}(r)$ is equivalent to $A_{1}=diag$ . $(U, \cdots , U)=\left(\begin{array}{ll}U. & \\ & U\end{array}\right)$ or

$A_{2}=diag$ . $(U, \cdots , U, U^{\prime})$ with rank $r$ as $Z_{2}$ -matrices (cf. [6], Theorems $33a,$ $36$)

so that $r(A)$ is even. For even $n,$
$i$ . $e$ . $n\equiv 2(mod 4)$ , a matrix $A$ in $\hat{Q}^{n}(r)$ is

equivalent to diag. $(A_{1}, (2k))$ or diag. $(A_{2}, (2k))$ with rank $r$ where $k$ is a unit
in $Z_{2}$ (cf. [6], Th. 33) so that $r(A)$ is odd.

The existence of a matrix in $\hat{Q}(r)$ with $n$ and $I$ satisfying (3) or (4) follows
from Lemma 6.

Let $A$ be a matrix with signature $0mod 4$ (resp. 2 $mod 4$). A is equi-
valent to $A_{1}$ or $A_{2}$ in $Z_{2}$ if and only if $\det A=(-1)^{(r-I)/2}n$ equals $(\det A_{1})\sigma^{2}$

or $(\det A_{2})\sigma^{2}$ for a suitable unit $\sigma$ in $Z_{2}$ (cf. [6], Th. 36) if and only if $n$

equals 1 $mod 8$ or 5 $mod 8$ (resp. $n$ equals 7 $mod 8$ or 3 $mod 8$).

For $n\equiv 2(mod 4)$ we proceed as follows. Let $V$ denote the matrix

$(-11$

$211$

$21121^{-1}1$

$121$

$211$

By $considering-A$ , diag. $(A, V, \cdots , V)$ or diag. $(A, -V, \cdots , -- V)$ if necessary,
it suffices to consider (2) for $I=1,3$ . In case $n=2$ , there is a matrix with
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signature 1 $(e. g. $(2) $\in\hat{Q}^{2}(1))$ . Let $A$ be a matrix with signature 3 in $\hat{Q}^{2}(r)$ .
A is equivalent to $B_{1}=diag$ . $(A_{1}, (2k))$ or $B_{2}=diag$ . $(A_{2}, (2k))$ with rank $r$ as
$Z_{2}$ -matrices so we have $c_{2}(A)=c_{2}(B_{1})$ or $c_{2}(A)=c_{2}(B_{2})$ (cf. [6], Th. 12). By the
product formula of Hasse’s symbols (Lemma $6(2)$), $c_{\infty}(A)$ must be equal to $c_{2}(A)$

so that $r=r(A)$ equals 1 $(mod 4)$ . On the other hand a matrix $A^{\prime}=diag$ . $(A, U)$

of rank $(r+2)$ has also the required properties $(i. e. \det A^{\prime}=\pm 2, I(A^{\prime})=3)$ .
This contradicts with the condition for the rank.

For $n>2$ and $n\equiv 2(mod 4)$ , i. e. $n=2q$ ($q$ : odd), there are matrices $B,$ $C$

in $\hat{Q}$ with determinant 2, $q$ . We may suppose $I(B)=1$ and $I(C)\equiv 0$ or 2 $(mod 4)$

according to $q\equiv 1$ or 3 $(mod 4)$ . Then $A=diag$ . $(B, C)$ . $A^{\prime}=diag$ . $(-B, C)$ are
matrices with required properties. This completes the proof.

We shalI denote with $c_{n}(A)$ the product $\prod_{i=1}^{\theta}c_{Px}(A)$ for a positive integer

$n=p_{1}\ldots p_{s}(s\geqq 1)$ having mutually distinct prime factors and a matrix $A$ in
$\hat{Q}(r)$ .

LEMMA 8. For a matrix $A$ in $\hat{Q}(r)$ with determinant $\pm n,$ $c_{n}(A)$ is uniquely
determined by $n,$ $r=r(A)$ and $I=I(A)$ .

PROOF. $c_{\infty}(A)$ is determined by $r$ and $I$ : $c_{\infty}(A)=1$ if and only if $(r-I)/2$

$\equiv 1,2(mod 4)$ (cf. Lemma 6. (5)). So the lemma follows from Lemma 6, if it
is shown that $c_{2}(A)$ depends only upon $n,$ $r$ and $I$ for odd $n$ . In fact, $A$ is
equivalent to $A_{1}$ or $A_{2}$ according to conditions for $n,$

$I$ (cf. the proof of Lemma
7) so we have $c_{2}(A)=c_{2}(A_{1})$ or $c_{2}(A)=c_{2}(A_{2})$ . Clearly both $c_{2}(A_{1})$ and $c_{2}(A_{2})$

depend only upon the rank $r$ .
REMARK. For even $n$ , say $n=2q$ ($q$ : odd), $c_{2}(A)$ also depends only upon

$n,$ $r$ and $I$. In fact, $A$ is equivalent to $B_{1}=diag$ . $(A_{1}, (2k))$ or $B_{2}=diag$ . $(A_{2}, (2k))$

as $Z_{2}$-matrices according to $(-1)^{(I-1)/2}q\equiv k(mod 8)$ or $(-1)^{(I-1)/2}q\equiv 5k(mod 8)$ .
If we calculate

$c_{2}(B_{i})=c_{2}(A_{i})(-1, -2k)_{2}(-1, -1)_{2}(\det A_{i}, 2k)_{2}$

$(i=1,2)$ , we have
$c_{2}(A)=(-1)^{(m-1)(m-2)/2}$ for $(-1)^{(I-1)/2}q\equiv 1(mod 4)$

and
$c_{2}(A)=(-1)^{(m-1)m/2}$ for $(-1)^{(I-1)/2}q\equiv 3(mod 4)$

where $m$ denotes $(r-1)/2$ . On the other hand, for any odd prime $p$ dividing
$n,$ $c_{p}(A)$ can be either 1 or $-1$ so far as they satisfy the condition for $c_{n}(A)$ .

LEMMA 9. If two matrices $A,$ $B$ in $\hat{Q}^{n}$ for $n=p_{1}$ $p_{s}(s\geqq 1)$ satisfying
the conditions $r(A)=r(B),$ $I(A)=I(B)$ and

$(*)$ $c_{p_{i}}(A)=c_{p_{i}}(B)$ for $i\leqq s-1$ ,

then $A$ is equivalent to $B$ in $Z_{p}$ for a finite prime $p$ not dividing $n$ and $A$ is
equivalent to $B$ in $F_{p}$ for $p=p_{i}(1\leqq i\leqq s)$ . (The condition $(*)$ on Hasse’s
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symbol is trivial for $s=1$ . Cf. Milnor [7] for $n=1$ , Tamura [17] for $n=3.$ )

PROOF. $r(A)=r(B)$ and $I(A)=I(B)$ imply $\det A=\det B$ and $c_{\infty}(A)=c_{\infty}(B)$ .
So $c_{p}(A)=c_{p}(B)$ holds for all prime $p$ by Lemmas 6 and 8. Thus this lemma
follows from Theorems 15, 36 in [6].

For convenience’ sake we shall write $n=p_{1}\cdots p_{s}$ also for $n=1(s=0)$ .
Then Lemma 9 is valid for $s=0$ .

Now we consider a lattice $L$ in an r-dimensional vector space over the
field of rational numbers such that the matrix $A=(a_{ij})$ determined by the
inner product $ a_{ij}=\langle\omega_{i}, \omega_{j}\rangle$ of a basis $tu_{1}$ , $\cdot$

., , $\omega_{r}$ of $L$ over $Z$, belongs to $\hat{Q}^{n}(r)$ .
In general for any matrix $A$ in $\hat{Q}(r)(r>0)$ , there is a lattice $L$ and its basis
$\{\omega_{i}\}$ over $Z$ having $A$ as the matrix $(\langle\omega_{i}, \omega_{j}\rangle)$ . In fact if we choose
$F=$ $(f_{1}, \cdots , f_{r})\in\hat{\varphi}^{-1}A\in\hat{\ovalbox{\tt\small REJECT}}(4k, r, 2k)(k>1)$ ( $F=\hat{\varphi}^{-1}A$ if $k\equiv 3(mod 4)$) and
$\pi(F)=W$ , then $\varphi_{1}$ , $\cdot$ .. , $\varphi_{r}$ corresponding to $f_{1}$ , $\cdot$ .. , $f_{r}$ (cf. \S 1) form a basis of
$H_{2k}(W, Q)$ where $Q$ is the field of rational numbers. If we define the inner
product of $\varphi_{i},$ $\varphi_{j}$ by $th^{\mathfrak{Q}}.ir$ intersection number $\langle\varphi_{i}, \varphi_{j}\rangle$ , the lattice $H_{2k}(W)$

$=H_{2k}(W. Z)$ and a basis $\varphi_{1}$ , $\cdot$ , $\varphi_{r}$ over $Z$ have the required property. Let
$L_{A}$ denote the lattice corresponding to $A$ in this manner. For any positive
integer $n$ having distinct prime factors (as for $n=1$ and 3, [7], [17]), $L_{A}$ is
always maximal for $A\in\hat{Q}^{n}$ ([3], S\"atze 9.3, 12.3). Furthermore, if $(L_{A})_{p}$ for a
finite prime $p$ dividing $n$ denotes the $p$ -adic extension of $L_{A}$ the norm $n(L_{A})_{p}$

of $(L_{A})_{p}$ coincides with the ideal $(p)$ in $Z_{p}$ if $r(A)=1,$ $Z_{p}$ if $r(A)\geqq 2$ . Thus
$I(A)=I(B),$ $r(A)=r(B)$ and $(*)$ imply that $(L_{A})_{p}$ is isomorphic to $(L_{B})_{p}$ as $Z_{p^{-}}$

lattices for $p$ dividing $n$ ([3], Satz 9.6) and hence $(L_{A})_{q}$ is isomorphic to $(L_{B})_{q}$

as $Z_{q}$-lattices for all finite prime $q$ by Lemma 9. Thus the following lemma
follows from a theorem of Eichler (cf. [4], Satz 3).

LEMMA 10. The absolute value $n=p_{1}\ldots p_{s}(s\geqq 0)$ of the determinant, the
rank $r$, the signature I and Hasse’s symbols $\{c_{p_{i}}\}(i\leqq s-1)$ form a complete
system of invariants for equivalence classes of matrices in $\overline{Q}$ of rank $r\geqq 3$

( $\overline{Q}$ is the set of symmetric indefinite integral matrices whose determinants
have distinct prime factors, and whose diagonal entries are all even).

For two matrices $A,$ $B$ in $\hat{Q}^{n}$ , we shall call them weakly equivalent $(A_{w}\sim B)$

if there are non-negative integers $s,$
$t$ such that diag.

$(A, U, \cdots. U)\overline{s}$
is equivalent

to diag. $(B, U, \cdot.. , U)$ . Any $A$ in $\hat{Q}$ is weakly equivalent to an indefinite
$\overline{\iota}$

matrix diag. $(A, U)$ of rank $\geqq 3$ , so we have $n=p_{1}$ $p_{s}(s\geqq 0),$ $I$ and $\{c_{p_{i}}\}$

$(i\leqq s-1)$ as a complete system of invariants for weak equivalence classes $\ln$

$\hat{Q}$ .
For a finite prime $p$ , we shall denote with $Q^{p}$ the set of weak equivalence

classes of $\hat{Q}^{p}$ and $A$ its element. (For a fixed $p$ , the signature $I$ is the only
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invariant for weak equivalence classes.) We shall call a matrix $A$ of a
reduced type in $A$ if $r(A)$ is the least of $r(B)$ for $B$ in $A$ . A matrix of a reduced
type is not necessarily unique.

Let $U_{1},$ $U_{2}^{p},$ $U_{3}^{p}$ and $U_{4}^{p}$ be matrices of reduced types of signatures 1, 2, $0$

and 4, and of determinants 2, $p,$ $-p$ and $p$ , respectively, $e$ . $g$ .
$U_{1}=(2)$ ,

$U_{2}^{p}=\left(\begin{array}{ll}2 & 1\\1 & 2(t+1)\end{array}\right)$ $(p=4t+3)$ , $U_{4}^{p}=\left(\begin{array}{llll}2 & 1 & & \\1 & 2 & 1 & \\ & 1 & 2 & 1\\ & & 1 & 2(t+1)\end{array}\right)$ $(p=8t+5)$ ,

$U_{3}^{p}=\left\{\begin{array}{l}2 1\\1-2t\end{array}\right\}$ $(p=4t+1)$

(cf. Lemma 7). For a fixed $p$ , any matrix $A$ in $\hat{Q}^{p}$ is weakly equivalent to
one of diag.

$(\pm U_{i}^{p},\frac{V}{l}V)$
and diag.

$(\pm U_{i}^{p}, -V)\frac{V,\cdots,-}{s}$
for some non-

negative integer $s$ and $1\leqq i\leqq 4$ .
LEMMA 11. If an indefinite symmetric matrix $A$ in $\hat{Q}^{n}$ with $n=p_{1}$ $p_{s}$

$(s\geqq 1)$ is of rank $\gamma\geqq 4s,$ $A$ is equivalent to a matrix diag. $(A_{1}, , A_{s})$ where $A_{j}$

are matrices in $\hat{Q}^{p}J(1\leqq j\leqq s)$ .
(The condition for the rank of $A\in\hat{Q}^{n}$ can be improved if some $p_{i}$ equals

2 or 3 $mod 4.$)

Obviously this implies the following.
THEOREM 12. Any symmetric integral matrix $A$ with determinant $\pm n$

$=\pm p_{1}$ $p_{s}(s\geqq 1)$ , whose diagonal entries are all even, is weakly equivalent to
diag. $(A_{1}, \cdots , A_{s+1})$ where $A_{j}$ is one of $\pm U_{i}^{p_{j}}(1\leqq i\leqq 4)$ for $1\leqq j\leqq s$ , and $A_{s+1}$ is
a matrix $(V, \cdots , V)$ or $(-V, \cdots , -- V)$ .

Furthermore, the number $N(n, I)$ of weak equivalence classes for fixed $n$ ,

I is as follows:
$N(1, I)=N(p, I)=1$ for a finite prime $p$ ,

$N(p_{1} p_{s}, I)=2^{s-1}$ for $s\geqq 1,$ $p_{1}$ $p_{s}\equiv 1(mod 2)$ ,

$N(p_{1} p_{s}, I)=2^{s-2}$ for $s\geqq 2,$ $p_{1}$ $p_{s}\equiv 0(mod 2)$ .
PROOF. The lemma clearly holds for $s=1$ . We assume it for $s=t\geqq 1$

and prove it for $s=t+1$ . Let $n=p_{1}$ $p_{t+1}$ and denote $p=p_{t+1},$ $q=p_{1}$ $p_{t}$ ,

$p_{1},$ $\cdots$ , $p_{t}$ being odd primes. We shall show that for any indefinite matrix $A$

in $\hat{Q}^{n}$ , there are matrices $B,$ $C$ in $\hat{Q}^{p}$ and $\hat{Q}^{q}$ respectively, such that $A$ is
equivalent to diag. $(B, C)$ . It suffices to show by Lemma 10 that the following
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conditions hold by choosing suitable matrices $B$ and $C$ :
(Cd) $\det A=(\det B)(\det C)$ ,

(Cr) $r(A)=r(B)+r(C)$ ,

(CI) $I(A)=I(B)+I(C)$ ,

(CH) i) $c_{p}(B)=1$ for a finite prime $p^{\prime}$ not dividing $2p$ ,

$c_{p}(C)=1$ for a finite prime $p^{\gamma}$ not dividing 2 $q$,

ii) $c_{2}(A)=c_{2}(B)c_{2}(C)(-1, -1)_{2}(\det B, \det C)_{2}$ ,

iii) $c_{p}(A)=c_{p}(B)(\det B, \det C)_{p}=c_{p}(B)(\frac{\det C}{p})$ for $p\neq 2$

where $(\frac{\det C}{p})$ denotes Legendre’s symbol ( $i$ . $e$ . it is 1 or $-1$ according as
$x^{2}\equiv\det C(mod p)$ has or has not a solution),

iv) $c_{q}(A)=\prod_{i^{--1}}^{t}c_{p_{i}}(A)=c_{q}(C)\prod_{i=1}^{t}(\frac{\det B}{p_{i}})$ ,

v) $c_{\infty}(A)=c_{\infty}(B)c_{\infty}(C)(-1, -1)_{\infty}(\det B, \det C)_{\infty}$ .
For a given matrix $A$ , we shall first choose a suitable matrix $B$ of rank

$r(B)\leqq 4$ which satisfies the conditions (CH) i) for $p=2$ , and i), iii) for $p\neq 2$ .
Next, we shall show that there exists a matrix $C$ whose determinant, rank,
signature and Hasse’s symbols satisfy these conditions.

There are three cases: $n\equiv 1,2$ and 3 $mod 4$ . For $n\equiv 1mod 4$ , we have
$p\equiv q(mod 4)$ so we choose $B$ , for instance, with determinant $p$ as follows:

$p\equiv 1(mod 4)$ : $B=diag$ . $(U_{3}^{p}, U)$ for $c_{p}(B)(\frac{2}{p})=1$ ,

$B=U_{4}^{p}$ for $c_{p}(B)(\frac{2}{p})=-1$ ,

$p\equiv 3(mod 4)$ : $B=U_{2}$ for $c_{p}(B)=1$ ,

$B=-U_{2}$ for $c_{p}(B)=-1$ ,

where $c_{p}(B)=c_{p}(A)(\frac{\det C}{p})$ by (CH) iii). For $p\equiv 3(mod 4),$ $c_{p}(B)$ can be 1

or $-1$ freely, by the relation $(\frac{-q}{p})=-(\frac{q}{p})$ . It is easy to see that there

are suitable matrices for $n\equiv 2$ or 3 $mod 4$ .
Now $\det B,$ $r(B)$ and $I(B)$ determine $c_{\infty}(B)$ so we have relations in $\det C$,

$I(C),$ $r(C)$ and $c.,(C)$ for all primes $p^{\gamma}$ . Thus it suffices to show by Lemmas 6,
10 that the following conditions hold:

(a) $c_{p}(C)=1$ for a finite prime $p$ not dividing $2q$ .
(b) $\prod_{p}c_{p}(C)=1$ for all primes $p$ .

(c) $(r(C)-I(C))/2\equiv c_{\infty}(C)+\{1+(-1, \det C)_{\infty}\}/2$ $(mod 4)$ .
(d) $(-1)^{r(C)/2}\equiv\det C$ $(mod 4)$ .
We can examine all of these using the conditions (Cd), (Cr), (CI), (CH),
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and relations $\sum_{i=\perp}^{t}(p_{i}-1)/2\equiv(q-1)/2(mod 2),\sum_{i=1}^{t}(p_{i}^{2}-1)/8\equiv(q^{2}-1)/8(mod 2)$ .

\S 4. Classification of manifolds.

In this section we shall restrict $k$ to 2, 3, 4, 5 and 7. (For other values
of $k$ , we can discuss analogously but it cannot be decided whether a prime
$p$ and the invariant $\overline{\lambda}$ characterize the diffeomorphism class or not. In other
words if we put $I_{k}=2^{2k+1}(2^{2k-1}-1)a_{k}\cdot b_{k}$ , there exist at most $b_{k}$ manifolds with
distinct differentiable structures having the same homotopy type and the same
invariant $\overline{\lambda}$, and we have $b_{9}=43867$ (Adams [1]).)

Let $\partial\ovalbox{\tt\small REJECT}_{n}^{\prime}(2k)$ denote the set of boundaries, whose $(2k-1)$ -th homology
groups are cyclic of order $n=p_{1}\cdots p_{s}(s\geqq 0)$ , of parallelizable handlebodies
in $\ovalbox{\tt\small REJECT}^{\prime}(2k)$ . Notice that $\partial\ovalbox{\tt\small REJECT}_{n}^{\prime}(2k)=\partial\ovalbox{\tt\small REJECT}_{n}(2k)$ for $k=3$ .

Let $M$ be a manifold in $\partial\ovalbox{\tt\small REJECT}_{n}^{\prime}(2k)$ . By S. Smale ([13], Th. 6.1) there is a
non-degenerate $C^{\infty}$-function with just four critical points and non-trivial type
numbers $M_{0}=M_{2k-1}=M_{2k}=M_{4k-1}=1$ . This and the fact that $M$ is a $\pi$ -manifold
imply that $M-$ Int $D$ has the same homotopy type as $S^{2k-1}U_{f}D^{2k}$ where $D$ is

a $(4k-1)$ -cell imbedded in $M$ and $f:\partial D^{2k}\rightarrow S^{2k-1}$ is an attaching map of degree
$n$ . So the homotopy type of such manifolds is uniquely determined by $k$

and $n$ .
Now we shall study the number of differentiable manifolds of such

homotopy type. In \S 1, it was proved that $\varphi^{\prime}$ : $\ovalbox{\tt\small REJECT}^{\prime}(4k, r, 2k)\rightarrow Q(r)$ is bijective.

If a matrix $A$ in $\hat{Q}^{n}(r)$ is equivalent to a matrix diag. $(A_{1}, A_{2})$ , then $W$ is
diffeomorphic to $W_{1}+W_{2}$ , where $W,$ $W_{1}$ and $W_{2}$ are corresponding to $\pi_{1}(A)$ ,
$\pi_{1}(A_{1})$ and $\pi_{1}(A_{2})$ under $\varphi^{\prime}$ respectively. The sum $W_{1}+W_{2}$ of two compact
oriented differentiable n-manifolds with boundaries will mean the compact
oriented differentiable n-manifold with boundary obtained from the disjoint
union of $W_{1}$ and $W_{2}$ by $f_{1}(x)$ with $f_{2}(x)$ $(x\in D^{n-1})$ , where $f_{1}:D^{n-1}\rightarrow\partial W_{1}$

(resp. $f_{2}$ : $D^{n-1}\rightarrow\partial W_{2}$) is an orientation-preserving (resp. orientation-reversing)
imbedding of $(n-1)$ -disk $D^{n-1}$ . $\partial(W_{1}+W_{2})$ coincides with the connected-sum
$\partial W_{1}\#\partial W_{2}$ of their boundaries (cf. [12]). Weakly equivalent matrices $A$ and
diag. $(A, U)$ determine manifolds $W$ and $W^{\prime}$ (i. e. $\varphi^{\prime}(W)=\pi_{1}(A)$ and $\varphi^{\prime}(W^{\prime})$

$=\pi_{1}$ (diag. $(A,$ $U)$)) having the same boundary, strictly speaking we can obtain
$W$ from $W^{\prime}$ by performing a surgery Killing homotopies corresponding to the
matrix $U$ without modifying its boundary (cf. [8], [9]). Thus any two matrices
in a weak equivalence class $A$ determine the unique manifold $M$ (we shall
denote it by $\psi(A))$ and $\overline{\lambda}(M)$ equals the signature of A $mod 2^{2k+1}(2^{2k-l}-1)a_{k}$ ,

an invariant for $A$ (cf. \S 3). We have thus the correspondence $\psi$ : $Q^{n}\rightarrow\partial A_{n}^{\prime}(2k)$ .
$U_{1},$ $U_{2}^{p},$ $U_{3}^{p}$ and $U_{4}^{p}$ for a fixed prime $p$ , are matrices of reduced types
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of signatures 1, 2, $0$ and 4 and determinants 2, $p,$ $-p$ and $p$ respectively (cf.

\S 3). Let $W_{0}$ be the handlebody corresponding to the matrix $V$, and $M_{0}$ the
boundary of $W_{0}$ . Likewise let $W_{1},$ $W_{i}^{p}(i=2,3,4)$ correspond to the matrices
$U_{1},$ $U_{i}^{p}$ respectively and let $M_{1},$ $M_{i}^{p}$ be their respective boundaries. Notice that
$M_{0}$ is the generator of $\Theta^{4k-1}(\partial\pi)$ (cf. [8]) and $M_{1}$ is the total space of the
$\tan gentSphereb\mathfrak{u}ndleoverS^{2h}$ (cf. \S l, Remark). By Theorem12, any symmetric
integral matrix $A$ with determinant $\pm n=\pm p_{1}$ $p_{s}(s\geqq 1)$ , whose diagonal
entries are all even, is weakly equivalent to diag. $(A_{1}, \cdots , A_{s\star 1})$ where $A_{j}$ is
one of $\pm U_{\iota}^{p_{j}}(1\leqq i\leqq 4)$ for $1\leqq 1\leqq s$ , and $A_{s+1}$ is a matrix diag. (V, $\cdot$ .. , $V$ )

or diag. $(-V$, $\cdot$ .. , – $V)$ . If $A_{s+1}$ is equivalent to diag. (V, – , $V$ ) (resp.
$\overline{m}$

diag. $(-\underline{V,}--, -- V))$ $(m\geqq 0)$ , we have $I(A_{s+1})=8m$ (resp. $I(A_{s+1})=-8m$) and
$m$

$\pi(\hat{\varphi}^{\prime-1}(A_{s+1}))=\underline{W_{0}+}_{---}+W_{0}$ (resp. $(-W_{\underline{0}})+\cdots\underline{+(-}W_{0}$))
$\langle$

So two matrices $A$

$m$ $m$

and diag. $(A_{1}, , A_{s+1})$ determine the same manifold $ M_{1}\#\cdots\# M_{s}\#iM_{0}\#\cdots$ ff $M_{0}$

(m-fold connected sum of $M_{0}$) where $M_{j}=\psi(A_{j})$ is $M_{i}^{p_{j}}$ or $-M_{i}^{p_{j}}$ according to
$A_{j}=U_{i}^{v_{j}}$ or $-U_{i}^{p_{j}}$ for a suitable $i(1\leqq i\leqq s)$ .

Now we restrict $n$ to $p$ (a prime) and $2p$ (twice an odd prime). For these
$n$ , we have $N(n, I)=1$ for a fixed signature $I$ (cf. Theorem 12). Since $M_{0}$ is
the generator of $\Theta^{4k-I}(\partial\pi)$ , matrices $A$ and $B$ of signature $I(A)\equiv I(B)(mod I_{k})$

in $A$ and $B$ in $\hat{Q}^{n}$ determine the same manifold $\varphi(A)=\varphi(B)=M$ with $\overline{\lambda}(M)$

$\equiv I(A)(mod I_{k})$ . Conversely by Lemma 5 and $N(n, I)=1$ , for $M,$ $M^{\prime}\in\partial\ovalbox{\tt\small REJECT}_{n}^{\prime}(2k)$

$\overline{l}(M)=\overline{\lambda}(M^{\prime})$ implies $\hat{\varphi}(F)_{w}\sim\hat{\varphi}(F^{\prime})$ by choosing suitable $W,$ $W^{\prime}$ and presentations
$F,$ $F^{\prime}$ .

Thus we have
THEOREM 13. Let $M,$ $M^{\prime}$ be two manifolds in $\partial\ovalbox{\tt\small REJECT}_{n}^{\prime}(2k)$ for $n=p$ (a prime)

or $2p$ (twice an odd prime) and $k=2,3,4,5$ or 7. $M$ is diffeomorphic to $M^{\prime}$

(we shall denote it by $M=M^{\prime}$) if and only if $\overline{\lambda}(M)$ equals $\overline{\lambda}(M^{\prime})$ . Furthermore
we have the following:

Case $n=p=2$ . $\overline{\lambda}(M)=\pm 1+8s$ for a certain integer $0\leqq s<I_{k}$ . $M=M_{1}$

$\# M_{0}\#\cdots\# M_{0}$ (s-fold connected sum of $M_{0}$) if $\overline{\lambda}(M)=1+8s,$ $M=(-M_{1})\# M_{0}$

$\#\cdots\# M_{0}$ (s-fold connected sum of $M_{0}$) if $\overline{\lambda}(M)=-1+8s$ .
Case $n=p\equiv 3$ $(mod 4)$ . $\overline{\lambda}(M)=\pm 2+8s$ , for $0\leqq s<I_{k}$ . $M=M\mathscr{S}\# M_{0}$

$\#$ – fl $M_{0}$ (s-fold connected sum of $M_{0}$) if $\overline{\lambda}(M)=2+8s$ and $M=(-M_{2}^{p})\#11^{\prime}I_{0}$

$\#\cdots\# M_{0}$ (s-fold connected sum of $M_{0}$) if $\overline{\lambda}(M)=-2+8s$ .
Case $n=p\equiv 1(mod 4)$ . $\overline{\lambda}(M)=8s$ or $4+8s$ $(0\leqq s<I_{k})$ . $M=M_{3}^{p}\# M_{0}$

$\#\ldots\# M_{0}$ (s-fold connected sum of $M_{0}$) if $\overline{\text{\‘{A}}}(M)=8s$ and $M=M_{4}^{p}\# M_{0}\#\ldots\# M_{0}$

(s-fold connected sum of $M_{0}$) if $\overline{\lambda}(M)=4+8s$ .
Furthermore we have $M_{3}^{p}=-M_{3}^{p}$ and $M_{4^{p}}=(-M_{4^{p}})\# M_{0}$ .
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Case $n=2p$ ( $p$ ; an odd prime). $\overline{\lambda}(M)\equiv 1(mod 2)$ .
(i) $p\equiv 1(mod 4)$ . $\overline{\lambda}(M)=\pm 1+8s$ or $\pm 3+8s$ for $0\leqq s<I_{k}$ . $M=M_{1}\# M_{3}^{p}$

$\# M_{0}\#\ldots M_{0}$ (resp. $(-M_{1})\# M_{3}^{p}\# M_{0}\#\cdots\# M_{0}$) (s-fold connected sum of $M_{0}$) if
$\overline{\lambda}(M)=1+8s$ (resp. $-1+8s$) and $M=(-\lrcorner \mathfrak{h}M_{1})\# M_{4}^{p}\# M_{0}\#\ldots\# M_{0}$ (resp. $M_{1}\# M_{4}^{p}$

$\# M_{0}\#\ldots\# M_{0})$ (s-fold connected sum of $M_{0}$) if $\overline{\lambda}(M)=3+8s$ (resp. $5+8s$).

(ii) $p\equiv 3(mod 4)$ . $\overline{\lambda}(M)=\pm 1+8s$ or $\pm 3+8s$ for $0\leqq s<I_{k}$ . $ M=(-M_{1}\rangle$

$\# M_{2}^{p}\# M_{0}\#\ldots\# M_{0}$ (resp. $M=M_{1}\#(-M_{2}^{p})\# M_{0}\#\cdots\# M_{0}$) (s-fold connected sum
of $M_{0}$) for $\overline{\lambda}(M)=1+8s$ (resp. $\overline{\lambda}(M)=-1+8s$), $M=M_{1}\# M_{2}^{p}\# M_{0}\#\ldots\# M_{0}$

(resp. $M=(-M_{1})\#(-M_{2}^{p})\# M_{0}\#\ldots\# M_{0}$) (s-fold connected sum of $M_{0}$) for
$\overline{\lambda}(M)=3+8s$ (resp. $\overline{\lambda}(M)=-3+8s$).

THEOREM 14. Let $M$ be a manifold in $\partial\ovalbox{\tt\small REJECT}_{n}^{\prime}(2k)$ for $n=p_{1}\ldots p_{s}(s\geqq 1)$

having distinct prime factors ($k=2,3,4,5$ and 7). $M$ can be obtained by
forming connected sums of some of the standard manifolds: $M_{0},$ $M_{1}$ for $p_{j}=2$ ,

$M_{2}^{p_{j}}$ for $p_{j}\equiv 3(mod 4),$ $M_{3}^{p_{j}},$ $M_{4}^{p_{j}}$ for $p_{j}\equiv 1(mod 4)$ and manifolds with the
reversed orientation.

REMARK. We cannot decide whether the representation of $M$ by the
connected sum operation of some standard manifolds in Theorem 14 is unique
or not, except in the case of Theorem 13.

COROLLARY 15. There exist precisely 1984 distinct 4-connected closed
oriented differentiable ll-manifolds whose fifth homology groups are cyclic of
order $n=p$ ( $p$ ; a prime) (resp. $n=2p,$ $p$ ; an odd prime). There exist precisely
56 distinct 2-connected closed differentiable $\pi$-manifolds of dimension 7 whose
third homology groups are cyclic of order $n=p$ ( $p$ : a prime) (resp. $n=2p,$ $p$ :
an odd prime). They all have the same homotopy type and the invariant $\overline{\lambda}$

characterizes these manifolds. There is only one topological manifold for $p=2$

or $p\equiv 3(mod 4)$ and there are at most two for $p\equiv 1(mod 4)$ .
COROLLARY 16. There exist precisely 16256 (resp. 523264, 67100672) distinct

6-connected (resp. 8-connected, 12-connected) closed oriented differentiable 15-
manifolds (resp. 19-manifolds, 27-manifolds) which bound $\pi$ -manifolds and
whose first non-trivial homology groups are cyclic of a prime order or twice
an odd prime order.

\S 5. $3$-sphere bundles over the $4$-sphere.

In this section we shall compute the invariant $\overline{\lambda}$ for total spaces of 3-sphere
bundles over the 4-sphere. First we shall recall some results about them (cf.

Tamura [15]).

Let $\rho,$ $\sigma:S^{3}\rightarrow SO(4)$ be maps defined by

$\rho(u)v=uvu^{-1}$ , $\sigma(u)v=uv$ ,
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where $u$ and $v$ denote quaternions with norm 1. The homotopy classes $\{\rho\}$

and $\{\sigma\}$ are generators of $\pi_{3}(SO(4))\cong Z+Z$. Let
$\mathfrak{B}_{m,n}=\{B_{m,n}, \pi_{m,n}, S^{4}, S^{3}\}$

be the $S^{3}$ -bundle over $S^{4}$ with the characteristic map $m\{\rho\}+n\{\sigma\}$ . Moreover
let

$\overline{\mathfrak{B}}_{m.n}=\{\overline{B}_{m,n},\overline{\pi}_{m,n}, S^{4}, D^{4}\}$

be the 4-cell bundle over $S^{4}$ associated with $\mathfrak{B}_{m,n}$ . $B_{m,n}$ and $\overline{B}_{m,n}$ have
differentiable structures naturally defined by bundle structures. Thus $B_{m,n}$

is a closed 7-manifold and $\overline{B}_{m,n}$ is a compact 8-manifold with the boundary
$\partial\overline{B}_{m,n}=B_{m,n}$ .

Non-trivial homology groups of $B_{m,n}$ are as follows:
$H_{0}(B_{m,n})\cong H_{f}(B_{m,n})\cong H_{4}(B_{m,0})\cong Z$ , $H_{8}(B_{m,n})\cong Z/nZ$ .

$\overline{B}_{m,n}$ has the homotopy type of $S^{4}$ .
The first Pontrjagin class of $\overline{B}_{m,n}$ (resp. $B_{m,n}$ ) is given by

$ p_{1}(\overline{B}_{m,n})=\pm 2(2m+n)\alpha$ (resp. $p_{1}(B_{m,n})=\pm 4m\alpha^{\prime}$)

where $\alpha$ is a generator of $H^{4}(\overline{B}_{m,n})\cong Z$ (resp. $\alpha^{\prime}$ is a generator of $H^{4}(B_{m.n})$

$\equiv Z/nZ)$ . Let $a\in H_{4}(\overline{B}_{m,n})$ be the dual of $\alpha$ . We choose the orientation of
$\overline{B}_{m,n}$ in such a way that $\langle a, a\rangle$ is positive and the orientation of $B_{m,n}$ to be
compatible with that of $\overline{B}_{m,n}$ .

$\mathfrak{B}_{-1,2}$ is the tangent sphere bundle of $S^{4}$ and $B_{-1,2}$ bounds a parallelizable
8-manifold $\overline{B}_{-1,2}$ . $\overline{B}_{-1,2}$ is of signature 1 and diffeomorphic to $W_{1}$ as stated
above (cf. \S \S 1, 4). $B_{pm,p}$ with odd primes $p$ , are z-manifolds for arbitrary
integers $m$ (cf. Tamura [17], Lemma 2).

Let us compute the invariant 7 of $B_{pm,p}$ . Suppose that $B_{pm,p}$ bounds a
compact parallelizable 3-connected oriented differentiable 8-manifold $W$ . Let
$V$ be the closed 2-connected oriented differentiable 8-manifold obtained from
the disjoint union of $\overline{B}_{pm,p}$ and $-W$ by identifying their common boundary
$B_{pm,p}$ . We have $I(V)=I(\overline{B}_{pm,p})-I(W)=1-I(W),$ $p_{1}^{2}(V)[V]=2^{2}p^{3}(2m+1)^{2}$ by
$i^{*-1}(\alpha U\alpha)[V]=p$ where $i:\overline{B}_{pm,p}\rightarrow V$ is the natural inclusion map. Thus the

index theorem $I(V)=\frac{1}{45}(7p_{2}(V)-p_{i}^{2}(V))[V]$ and the integrality of $\hat{A}$-genus

$\hat{A}(V)=\frac{1}{2^{7}\cdot 45}(-4p_{2}(V)+7p_{1}^{2}(V))[V]$ imply $I(TV)\equiv 1-p^{3}(2m+1)^{2}mod 2^{5}\cdot 7$ .

Thus we obtain
THEOREM 17. The residue classes $\overline{A}(B_{pm,p})mod 2^{5}\cdot 7$ for an arbitrary $m$

and odd primes $p$ are as follows:
$\overline{\lambda}(B_{pm,p})\equiv 1-p^{3}+4m(m+1)(mod 2^{5}\cdot 7)$ if $p\equiv 3,19,27(mod 28)$ ,

$1-p^{8}-52m(m+1)(mod 2^{5}\cdot 7)$ if $p\equiv 5,13,17(mod 28)$ ,
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$1-p^{3}-28m(m+1)(mod 2^{5}\cdot 7)$ if $p\equiv 7$ $(mod 28)$ ,

$1-p^{3}-4m(m+1)(mod 2^{5}\cdot 7)$ if $p\equiv 1,9,25$ $(mod 28)$ ,
$1-p^{3}+52m(m+1)(mod 2^{5}\cdot 7)$ if $p\equiv 11,15,23(mod 28)$ ,
$1-p^{3}+28m(m+1)(mod 2^{5}\cdot 7)$ if $p\equiv 21$ $(mod 28)$ .

As is easily seen, we have $\overline{\lambda}(B_{pm,p})\equiv-2,2,0$ or 4 $(mod 8)$ for $p\equiv 3,7,1$

or 5 $(mod 8)$ .
COROLLARY 18. $B_{pm,p}$ for arbitarary $m$ and a fixed odd prime $p$ , are

homeomorphic to each other and $B_{pm,p}$ is diffeomorphic to $B_{pm,p}$ as oriented

manifolds if and only if
$m(m+1)\equiv m^{\prime}(m^{\prime}+1)(mod 8)$ for $p\equiv 7,21(mod 28)$ ,
$m(m+1)\equiv m^{\prime}(m^{\prime}+1)(mod 56)$ for $p\not\equiv 7,21(mod 28)$ .

REMARK. Tamura proved in his paper [16] that $B_{pm,p}$ for arbitrary $m$

and a fixed odd prime $p$ are homeomorphic to each other.

Japan Women’s University
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