
J. Math. Soc. Japan
Vol. 16, No. 2, 1964

Some aspects of real-analytic manifolds
and differentiable manifolds

By K\^oji SHIGA

(Received Nov. 6, 1963)

(Revised Jan. 25, 1964)

Introduction

In 1958 C. B. Morrey [7] and H. Grauert [3] proved that any real-analytic
manifold can be real-analytically imbedded in a Euclidean space by a regular
and proper mapping. This, combined with the result of H. Whitney [12],

shows that any differentiable manifold has a unique real-analytic structure,
or in other words, every manifold has as many $C^{\omega}$-structures as $C^{1}$ -structures.
We shall refer to this fact in speaking of the ” constancy of differentiable
structure” of manifolds.

Now, a fundamental tool in Whitney’s work [12] was the approximation
theorem, saying that any differentiable mapping $f$ between two real-analytic
manifolds $M,$ $N$ can be arbitrarily well approximated by a real-analytic map-
ping $\varphi$ (cf. \S 1 for an exact formulation). Actually Whitney [12] proved this
under the condition that $M$ and $N$ are realized in a Euclidean space, but this
condition can be removed owing to the result of Morrey-Grauert [7], [3].

From this it follows in particular that to any regular mapping $f$ we can find
a regular real-analytic approximation $\varphi$ . Thus $\varphi$ will be an analytic homeo-
morphism if $f$ is a homeomorphism; $i$ . $e.$ , the uniqueness of C’-structure com-
patible with a $C^{1}$ -structure of a manifold–one half of the ” constancy of
differentiable structure “ ; another half being the existence of $C^{\omega}- structure-$

is a direct consequence of the approximation theorem.
In the present paper, we shall first state the generalized approximation

theorem and some immediate consequences of it (\S 1). Now, corresponding to
the case where $f$ is injective, the approximation theorem has an application
to fibre spaces; any differentiable fibre space $P=P(B, \pi)$ possesses a unique
real-analytic structure as a fibre space when the projection $\pi$ is proper (\S 2).

On the other hand, in the case where $f$ is injective, the approximation theorem
combined with G. D. Mostow’s theorem [8] concerning the equivariant imbed-
dings yields results related to transformation groups, one of which is formu-
lated as follows: Let $G$ be a compact Lie group acting on a compact real-
analytic manifold $M$ as a C’-transformation group. Then $G$ necessarily acts
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on $M$ as a $C^{\omega}$-transformation group (\S 3).

In \S 4, we deal with the classification problem of $C^{\omega}- fibre$-bundles from
the point of view of approximation theorem. The results obtained here are
stated as follows. Any principal fibre bundle $P$ of class $C^{0}$ has a real-analytic
fibre bundle structure $\tilde{P}$ , compatible with the given bundle structure. More-
over $\tilde{P}$ is uniquely determined. This essentially gives an answer of a problem
raised by H. Cartan [2].

Finally, the author would like to express his gratitude to Professor S.
Iyanaga for his constant encouragements. Also he thanks Professor T. Nagano
for his valuable advices.

$NoTATIONS$ \ddagger We assume manifolds to be paracompact, but not necessarily
connected, while we assume for convenience’ sake each connected component
to have the same dimension. $C^{s}$-manifold $(1 \leqq s\leqq\infty, \omega)$ is, by definition, a
topological manifold whose coordinate transition functions admit continuous
derivatives of the order up to $s$ if $ s\leqq\infty$ , and are real-analytic if $ s=\omega$ . {U. ;
$(x_{\iota})\}_{\ell\in I}$ denotes a system of local coordinates on $M:U_{\iota}$ are coordinate neigh-
borhoods with coordinates $(x_{\iota})=(x_{\iota}^{1}, \cdots , x_{\iota}^{m})$ , where $m=\dim M$. It is useful
to introduce a notation $r^{*}$ , which we define by $r^{*}=r$ in case $ 1\leqq r<\infty$ , any
positive integer in case $r=\infty,$ $\omega$ . Also we write conventionally $ s<\omega$ for any
$s=1,2$ , $\cdot$ .. , $\infty$ . $P(B, F, G, \pi)$ denotes a fibre bundle with the base space $B$,

the typical fibre $F$, the structural group $G$ and the projection $\pi$ .

1. Approximation theorem.

The following is well known [12]:

WHITNEY’S IMBEDDING THEOREM: Any separable $C^{r}$-manifold $M(1\leqq r$

$\leqq\infty)$ can be imbedded in $a$ Euclidean space $E^{k}$ by a regular and proper $C^{r_{-}}$

mapping, and the imbedded manifold may be taken as a $C^{\omega}$-manifold.
The latter half of this statement obviously implies that any $C^{\gamma}$-manifold

has a C’-structure induced by the structure of the imbedded $C^{\omega}$-manifold,
which is compatible with the given $C^{r}$-structure. A similar result on $C^{\omega_{-}}$

manifolds was obtained by C. B. Morrey [7] for compact case, and by Grauert
[3] for general case:

MORREY-GRAUERT’S IMBEDDING THEOREM: Any separable $C^{\omega}$-manifold $M$

can be imbedded in $a$ Euclidean space $E^{k}$ by a regular and proper $C^{\omega}$-mapping.
We wish to formulate the approximation theorem due essentially to H.

Whitney [12]. Let $M$ and $N$ be $C^{S}$-manifolds with dimension $m$ and $n$ , respec-
tively. $C^{\gamma}(M, N)$ denotes the totality of $C^{r}$-mappings from $M$ into $N$, where
$r$ satisfies $1\leqq r\leqq s$ . Let $f\in C^{\gamma}(M, N)$ . We need a precise description of $C^{s_{-}}$

mappings which approximate $f$. For this purpose we take local coordinate
neighborhoods $\{U_{\iota} ; (x_{\iota})\}_{\iota\in t}$, {V,} on $M$ and $\{W_{\lambda}\}_{\lambda\in\Lambda}$ on $N$ such that $V_{\iota}\subset\subset U_{\iota}$
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(this means that the closure of $V_{\iota}$ is contained in $U_{\iota}$ as a compact set). We
assume that $\{U_{\iota}\},$ $\{V_{\iota}\}$ and $\{W_{\lambda}\}$ are all locally finite and that for any $\zeta$ there
is at least one $\lambda(c)$ such that $f(U_{\iota})\Subset W_{\lambda(\iota)}$ . Such coordinates obviously exist.
Let $\mathcal{E}=\{\epsilon_{\iota}\}_{\iota\in t}$ be a family of positive numbers indexed by $\zeta\in I$. We shall
call such $\mathcal{E}$ a positive family. Then we say that $\varphi\in C^{s}(M, N)$ gives an $\mathcal{E}-$

approximation to $f$ up to order $r^{*}$ or an $(\mathcal{E}, r^{*})$ -approximation for a given posi-
tive family 8 when the following conditions are satisfied:

(i) $\varphi(U_{\iota})\subset\subset W_{\lambda(\iota)}$

(ii)
$\Vert D_{\iota}^{\nu}f-D_{\iota}^{\nu}\varphi\Vert_{V_{\iota}}=\sup_{1\leqq j\leqq n}\sup_{x\in V_{\iota}}|D_{\iota}^{\nu}f_{\lambda^{j_{(\iota)}}}(x)-D_{\iota}^{\nu}\varphi_{\lambda^{j}(\iota)}(x)|<\epsilon_{\iota}$

for $\nu=0,1$ , $\cdot$ .. , $r^{*}$ . Here $(f_{\lambda^{1}(\iota)}$ , $\cdot$ .. , $f_{\lambda^{n_{(\iota)}}})$ and $(\varphi_{\lambda(\iota)}^{1}$ , $\cdot$ .. $\varphi_{\lambda}^{n_{(\iota)}})$ denote coordinate
components of $f$ and $\varphi$ on $W_{\text{{\it \‘{A}}}(\iota)}$ , and the abbreviated notations $D_{\iota}^{\nu}f$ means
‘ in general ‘

$D_{\iota}^{\nu}f(x)=\frac{\partial^{\nu}f}{(\partial x_{\iota}^{1})\iota\ldots(\partial x_{\iota}^{m})^{m}}$ ,

where $v=\nu_{1}+$ – $+\iota$)
$m$ . ($(ii)$ means that $\Vert D_{\iota}^{\nu}f-D_{\iota}^{\nu}\varphi\Vert_{V_{\iota}}$ is defined by the right

hand side of (ii) for any kind of $D_{\iota}^{\nu},$ $i$ . $e.$ , for any choice of $v_{1},$
$\cdots$ , $11_{m}$ satisfying

$\nu=1)_{1}+\cdots+\nu_{m}$ , and that $\Vert D_{\iota}^{\nu}f-D_{\iota}^{\nu}\varphi\Vert_{V_{\iota}}<\epsilon_{\iota}$ is valid for every $\zeta\in I$ and $\iota$) $=$

$0,1,$ $\cdots$ , $r^{*}$). This definition of $(\mathcal{E}, r^{*})$-approximation depends on the choice of
local coordinates. But, as is easily seen, the property that for any $\mathcal{E}=\{\epsilon_{\iota}\}f$

has $(\mathcal{E}, r^{*})$-approximations each of which belongs to $C^{s}(M, N)$ does not depend
on local coordinates used in the definition. In the sequel we deal only with
such properties. Hence we shall no more refer explicitly to local coordinates.

We can now formulate the approximation theorem.
THEOREM A. Let $M$ and $N$ be $C^{s}$-manifolds with $ 1\leqq s\leqq\omega$ . Assume that

a $C^{\gamma}$-mapping $f$ of $M$ into $Nis$ given where $r$ satisfies $1\leqq r\leqq s$ . Then for any
positive family $\mathcal{E}=\{\epsilon_{\iota}\}_{\iota\in I}$ there exists a $C^{s}$-mapping $\varphi$ of $M$ into $N$ giving an
$(\mathcal{E}, r^{*})$-approximation to $f$ satisfying the “ coincidence condition “

$D^{\nu}\varphi(x_{\iota})=D^{\nu}f(x_{l})$ , $\nu=0,1,$ $\cdots$ $r^{*}$ ,

where $x_{1},$ $x_{2},$ $\cdots$ , $x_{l},$ $\cdots$ is any $s$ equence of points of $M$ without accumulation
points. In case where $f$ is a proper mapping, $\varphi$ can be taken as a proper map-
ping.

Actually H. Whitney [12] proved this theorem in case where $M$ and $N$

are imbedded manifolds. However the imbeddability of $M$ and $N$ imposes no
restriction by virtue of Morrey-Grauert’s theorem, which is applicable to each
connected components of $M$ and $N$. We remark that the above theorem holds
true also in case $r=0$ (of course except the statement on regularity).

The following result is useful for our applications of Theorem A.
THEOREM B. Let $M$ and $N$ be $C^{s}$-manifolds. Let $f$ be a $C^{\gamma}$-mapping $f$ of

$M$ into Nwhere $r$ satisfies $1\leqq r\leqq s$ . Assume that $f$ has the one of the follow-



Real-analytic manifolds and differentiable manifolds $13l$

$ing$ properties:
(i) $f$ is $C^{r}$-immersion.
(ii) $f$ is $C^{r}$-imbedding.
(iii) $f$ is $C^{r}$-homeomorphism.

Then, for a suitable choice of $\mathcal{E}_{0}$ , any $(\mathcal{E}, r^{*})$-approximation $\varphi$ to $f$ has the
corresponding properties in the $C^{s}$-category, respectively, where $\mathcal{E}$ is so chosen
that $0<s<\mathcal{E}_{0}$ .

This theorem was found by H. Whitney [12]. A proof was given by

J. Munkres [9]; to his proof we give a remark that the part of (iii) in
the above theorem can be immediately deduced from (i) and (ii) when we.
consider the image of each connected component of $M$ through $\varphi$ .

COROLLARY 1. $M$ and $N$ being as above, assume that we have a $C^{\gamma}$-homeo-
morphism $f$ of $M$ onto $N$ with $1\leqq r\leqq s$ . Then there exists a $C^{s}$-homeomorphism
$\varphi$ of $M$ onto $N$ which approximates $f$ arbitrarily well up to order $r^{*}$ .

From this we can conclude the following
UNIQUENESS THEOREM. Any $C^{r}$-manifold has a unique $C^{s}$-structure com-

patible with the given $C^{r}$-structure, where $1\leqq r\leqq s$ .
Thus, in a particular case $ s=\omega$ , we have obtained three fundamental

theorems for $C^{\omega}$-manifold: (a) Morrey-Grauert’s Imbedding Theorem, (b) Appro-
ximation Theorem, (c) Uniqueness Theorem. It should be noted that these are
essentially equivalent. In fact, the implications $(a)\subset>(b)\Leftrightarrow(c)$ have been given
above; (c) $\subset*(a)$ is seen as follows: Let $M$ be a C’-manifold. Then $M$ can
be differentiably imbedded in $E^{k}$ such that its image is a closed $C^{\omega}$-submanifold
$M^{*}$ . We denote by $\tilde{M}$ the $C^{\omega}$-manifold whose underlying space is $M$ and
whose $C^{\omega}$-structure is induced from $M^{*}$ . The validity (c) means $\tilde{M}=M$ as
$C^{\omega}$-manifolds. Hence $M\rightarrow M^{*}$ gives a C’-imbedding of $M$. This proves (a).

REMARK. B. Malgrange [4] has shown that (a), (b) and (c) are also
equivalent to the following: Any $C^{\omega}$-manifold admits a Riemannian metric
of class $C^{\omega}$ .

Referring to the coincidence condition of Theorem $A$ , we can easily deduce
COROLLARY 2 (H. Cartan). Let $M$ be a $C^{\omega}$-manifold and $x_{1},$ $x_{2}$ , $\cdot$ .. , $x_{\iota}$ , $\cdot$ ..

be a sequence of points of $M$ without accumulation points. Let $r$ be any posi-
tive integer. Then there is a $C^{\omega}$-function on $M$ such that its partial derivatives
up to order $r$ take any assigned values at $x_{1},$ $x_{2},$

$\cdots$ , $x_{\iota},$
$\cdots$

H. Cartan [2] proved this result as a consequence of his theorem that any
$C^{a)}$-manifold necessarily becomes a ’ real Stein manifold ’. Now, let $M$ be a
connected $C^{\omega}$-manifold. Observe that the group composed of all diffeomor-
phisms on $M$ transitively operates on M. Hence for any points $x_{0},$ $y_{0}\in M$ we
can find a diffeomorphism $f$ such that $f(x_{0})=y_{0}$ . Approximate $f$ by a $C^{\omega_{-}}$

homeomorphism $\varphi$ satisfying $\varphi(x_{0})=f(x_{0})$ . Then we have
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COROLLARY 3. The group composed of all $C^{\omega}$-homeomorphisms on $M$ transi-
tively operates on $M$.

2. Fibre spaces.

DEFINITION 1. A $C^{s}$-manifold $P=P(B, \pi)$ is called a $C^{s}- fibre$ space if the
base space $B$ is a $C^{s}$-manifold and the projection $\pi;P\rightarrow B$ is a regular onto
$C^{s}$-mapping.

Clearly the total space of a $C^{s}- fibre$ bundle gives an example of a $C^{s}- fibre$

space. For any $C^{s}- fibre$ space $P$ , put $F(b)$ for $\pi^{-1}(b);F(b)$ is a closed $C^{s}$-sub-
manifold of $P$ for each $b\in B$ and is referred to as the fibre over $b$ . It is
evident that $P=\bigcup_{b\in B}F(b)$ . Since $\pi$ is a regular mapping of $P$ onto $B$ , for any
$p_{0}\in F(b_{0})$ there is a coordinate neighborhood $U(p_{0})$ in $P$ so that local coor-
dinates on $U(p_{0})$ are given by $(y^{1}\circ\pi, \cdots y^{n}\circ\pi, x^{1}, \cdots , x^{m})$ , where $y^{1},$ $\cdots$ , $y^{n}$

denote local coordinates on $\pi(U(p_{0}))$ . Accordingly, $F(b_{1})\cap U(p_{0})$ is characterized
by the equations

$y^{1}\circ\pi(p)=y^{1}(b_{1}),$ $\cdots$ $y^{n}\circ\pi(p)=y^{n}(b_{1})$ ,

where $b_{1}$ is in $\pi(U(p_{0}))$ . In this sense we may well say that $F(b)$ are closed
submanifolds depending on $b$ as parameters of class $C^{s}$ , in terms of local co-
ordinates on $P$ .

Let $P=P(B, \pi)$ be a $C^{s}- fibre$ space. Regard $P$ simply as a $C^{s}$-manifold and
imbed $P$ in a Euclidean space $E^{k}$ by a regular and proper $C^{s}$-mapping. We
identify $P$ with the imbedded manifold. Each fibre $F(b),$ $b\in B$ , is a closed
$C^{s}$-submanifold of $P$ and thus of $E^{k}$ , whence to each point $p\in F(b)$ we can
attach the normal plane $\beta(p)$ to $F(b)$ passing through $p$ , the dimension of
which is denoted by $l$ . $G(k, l)$ denotes the Grassmann manifold consisting of
all l-dimensional linear spaces passing through the origin of $E^{k}$ , with known
$C^{\omega}$ -structure. Now $\beta(p)$ naturally gives rise to a mapping $\overline{\beta}$ from $P$ into
$G(k, l)$ : $\overline{\beta}(p)$ is obtained by the parallel displacement of $\beta(p)$ to the plane
passing through the origin. $\overline{\beta}(p)$ is a $C^{S-1}$ -mapping in $p$ . By making use of
Theorem $A$ , we can find a mapping $\overline{\alpha}$ of $P$ into $G(k, 1)$ such that $\overline{\alpha}(p)$ is a
$C^{s}$-mapping in $p$ and that $\overline{\alpha}$ approximates $\overline{\beta}$ so well that each $\alpha(p)$ (plane
passing through $p$ parallel to $\overline{\alpha}(p))$ is independent of the tangent plane to
$F(b)$ at $p$ . Express $\alpha(p)$ in terms of local coordinates and apply the implicit
function theorem. Then it is easily verified that $\alpha(p)$ has the following
properties [12; p. 667].

(i) Tubular neighborhood $T_{\rho}(F(b))$ along the fibre $F(b)$ is iilled up by $\alpha(p)$

in one-to-one way where

$T_{\rho}(F(b))=\{q|\Vert q-p\Vert<\rho(p), p\in F(b)\}$ ,
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$\Vert\cdot\Vert$ being a Euclidean distance in $E^{k}$ , and $\rho(p)$ is a positive continuous func-
tion on $P$ chosen suitably.

(ii) Let $p\in F(b)$ and $q\in\alpha(p)$ . The assignment $q\rightarrow p$ gives a $C^{s}$-mapping
of $T_{\rho}(F(b))$ onto $F(b)$ , depending on $b$ as $C^{s}$-mapping. We denote this mapping
by $\tau(q;b)$ .

Henceforth, a family of planes $\alpha(p)$ and the projection $\tau(q;b)$ are fixed.
$\alpha(p)$ is called to be a quasi-normal plane to $F(b)$ at $p$ . Now consider the case
where the projection $\pi$ is proper. Then for any $b\in B,$ $F(b)=\pi^{-1}(b)$ is compact,
and so we can find a neighborhood $V(b)$ such that $\pi^{-1}(V(b))$ is $C^{s}$-homeomor-
phic to $F(b)\times V(b)$ ; in fact, this $C^{s}$-homeomorphism can be given through the
mapping $\tau(q;b)$ on a tubular neighborhood $T_{\rho}(F(b))\cap P$ of $F(b)$ .

Let $P$ and $P_{1}$ be $C^{s}- fibre$ spaces and suppose that we have a $C^{s}$-mapping
$f$ of $P$ into $P_{1}$ . If $f$ sends each fibre $F(b)$ of $P$ into a fibre $F_{1}(b_{1})$ of $P_{1}$ , we
call $f$ a fibre-preserving map. If $f$ is $C^{s}$-homeomorphic and fibre-preserving,
we say that $P$ and $P_{1}$ are $C^{s}$-equivalent to each other. A fundamental theorem
is now stated as follows.

THEOREM 2. Let $P=P(B, \pi)$ be a $C^{S}- fibre$ space. Assume that $\pi$ is proper.
Then there exists a $C^{\omega}- fibre$ space $P_{1}=P_{1}(B_{1}, \pi_{1})$ which is $C^{s}$-equivalent to $P$ .

Note that if $P_{1}$ is such a fibre space, the underlying $C^{s}$-structure of $P_{1}$ is
essentially the same to that of $P$ . Moreover the proof below shows that the
base space $B_{1}$ may be simply regarded as $B$ when both $C^{s}$-structures are
concerned.

PROOF. $P$ and $B$ possess a unique $C^{a)}$-structure compatible with the given
$C^{s}$-structures, respectively. Hence we may assume without loss of generality
$P$ and $B$ are $C^{\omega}$ -manifolds. Since $\pi$ is a regular and proper $C^{s}$-mapping of $P$

onto $B$ , it follows from Theorem A that there exists a regular and proper
$C^{\omega}$-mapping $\pi_{1}$ of $P$ into $B$ , approximating $\pi$ very well up to order $s^{*}$ .

We wish to show that $\pi_{1}$ is an onto-mapping. Without loss of generality,
we may assume that $P$ (and so $B$) is connected. Since $\pi_{1}$ is regular, $\pi_{1}(P)$ is
an open subset of $B$ . On the other hand, $\pi_{1}(P)$ is closed. In fact, assume
that $b_{n}\in\pi_{1}(P),$ $b_{n}\rightarrow b_{0}$ . $\pi$ being proper, we have $\pi^{-1}(V(b_{0}))\cong F(b_{0})\times V(b_{0})$ for
a properly chosen $V(b_{0})$ . Hence $\{\pi_{1}^{-1}(b_{n})\}$ are assumed to be contained in a
compact subset of $P$ . Then it is easily seen that for some $p_{0}\in P$ we have
$\pi_{1}(p_{0})=b_{0}$ , which shows the desired result. Consequently, $\pi_{1}(P)$ is open and
closed, whence we find that $\pi_{1}(P)=B$ .

It follows that $P$ has a C’-structure as a fibre space, having the base
space $B$ and the projection $\pi_{1}$ . Put $P_{1}=P(B, \pi_{1})$ for this $C^{\omega}- fibre$ space. We
$havetoprovethatP_{1}$ is C-equivalent toPif $\pi_{1}$ is suitably chosen. As remarked
above, we see that $\pi^{-1}(V(b))$ is $C^{s}$-homeomorphic to $F(b)\times V(b)$ , for some neigh-
borhood $V(b)$ of $V$ . We take $\pi_{1}$ so that $\pi_{1}$ approximates $\pi$ well enough to
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satisfy $\pi(F_{1}(b))\subset V(b)$ , whence we obtain a mapping $\tau_{b}$ ; $F_{1}(b)\rightarrow F(b)$ through
the projection $\tau($ ; $b)$ . Expressing the local triviality $\pi^{-1}(V(b))\cong F(b)\times V(b)$

explicitly, we can take local coordinates $(x, y)$ around $p(\in F(b))$ , such that $x$

denote fibre coordinates of $p$ and $y$ denote base-space coordinates of $p$ . Then
$\partial\pi^{j}$ $\partial\pi^{j}$

$\pi^{j}(x, y)=y^{\prime}$ ($j=1,2,$ $\cdots$ , n) and thus $-\partial\overline{x^{i}}=0,$ $\overline{\partial y^{j}’}=\delta_{j}^{j},$ $(i=1,2, \cdots , m)$ . Ob-

serve that the values of $\frac{\partial\pi_{1^{j}}}{\partial x^{i}}$ and $\frac{\partial\pi^{j_{1}}}{\partial y^{j}’}$ are approximately equal to the cor-

responding values of $\pi$ , since $\pi_{1}$ approximates $\pi$ up to order 1. lt follows
that in each point $(x, y)$ of $F_{1}(b)$ the tangent vectors to $F_{1}(b)$ are transversal

to the vectors $\frac{\partial}{\partial y^{j}}$ $(j=1,2, \cdots , n)$ . Thus $\tau_{b}$ induces a $C^{s}$-homeomorphism

from a neighborhood $V(x, y)\cap F_{1}(b)$ into $F(b)$ . This correspondence at each
point of $F_{1}(b)$ together gives the $C^{s}$-mapping $\tau_{b}$ of $F_{1}(b)$ into $F(b)$ which is a
local homeomorphism. This shows in particular tllat the image of $F_{1}(b)$ is
an open subset of $F(b)$ . On the other hand, $F_{1}(b)$ is compact since $\pi_{1}$ is proper.
From this it is easily verified that $\tau_{b}$ gives a covering map of $F_{1}(b)$ onto $F(b)$ .
Now, for a properly chosen neighborhood $V(b)$ of $b$ , we have $\pi_{1}^{-1}(V(b))\cong F_{1}(b)\times$

$V(b)$ and $\pi^{-1}(V(b))\cong F(b)\times V(b)$ . Moreover, for $c\in V(b),$ $\tau_{c}$ depends on $c$ as
$C^{s}$-parameters. Hence each covering map $\tau_{c}$ of $F_{1}(c)$ onto $F(c)$ naturally in-
duces a covering map of $F_{1}(b)\times V(b)$ onto $F(b)\times V(b)$ .

Accordingly, all $\tau_{b},$ $b\in B$ , together give rise to a covering map $\Psi$ of $P_{1}$

onto $P,$ $i$ . $e.,$
$\Psi$ is defined to be $\Psi|F_{1}(b)=\tau_{b}(b\in B)$ . Since $P_{1}$ is homeomorphic

to $P$ as topological space, we can conclude that $\Psi$ is a trivial covering map,
in other words, $\Psi$ is a $C^{s}$-homeomorphism. From the construction of $\Psi$ , this
in turn implies that $\Psi$ is fibre-preserving. Hence the fibre spaces $P$ and $P_{1}$

are $C^{s}$-equivalent, which is the desired result.
Next we wish to generalize the approximation theorem to the case of

fibre-preserving maps. The following Proposition 1 is essential for that pur-
pose. Suppose that we have a $C^{\omega}$-function defined on a set $W\times W^{\prime}$ , say
$\Phi(X, Y)(X\in W, Y\in W^{\prime})$ , where $W,$ $W^{\prime}$ are open sets in $E^{\iota},$ $E^{l^{\prime}}$ respectively.
Letting $U$ be an open set in $E^{k}$ , take $f$ and $g$ such that $f\in C^{s}(U, W)$ and
$g\in C^{s}(U, W^{\prime})$ . We are concerned with $C^{\omega}$-approximations to the function
$\Phi(f, g)$ . We obtain

PROPOSITION 1. Let $F$ be an $(\mathcal{E}_{1}, s^{*})$ -approximation to $f$ and $G$ be an $(\mathcal{E}_{2}, s^{*})-$

approximation to $g$, where $F$ and $G$ are $C^{\omega}$-mappings from $U$ into open sets $W$

and $W^{\prime}$ respectively. Let $\mathcal{E}$ be any given positive family. Then, by a suitable
choice of $\mathcal{E}_{1}$ and $\mathcal{E}_{2},$ $\Phi(F, G)$ gives an $(\mathcal{E}, s^{*})$ -approximation to $\Phi(f, g)$ . $\Phi(F, G)$

is clearly a $C^{\omega}$-function on $U$.
PROOF. From the definition of S-approximation, it follows immediately

that the proposition is reduced to the case where $U$ and $U^{\prime}$ have compact
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closures in the domains of $f$ and $g$, respectively. It is then clear that $\Phi(F, G)$

gives a sufficiently good approximation to $\Phi(f, g)$ in order $0$ . Set $\Psi(x)$

$=\Phi(f(x), g(x))$ and $\Psi_{1}(x)=\Phi(F(x), G(x))$ . Differentiating them, we obtain

$\partial^{\frac{\Psi}{x^{i}}}\partial=\sum_{\alpha}\frac{\partial f^{\alpha}}{\partial x^{i}}\frac{\partial\Phi}{\partial X^{\alpha}}|_{X=J(x)}+\sum_{\beta}\frac{\partial g^{\beta}}{\partial x^{i}}\frac{\partial\Phi}{\partial Y^{\beta}}|_{Y=g(x)}$

$\frac{\partial\Psi_{1}}{\partial x^{i}}=\sum_{\alpha}\frac{\partial F^{\alpha}}{\partial x^{i}}\frac{\partial\Phi}{\partial X^{\alpha}}|_{X=F(x)}+\sum_{\beta}\frac{\partial G^{\beta}}{\partial x^{i}}\frac{\partial\Phi}{\partial Y^{\beta}}|_{Y=G(x)}$

Since $\Phi(X, Y)$ is a $C^{\omega}$-function, all partial derivatives of $\Phi$ satisfy the Lip-
schitz condition on any compact set $(\subset W\times W^{\prime})$ . From this it follows that

$\frac{\partial\Phi}{\partial X^{a}}|_{X=F(x)}$ and $\frac{\partial\Phi}{\partial Y^{\beta}}|_{Y=G(x)}$ have an $upp_{\vee}^{\circ}r$ bound $K$, independent of $F$ and $G$ .

Therefore we get

$|\frac{\partial\Psi}{\partial x^{i}}-\frac{\partial\Psi_{1}}{\partial x^{i}}|\leqq K\sum_{a}|\frac{\partial f^{\alpha}}{\partial x^{i}}-\frac{\partial F^{\alpha}}{\partial x^{i}}|+K\sum_{\beta}|\frac{\partial g^{\downarrow 3}}{\partial x^{i}}\frac{\partial G^{\beta}}{\partial x^{i}}|$

whence $\Psi_{1}=\Phi(F, G)$ gives an $\mathcal{E}$ -approximation of $\Psi=\Phi(f, g)$ up to order 1
when $\mathcal{E}_{1}$ and $\mathcal{E}_{2}$ are taken small enough. The proof proceeds in the same way
in case of higher order approximations.

THEOREM 2. Let $P_{1}(B_{1}, \pi_{1})$ and $P(B, \pi)$ be $C^{s}- fibre$ spaces where $\pi$ is prop-
er, and suppose $r$ satisfies $1\leqq r\leqq s$ . Assume that a fibre-preserving $C^{r}$-map
$f$ of $P_{1}$ into $P$ is given. Then for any positive family $\mathcal{E}=\{\epsilon_{\iota}\}$ we have a fibre-
preserving $C^{s}$-map $\varphi$ of $P_{1}$ into $P$ giving an $(S, r^{*})$-approximation to $f$.

PROOF. By Theorem 1 we can take local coordinates on $P_{1}$ and $P$ such
that $P_{1}$ and $P$ have structures of $C^{\omega}$-fibre spaces with respect to these coor-
dinates. Hence we may assume that $P_{1}$ and $P$ are $C^{\omega}- fibre$ spaces. Take a
$C^{\omega}$-Riemannian metric on $P$ . Since each fibre $F(b)(b\in B)$ is a closed $C^{\omega_{-}}$

submanifold of $P$, it is possible to find a tubular neighborhood $T(F(b))$ such
that $T(F(b))$ is simply covered by normal geodesics $\nu$ , passing through each
point $p$ of $F(b)$ . Thus we have a parametrization of $T(F(b))$ , in terms of fibre
coordinates $(x)$ of $p$ , the direction $\alpha$ to $\nu$ and the length $s$ of $\nu$ . For $q\in T(F(b))$ ,

denote this parametrization by

$q=L(x, \alpha, s;b)$ ;

as is well known, $L$ is a $C^{x}$-function in $(x, \alpha, s;b)$ . Set $x=\mu(q;b)$ . Then by
the implicit function theorem $\mu(q;b)$ is a $C^{\omega}$-function in $(q;b)$ .

The given $C^{\gamma}$-mapping $f$ naturally induces a $C^{r}$-mapping $g$ of $B_{1}$ into $B$ .
Choose a $C^{\omega}$-mapping $\Psi$ of $B_{1}$ into $B$ approximating $g$ up to order $r^{*}$ closely
enough to satisfy $f(p_{1})\in T(\Psi(\pi_{1}(p_{1})))$ . This is possible since $\pi$ is proper by
the assumption. Next take a $C^{\omega}$-approximation $\Phi$ to $f$ up to order $r^{*}$ such
that $\Phi(p_{1})\in T(\Psi(\pi_{1}(p_{1})))$ . Now we define the $C^{\omega}$-mapping $\varphi$ of $P_{1}$ into $P$ by
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setting
$\varphi(p_{1})=\mu(\Phi(p_{1});\Psi(\pi_{1}(p_{1})))$ .

$\varphi$ is obviously a fibre-preserving map. On the other hand, we have

$f(p_{1})=\mu(f(p_{1});g(\pi_{1}(p_{1})))$ .
Hence Proposition 1 immediately yields the desired result.

Theorem 2, combined with Corollary 1 to Theorems $A,$ $B$ , gives
THEOREM 3. Let $r$ and $s$ satisfy $1\leqq r\leqq s$ . If $C^{s}- fibre$ spaces $P$ and $P_{1}$

having the proper projections are $C^{r}$-equivalent to each other through a $C^{\gamma}-$

mapping $f$, then they are $C^{s}$-equivalent to each other through a $C^{s}$-mapping $\varphi$ .
$\varphi$ is taken arbitrarily near to $f$ up to order $r^{*}$ .

3. Transformation groups.

Let $G$ be a Lie group acting on a $C^{s}$-manifold $M$ as a transformation group.
We say that $G$ is a $C^{s}$-transformation group on $M(1\leqq s\leqq\omega)$ when, for each
fixed $g\in G,$ $gx$ gives a $C^{s}$-mapping of $M$ onto $M$. The following is known
[6; p. 213]: If $G$ is a $C^{s}$-transformation group on $M$, then the mapping defined
by $(g, x)\rightarrow gx$ gives a $C^{s}$-mapping of $G\times M$ onto M. $G_{p}$ denotes the stabilizer
of a point $p\in M:G_{p}=\{g|gp=p\}$ . The orbits $G_{p}$ and $G_{q}$ are called equivalent
if $G_{q}=gG_{p}g-1$ for some $g\in G$ . If $M$ is a compact $C^{s}$-manifold and $G$ a com-
pact Lie group acting on $M$ as $C^{s}$-transformation group, then $G$ has only a
finite number of inequivalent orbits.

The following theorem concerns a classical problem on transformation
groups treated by Bochner-Montgomery [1].

THEOREM 4. Let $G$ be a compact Lie group acting on a $C^{s}$-manifold $M$ as
a $C^{1}$ -transformation group. Then $G$ necessarily acts on $M$ as a $C^{s}$-transforma-
tion graup if one of the following conditions is valid:

(i) $G$ acts faithfully on $M$ and has only a finite number of inequivalent
orbits.

(ii) $M$ is a compact manifold.
To prove this, we use the following result due to G. D. Mostow [8]:

When either (i) or (ii) is the case, there exist a regular $C^{1}$ -homeomorphism $f$

of $M$ into a Euclidean space $E^{k}$ and an isomorphism $\theta$ of $G$ into the unitary
group on $E^{k}$ such that $f$ is equivariant with respect to $\theta,$ $i$ . $e.,$ $f(gp)=\theta(g)f(p)$

$(g\in G, p\in M)$ .
PROOF. Assume that $f$ and $\theta$ have the same meanings as above. Approxi-

mate $f$ by a regular $C^{s}$-mapping $\varphi$ of $M$ into $E^{k}$ up to order 1. We may
assume

(1) $\sup_{g\in c}\Vert\varphi(gp)-f(gp)\Vert_{V_{\iota}}<\epsilon_{\iota}$
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(2) $\sup_{g\in G}\Vert D_{\iota}\varphi(gp)-D_{\iota}f(gp)\Vert_{V_{\iota}}<\epsilon_{\iota}$ ,

since $G$ is compact. Here $\Vert\cdot\Vert$ means the Euclidean distance on $E^{k}$ , while a
positive family $\mathcal{E}=\{\epsilon_{\iota}\}$ will be determined immediately later. Now consider

$\psi(p)=\int_{G}\theta(g)^{-1}\varphi(gp)dg$ ,

the integral being taken with respect to the Haar measure on $G$ , normalized

as $\int_{G}dg=1$ . Then it is easily verified that $\psi(gp)=\theta(g)\psi(p)$ and that $\psi$ gives

a $C^{s}$-mapping of $M$ into $E^{k}$ . Moreover, since $f$ is equivariant, we obtain

$\psi(p)-f(p)=\int_{G}\theta(g)^{-1}(\varphi(gp)-f(gp))dg$ .

If $\mathcal{E}=\{\epsilon_{\iota}\}$ is taken sufficiently small, the right hand side becomes arbitrarily
small on each $V_{\iota}$ since $\theta(g)$ is in the unitary group and (1) holds. The same
is valid for the derivatives in view of (2). Thus, referring to Theorem $B$ we
can conclude that $\psi$ gives rise to a $C^{s}$-equivariant imbedding of $M$ so that
$\psi(M)$ is a regular $C^{s}$-submanifold of $E^{k}$ . Being a linear group, $\theta(g)$ obviously
operates on $\psi(M)$ as a $C^{s}$-transformation group. This, together with the
equivariance of $\psi$ , yields the fact that $\psi(p)\rightarrow\psi(gp)$ gives a $C^{s}$-mapping in $p$

for each $g\in G$ , and so $x\rightarrow gx$ is a $C^{s}$-mapping on $M$ because $\psi$ is a $C^{s}$-homeo-
morphism. This completes the proof of Theorem 4.

4. Fibre bundles.

PROPOSITION 2. Let $P=P(B, F, G, \pi)$ be a $C^{\omega}- fibre$ -bundle. Assume that
$P$ possesses a $C^{0}$-cross-section $s$ over B. Then there exists a $C^{\omega}$-cross-section
$\sigma$ over $B$ which approximates $s$ arbitrarily well.

PROOF. It is well known that, under the assumption, we have a $C^{\infty}$-cross-
section $ s\sim$ approximating $s$ arbitrarily well. Now $ s\sim$ satisfies $\pi\circ s\sim=identity$ ,

and so $s\sim(B)$ is a regular submanifold of $P$. Regarding $ s\sim$ as a mapping of $B$

into $P$ , apply Theorem A to $ s\sim$ . Then we get a $C^{\omega}$-approximation $\tilde{\sigma}$ to $ s\sim$ up
to order 1. Choosing $\tilde{\sigma}$ properly, we can assume that $\tilde{\sigma}$ satisfies the following
two conditions:

(i) $\tilde{\sigma}$ is a $C^{\omega}$-imbedding of $B$ into $P$ .
(ii) For each $b\in B,$ $\sigma(x)$ is contained in a tubular neighborhood $T(F_{x}))$

where $F_{x}=\pi^{-1}(x)$ .
Let $\tau_{x}$ be a $C^{\omega}$-projection of $T(F_{x})$ onto $F_{x}$ and set $\sigma(x)=\tau_{x}\circ\tilde{\sigma}(x)$ . Then from
(i) and (ii) it follows that $\sigma(x)$ is a $C^{\omega}$-cross-section over $B$ , approximating
$s(x)$ arbitrarily well. This completes the proof.

Corresponding to the unique existence of $C^{\omega}$-structure on any differentiable
manifold, the similar problem on the fibre-bundle level can be described as
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follows: Does any $C^{r}- fibre$ -bundle admit a unique $C^{S}$-bundle-structure, compat-
ible with the given $C^{\gamma}$-bundle-structure, where $ 1\leqq r\leqq s\leqq\omega$ ? In the following,
we wish to give an affirmative answer to this problem. More precisely, the
conclusion of Theorem 5 below shows that the classification problem of $C^{\omega_{-}}$

fibre-bundles is essentially equivalent to that of $C^{0}- fibre$-bundles, which gives
a solution of H. Cartan’s problem [2, p. 90].

First, we state the following theorem for later use.
THEOREM C. Let $M$ and $NbeC^{s}$-manifolds, and $f,$ $g$ be $C^{s}$-mappings from

$M$ into N. Assume that $f$ and $g$ are $C^{0}$ -homotopic. Then $f$ and $g$ are $C^{s}-$

homotopic.
This theorem is essentially due to Whitney [11]. However, for the sake

of completeness, we shall give a proof to it in the appendix according to the
lines of Whitney’s idea.

THEOREM 5. Let $P=P(B, F, G, \pi)$ be a $C^{0}- fibre$ -bundle, where $B$ and $F$ are
$C^{s}$-manifolds. Assume that $G$ operates on $F$ as $C^{s}$-transformation group. Then
$P$ has a unique $C^{s}- fibre$ -bundle structure $\tilde{P}$ which is compatible with the given
structure as $C^{0}- fibre$ -bundle, where $ 1\leqq s\leqq\omega$ .

PROOF. Referring to Proposition 2, we can easily verify that it suffices
to prove the theorem in the case where $G$ is a compact Lie group and $P$ is
a principal fibre bundle $P(B, G, \pi)$ , and so we assume it in the sequel. Now
we shall devide the proof in two parts:

(I) Existence of P. $P$ is induced from a $C^{0}$-mapping of $B$ in a higher-
dimensional classifying space $B$ of $G$ . Alternatively, there is a higher-dimen-
sional universal fibre-bundle $Q=Q(B^{*}, G, \pi^{*})$ and a $C^{0}$-mapping $f$ of $B$ into $B^{*}$

such that $P=f^{*}Q$ . It is known that $Q$ can be chosen so that $Q$ is a $C^{\omega}- fibre-$

bundle. Since $B$ admits the unique $C^{\omega}$-structure, we can apply Theorem A
to the $C^{0}$ -mapping $f$. Then it follows that there is a $C^{s}$-mapping $\varphi$ approxi-
mating $f$ well. Set $\tilde{P}=\varphi^{*}Q$ . $P$ is obviously a $C^{s}- fibre$ -bundle over $B$ . More-
over, since $f$ and $\varphi$ lie near, they are $C^{0}$ -homotopic. Thus $P$ and $\tilde{P}$ are $C^{0_{-}}$

homotopic each other, and a fortiori compatible as $C^{0}$ -bundles.
(II) Uniqueness of $P$ . We first prove that for any $C^{s}- fibre$-bundle $P$

$=P(B, G, \pi)$ there is a $C^{s}$-map $\varphi$ from $B$ into $B^{*}$ such that $P=\varphi^{*}Q$ . As is
well-known, this is essentially equivalent to show the existence of a bundle
map $\psi$ of $P$ into $Q$ . Now if $ s<\omega$ , this result is known. Hence, in particular,
when we simply regard $P$ as $C^{0}- fibre$ bundle $P^{0},$ $P^{0}$ admits a bundle map $\psi^{0}$

of $P^{0}$ into $Q$ .
We assume that $G$ operates on $P$ from the right and on $Q$ from the left.

Consider the associated fibre bundle $E$ of $P$ defined by $E=P\times GQ;E$ consists
of the equivalence classes $(x, y)\sim(xg, g-1y)$ , $(x\in P, y\in Q, g\in G)$ , which is
known to possess the $C^{s}- fibre$-bundle structure over $B$ having the typical fibre
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$Q$ . Let $\sigma(p)(p\in B)$ be a cross-section of $E$. To each $p\sigma(p)$ assigns an equiv-
alence class $(x(p), y(p))\sim(x(p)g, g^{-1}y(p))\pi\circ x(p)=p$ . It follows immediately
that the correspondence $x(p)\rightarrow y(p)$ gives rise to a well defined bundle map
$\tilde{\sigma}(p)$ . Conversely, any bundle map $\tilde{\sigma}$ induces a cross-section of $\sigma^{1)}$ .

Thus $\psi^{0}$ gives a $C^{0}$ -cross-section $\overline{\psi}^{0}$ of $E$ over $B$ . Apply Proposition 2 to
this situation. Then we can find a $C^{s}$-cross-section $\overline{\psi}$ of $E$, which in turn
gives a $C^{s}$-bundle map $\psi$ of $P$ into $Q$ . This however is the desired result.

Now the uniqueness can be proved as follows: Assume that there are
two $C^{s}- fibre$-bundle structures $\tilde{P}_{1},\tilde{P}_{2}$ , both of which have a compatible $C^{0}- fibre-$

bundle structure $P=P(B, G)$ in common. It follows from the above that we
can find $C^{s}$-bundle maps $\psi_{i}$ of $P$ into $Q(i=1,2)$ . Since $\tilde{P}_{1}$ and $\tilde{P}_{2}$ have the
same $C^{0}$ -structure, $\psi_{1}$ and $\psi_{2}$ necessarily becomes $C^{0}$ -homotopic as bundle maps.
In particular, the induced base maps $\varphi_{1}$ of $\psi_{1}$ and $\varphi_{2}$ of $\psi_{2}$ are $C^{0}$-homotopic.
Hence, referring to Theorem $C$, we know that $\varphi_{1}$ and $\varphi_{2}$ are $C^{s}$-homotopic.
Thus $\tilde{P}_{I}=\varphi_{I}^{*}Q$ and $P_{z}=\varphi_{2}^{*}Q$ are $C^{s}$-homotopic, which implies $P_{1}$ and $\tilde{P}_{2}$ are
$C^{s}$-equivalent as fibre bundles. This completes the proof.

Appendix.

In this appendix, we give a proof of Theorem $C$ stated in \S 4. Let $M_{1}$

$=M\times[0,1]$ , and consider a double $\tilde{M}$ of $M_{1}$ [$9$ ; p. 52] ; note that $M\subset\tilde{M}$ and
$\tilde{M}$ has a $C^{s}$-structure naturally induced from $M$. Then $f$ and $g$ given in
Theorem $C$ are regarded as $C^{s}$-mappings of $M\times O$ into $N$, and $M\times 1$ into $N$,
respectively. The assumption that $f$ and $g$ are $C^{0}$ -homotopic implies that they
are extendable over $\tilde{M}$ as $C^{0}$ -mappings. Accordingly, Theorem $C$ is a special
case of the following extension theorem, and a proof will be given in this
theorem:

THEOREM. Let $M$ and $N$ be $C^{s}$-manifolds and let $L$ be a closed $C^{b}$-sub-
manifold of M. Suppose that we have a $C^{r}$-mapping $f$ from $M$ into $N$ such
that $f(p)|L$ gives a $C^{s}$-mapping of $L$ into $N$, where $r$ satisfies $0\leqq r\leqq s$ . Then,

for any positive family $\mathcal{E}$, there exists a $C^{s}$-mapping $\varphi$ from $M$ into $N$ having
the following properties:

(i) $\varphi$ gives an $\mathcal{E}$-approximation to $f$ in order $0$ .
(ii) $\varphi(p)|L=f(p)|L$ .

In case $r=\infty,$ $ s=\omega$, we have a supplementary result as follows: When fgives
a $C^{\omega}$-mapping from a neighborhood $V(L)$ of $L$ into $N$, the condition (i) can be
replaced by

(iii) $\varphi$ gives an 8-approximation to $f$ up to any finite order.
In order to prove this, first we need to generalize Theorem A in case of

1) Professor J. Milnor kindly suggested this fact to the author.
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$C^{\omega}$-manifolds. Here we use the same notations as in \S 1; in particular, the
local coordinate neighborhoods $\{U_{\iota}\},$ $\{V_{\iota}\}$ on $M$ and $\{W_{\lambda}\}$ on $N$ are taken fixed
whenever $f\in C^{r}(M, N)$ is given. We take a metric $\rho(x, y)$ on $M$, such that
$\rho(x, y)\rightarrow\infty$ whenever $y$ tends towards the outside of any compact set. Let $x_{0}$

be any fixed point of $M$. For any given V., we can attach an integer [V,]

as follows: [V.] is the least integer such that $V_{\iota}$ is contained in the ball with
center $x_{0}$ and radius $r$ . While H. Whitney [11] proved the following generali-
zation of Theorem A in a special case where $M$ and $N$ are Euclidean spaces,
the result can be immediately extended to any $C^{\omega}$-manifolds.

THEOREM $A^{\prime}$ . Let $M$ and $N$ be $C^{\omega}$-manifolds. Assume that a $C^{\infty}$-mapping
$f$ of $M$ into $N$ is given. Then for any positive family $\mathcal{E}=\{\epsilon_{\iota}\}_{\iota\in I}$ , there exists
a $C^{\omega}$-mapping $\varphi$ of $M$ into $N$ such that

$\Vert D_{\iota}^{\nu}f-D_{\iota}^{\nu}\varphi\Vert_{V_{\iota}}<\epsilon_{\iota}$

where $1$) $=0,1,2,$ $\cdots$ , [V,]; $\varphi$ satisfies the coincidence condition

$D^{\nu}\varphi(x_{\iota})=D^{\nu}f(x_{l})$ , $1$) $=0,1,$ $\cdots$ , $[V_{\iota}^{(l)}]$ ,

where $x_{1},$ $x_{2}$ , $\cdot$ .. , $\chi_{l}$ , $\cdot$ .. is any sequence of points of $M$ such that $x_{\iota}\in V_{\iota}^{(l)}$ .
PROOF OF THEOREM. We only prove the theorem in case $ s=\omega$ . If $ s\neq\omega$ ,

the similar arguments as in (I) below will establish the theorem.
(I) Imbed $M$ and $N$ into a Euclidean space $E^{k}$ by regular and proper

$C^{\omega}$-mappings, and identify them with the imbedded manifolds. We take and
fix a $C^{\omega}$-Riemannian metric on $M$ and consider a tubular neighborhood $T(L)$

of $L$ in $M$. Let $\pi$ be a $C^{\omega}$-projection of $T(L)$ onto $L$ obtained in a canonical
way. For any given $p\in T(L)$ , we denote by $s(p)$ the length from $p$ to $\pi(p)$

along the normal geodesic passing through $p$ . Letting $\xi(p)$ be a small positive
$C^{\omega}$-function on $L$ , set

$T(L;\xi)=\{p|p\in T(L), s(p)<\xi(p)\}$ .
We may assume that $T(L;\xi)\subset\subset T(L)$ . A $C^{\omega}$-mapping $f$ from $T(L;\xi)$ into $N$

is defined to be $ f\circ\pi$ . Let $g(p)$ be a $C^{\infty}$-mapping from $M$ into $N$ which ap-
proximates $f(p)$ well in order $0$ . Take a $C^{\infty}$-function $\Lambda(t)$ defined on the real
axis such that $\Lambda(t)=0$ for $t\leqq 1/2,$ $\Lambda(t)=1$ for $t\geqq 1$ , and that

$|\Lambda(t)-2(t-\frac{1}{2})|<\delta$ for $\frac{1}{2}\leqq t\leqq 1$ .
Now put

$\tilde{F}(p)=\left\{\begin{array}{l}\tilde{f}(p), if p\in T(L.\cdot\xi/2)\\\Lambda(\frac{3}{2}-\frac{s(p)}{\xi(p)})f(p)+\Lambda(\frac{s(p)}{\xi(p)})g(p), if p\in T(L_{j}\xi)-T(L.\cdot\xi/2)\\g(p), if p\not\in T(L_{j}\xi).\end{array}\right.$
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$\tilde{F}(p)$ gives a $C^{\infty}$-mapping from $M$ into a tubular neighborhood $T(N)$ of $N$ in
$E^{k}$ if $\xi(p)$ and $\delta$ are taken sufficiently small. Let fi be the $C^{\omega}$-projection of
$T(N)$ onto $N$ and set $F(p)=\tilde{\pi}\circ\tilde{F}(p)$ . Then $F$ is a $C^{\infty}$ -mapping from $M$ into
$N$ such that

(a) $F(p)|L=f(p)|L$ .
(b) $F(p)$ is a $C^{v}$-mapping of $T(L;\xi/2)$ into $N$.
(c) $F(p)$ approximates $f$ well in order $0$ whenever $\xi(p)$ and $\delta$ are chosen

small.
We replace $f$ by $F$ in the statement of the theorem and in what follows we
prove (ii) and (iii) of the theorem under the above conditions (a) and (b) of $F$ .
If we know that $F$ satisfies (ii) and (iii), then $f$ necessarily satisfies (i) and
(ii) by virtue of (a) and (c); this however shows the validity of Theorem.

(II) Now we take a metric $\rho$ on $M-L$ such that $\rho(x, y)\rightarrow\infty$ whenever $y$

tends towards the outside of any compact set of $M-L$ . We regard $F$ as a
mapping of $C^{\infty}(M-L, N)$ and apply Theorem $A^{\prime}$ to this situation. Then we
can get $\psi\in C^{\omega}(M-L, N)$ giving an $\mathcal{E}$ -approximation to $F$ up to any finite
order in the sense of Theorem $A^{\prime}$ . Consequently, taking $\mathcal{E}$ properly, we can
assume that each partial derivative of $\psi(p)$ converges rapidly to that of $F(p)$

whenever $p$ tends to a point of $L$ . Since $L$ is a closed submanifold, we may
assume that $\{L\cap V_{\iota}\}$ forms an open covering of local coordinate neighborhoods
on $L$ , which is clearly locally finite. Let $x_{0}\in L$ and suppose that $V_{\iota_{0}}$ contains
$x_{0}$ . Then we can easily verify that

(1)
$\lim_{x\rightarrow x_{0}}D_{\iota}^{\nu_{0}}\psi(x)=D_{t}^{\nu_{0}}F(x_{0})$

, $\iota$) $=0,1,2,$ $\cdots$

Put

$\varphi(p)=\left\{\begin{array}{l}\psi(p),\\F(p),\end{array}\right.$ $forfor$ $p\in M-Lp\in L$

.
Then $\varphi$ is a desired mapping. In fact, it is clear that $\varphi(p)|L=f(p)|L$ by (a),
and that $\varphi$ gives a $C^{\omega}$-mapping from $M-N$ into $N$ ; on the other hand, $F$ has
the property (b) and $\varphi$ satisfies (1) at each point $x_{0}$ of $L$ , which implies that
$\varphi$ gives a $C^{\omega}$-mapping of $M$ into $N$ Finally we note that $\varphi$ approximates $F$

well up to any finite order. This completes the proof of Theorem.
COROLLARY. Let $M$ be a $C^{\omega}$ -manifold and $L$ a closed $C^{\omega}$-submanifold of

M. Then any $C^{\omega}$-function $\varphi$ on $L$ can be extended to a $C^{\omega}$-function $\psi$ on $M$

in such a manner that $\psi$ becomes arbitrarily small outside any neighborhood
of $L$ .
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