
J. Math. Soc. Japan
Vol. 16, No. 1, 1964

On the partial recursive functions of ordinal numbers

Dedicated to Professor Y. Akizuki for his 60th birthday

By Tosiyuki TUGU\’E*

(Received May 15, 1963)

On the basis of a series of Takeuti’s papers [5], [6] and [7], G. TakeutiS
and A. Kino [8] developed the theory of recursive functions of ordinals,

defined by proposing schemata, and that of hierarchy of predicates of ordinals,

built on it, and they obtained various remarkable results. We are interested
in giving a formalism for those functions and in applying it, via arithmeti-
zation, to the investigation of that hierarchy which contributes not only to

the theory of ordinal numbers but also to the effective and classical descrip-

tive set theory (cf., especially, \S \S 7-9 of [8]).

In the meanwhile, M. Machover [4] presented a formal system of recur-
sive functions of ordinal numbers with infinitely many variables. His concept

of a ‘ general recursive function ‘ is a natural extension of that in the case of
natural numbers in a certain sense; however, it is rather what we want to
call ‘ classical ’ and it differs from ours, even if the number of the variablcs
is restricted to be finite.

In this paper, we shall introduce partial recursive functions as an exten-
sion of general recursive functions in the sense of Takeuti-Kino and give a
formal system for them. In much of the symbolism, the notations and ter-
minology, we follow S. C. Kleene [2] or Machover [4]. Let $\omega_{\gamma}$ be an arbitrary,
but fixed, regular initial ordinal. Throughout this paper, by a function we
shall always mean a function (or a functional) with a finite number of argu-
ments ranging over ordinals $<\omega_{\gamma}$ (and with a finite number of function argu-
ments) whose values are also ordinals $<\omega_{r}$ .

In \S 1 we define formally calculable functions by establishing a formalism
of function calculation. Roughly speaking, our system is obtained by adapt-
ing Machover’s system (with infinitistic rules of formation and transformation)
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to make the formation rules finitary.–Accordingly the transformation rules
are also slightly modified (in particular, a new rule is added). In our system,
the transfinite list of particular symbols is assumed to be given in such a
way that each member of the list biuniquely corresponds to each of ordinals
$<\omega_{r}$ , in contrast to Machover’s in which the terms, called numerals, are
formed from the symbols $0$ and ’ as the formal expressions for the ordinals.

In \S 2 we introduce partial recursive functions and show that a partial
recursive function is formaily calculable.

In \S \S 3,4 we assume the axiom of constructibility (’ $V=L$ ’, see K. G\"odel

[1]) and use the results of [6] and [8, \S 3]. We arithmetize, in \S 3, our sys-
tem in the theory of ordinal numbers, and hence we obtain the predicates (of
ordinals), corresponding to the metamathematical concepts such as being a
term, a system of equations, or a deduction from a system of equations, etc.,

as primitive recursive ones. After the arithmetization, we have, in \S 4, the
normal form theorem for the formally calculable functions, from which it
follows that a formally calculable function is partial recursive.

The advantage of the present treatment of recursive functions is that we
have the same predicates $T_{n}(z, x_{1}, \cdots , x_{n}, y)$ (or $T_{n}^{n1n_{l}}$( $w_{1},$ $\cdots$ , $w_{l},$ $z,$ $x_{1},$

$\cdots$ , $x_{n},$ $y$)) as
Kleene has (cf., $e$ . $g.$ , [2]) for the case of number-theoretic functions, via
arithmetization of the formal system, and hence we can develop the theory
of the partial recursive functions and of the hierarchy of predicates analogously
as Kleene did (cf. [2, \S \S 57, 58, 65, 66] and [3]), $i$ . $e$ . for example we have the
recursion theorem, the complete form theorem, etc.

\S 1. Formal calculation of functions of ordinal numbers.

1.1. First of all, we introduce a system for formal calculation of functions.
The primitive symbols of the system are as follows: $=(equals)^{\prime}$ (successor),

$\sup$ (the supremum operator), $v_{0},$ $v_{1},$ $\cdots$ , $v_{n},$
$\cdots$ (variables for ordinals $<\omega_{\gamma}$),

$f_{0},f_{1}$ , $\cdot$ $f_{n}$ , $\cdot$ (function letters), $0_{0}$ (or simply $0$), $0_{1}$ , $\cdot$

, $0_{\alpha}$ , $\cdot$

, for each $\alpha<\omega_{\gamma}$

\langle specified symbols for ordinals).

The lerms are defined by induction as follows:
1. For each $\alpha$ , the symbol $0_{\alpha}$ is a term.
2. A variable is a term.
3. If $r$ is a term, then $r^{\prime}$ is a term.
4. If $r_{1},$

$\cdots$ $r_{n}$ are term $s$ and $f$ is a function letter, then $f(r_{1}, \cdots r_{n})$ is a
term.

5. If $r_{1},$ $r_{2}$ are term $s$ and $x$ is a variable, then $\sup(x, r_{1}, r_{2})$ (we write this
as $\sup_{x<r_{1}}r_{2}$) is a term.

6. The only term $s$ are those given by 1-5.
The terms in the strict sense are the expressions defined by restricting
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the basic clause 1 in the definition of the terms to
1*. $0$ is a term in the strict sense.
An equation (in the strict sense) and a system of equations (in the strict

sense) are defined analogously as by Kleenel). In particular, we say an equa-
tion to be prime, if it is of the form $f(x_{1}, \cdot x_{n})=x$ where $f$ is a function
letter and $x_{1},$

$\cdots$ , $x_{n},$ $x$ are symbols for ordinals. As to the definition of bound
occurrences of variables in a term (in the strict sense) or an equation (in the
strict sense), we refer to [4].

The definitions of ‘ ascent’, ’ supremum of an ascent’ in [4] are adapted
to our case by substituting ‘ symbol for ordinal ’, ‘ prime equation ‘ for ‘ num-
eral ‘, ‘ numerical equation ‘, respectively. Thus, an ascent of length $\alpha(0<\alpha<\omega_{r})$

is a transfinite sequence of $prime^{\vee}$ equations of the forms:
$f(0_{0}, x_{1}, \cdots, x_{n})=x^{(0)}$ ,

(1) $f(0_{1}, x_{1}, \cdots x_{n})=x^{(1)}$ ,

$f(0_{\xi}, x_{1}, \cdots, x_{n})=x^{(\xi)}$ ,

where $\xi<\alpha$ . The supremum of the ascent (1) is the symbol for the least
ordinal which is not smaller than any ordinal for which the symbol is a right-
hand side of a member of the ascent (1). Hereafter we shall write an ascent
\langle 1) as $\{f(O_{\xi}, x_{1}, \cdots , x_{n})=x^{(\xi)}\}_{\xi<\alpha}$ , briefly.

We have four rules of inferences:
$R_{1}$ . To pass from an equation $d$ to the equation $e$ which results from $d$ by

substituting a symbol for an ordinal for a free variable.
$R_{2}$ . To pass from an equation $d$ without free variables to the equation $e$

which results from $d$ by replacing an occurrence of $0_{\alpha}^{\prime}$ by the symbol $0_{a+1}$ .
$R_{3}$ . To pass from an equation $r=s$ without free variables (the major

premise) and a prime equation $h(z_{1}, \cdots , z_{p})=z$ (the minor premise) to the equa-
lion which results from $r=s$ by replacing an occurrence of $h(z_{1}, \cdots , z_{p})$ in $s$ by $z$ .

$R_{4}$ . To pass from an equation $r=s$ (the major premise) and an ascent
$\{h(O_{\xi}, z_{1}, \cdots , z_{p})=z^{(\xi)}\}_{\xi<\alpha}$ (whose members are the minor premises) to the equa-
lion which results from $r=s$ by replacing an occurrence of the term of the form
$\sup_{x<0_{\alpha}}h(x, z_{1}, \cdots , z_{p})$ , where $x$ is a variable, by the supremum of the ascent.

Now, we can define a deduction of an equation $e$ from a system $E$ of equa-
tions (in the sirict sense) in analogy to $[2]^{2)}$ . Here we must remark that our

1) We also use the auxiliary terminology, such as principal function letter ’

s given function letter ’ or ‘ auxiliary function letter ’ of the system $E$ of equations,
taken from [2, \S 54].

2) We also use the auxiliary terminology, such as ‘ principal equation ‘, ‘ principal
$t\supset ranch$ ’ or ‘ contributory deduction ’ in the deduction, taken $f$ rom [2, \S 54].
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transformation is not finitary; in fact the rule $R_{4}$ is infinitistic. Thus, simi-
larly to [4], we also have deductions (in the tree forms) with infinite branch-
ing (but each branch is finite in height).

$\psi_{1},$ $\cdots$ , $\psi_{l}$ are partial functions of $n_{1},$ $\cdots$ , $n_{l}$ variables, respectively. Let
$E_{g^{1}g}^{\psi_{1}.\psi_{l^{l}}}::$. be the set of the prime equations $g_{i}(z_{1}, \cdots , z_{n_{i}})=z$ where $\psi_{i}(z_{1}, \cdots , z_{n_{i}})=z$

for $i=1,2,$ $\cdot-,$
$1$ and all $n_{i}$ -tuples $z_{1}$ , $\cdot$ ..

$z_{n_{i}}$ of ordinals $<\omega_{\gamma}$ for which $\psi_{i}$ is
defined and $z_{1},$

$\cdots$ , $z_{n_{i}},$ $z$ are the symbols for $z_{1},$
$\cdots$ , $z_{n_{i}},$

$z$ , respectively. If $E$ is
a system of equations, in $E$ there may occur symbols, say $a_{1},$

$\cdots$ , $a_{m}$ , for
particular ordinals. In this case, such a system $E$ may be written as
$E(a_{1}, \cdots , a_{m})$ exhibiting the occurrences of the constant ordinals.

We say that a partial function $\varphi$ is formally calculable in $\psi_{1},$ $\cdots$ , $\psi_{l}(l\geqq 0)$

with $n_{1},$ $\cdots,$ $n_{l}$ variables, respectively, if we can find a system $E$ of equations
in the strict sense, with $f$ as the principal function letter and $g_{1},$ $\cdots$ , $g_{l}$ as the
given function letters which are in order of their occurrence in the preas-
signed list of function letters, such that

(2) $E_{g^{1}}::_{\epsilon\iota},$ $E-f(x_{1}, \cdots , x_{n})=x$ , if and only if $f(x_{1}, \cdots , x_{n})=x\in E_{1}^{\varphi}$ ,

where $x_{1},$
$\cdots$ , $x_{n},$ $x$ are symbols for ordinals. In the above, we say following

Kleene’s terminology that $\varphi$ is formally calculable uniformly in $\psi_{1},$ $\cdots$ , $\psi_{\iota}$ if
we can find a system $E$ of equations in the strict sense, independently of the
choice of functions $\psi_{1},$ $\cdots$ , $\varphi_{l}^{\prime}$ except for the number $n_{1},$ $\cdots,$ $n_{l}$ of the variables,
such that (2) holds for any choice of $\psi_{1},$ $\cdots$ , $\psi_{\iota}$ . If $\varphi$ is completely defined
and formally calculable (in the case $l=0$), then $\varphi$ may be called effectively
calculable.

Furthermore, we say that a partial function $\varphi$ is formally calculable in
$\alpha_{1},$ $\cdots\alpha_{m}$ (the constant ordinals) and (uniformly) in $\psi_{1},$ $\cdots$ , $\psi_{\iota}(l\geqq 0)$ if we can
find a system $E(0_{\alpha 1}, \cdots 0_{\alpha_{m}})$ of equations such that we have (2) reading
‘

$E(0_{\mathcal{O}1}, \cdots , 0_{\alpha_{m}})$ in place of ‘ $E’$ .
1.2. For the present system, the counterparts of Lemmata IIb-IIe3) of

Kleene [2, \S 54] hold good, we see, for example, the counterpart of Lemma
IIb as follows.

LEMMA 1. Let $D$ be a set of equations (finite or infinite), $F$ be a system

of equations whose left members contain no function letters which occur in $D$ ,

and $g$ be a function letter occurring in D. Then $D,$ $F-g(y_{1}$ , $\cdot$ .. $y_{p})=y$ where
$y_{1}$ , $\cdot$ .. , $y_{p},$ $y$ are symbols for ordinals, only if $D-g(y_{1}$ , $\cdot$ . , $y_{p})=y$ .

The proof is similar to that given by Kleene, and at the induction step
there does not occur any trouble in the case of application of the new rule $R_{4}$ .

We have also the counterpart of Lemma VI of [2, p. 344]:

3) For the counterpart of Lemma IIe of Kleene, we refer to Theorem 1 of
Machover [4].
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LEMMA 2. If $\lambda x_{1}\cdots x_{n}\varphi(\lambda s_{1} s_{q}\theta(s_{1}, \cdots , s_{q}), \psi_{1}, \cdots, \psi_{l}, x_{1}, \cdots, x_{n})$ is formally
calculable uniformly in functions $\theta,$ $\psi_{1},$

$\cdots,$
$\psi_{l}$ , then $\lambda x_{1}\ldots x_{n}c_{1}\cdots c_{p}\varphi(\lambda s_{1}\ldots$

$s_{q}\theta^{*}(s_{1}$ , $\cdot$ ..
$s_{q},$ $c_{1}$ , $\cdot$ . $c_{p}),$ $\psi_{1}$ , $\cdot$ . $\varphi_{l}^{f},$

$x_{1}$ , $\cdot$ . $x_{n}$) is formally calculable uniformly in
$\theta^{*},$ $\psi_{1},$

$\cdots,$
$\psi_{l}$ .

In fact, if $\lambda x_{1}\cdots x_{n}\varphi(\lambda s_{1} s_{q}\theta(s_{1}, \cdots s_{q}),$ $\psi_{1},$ $\cdots$ , $\psi_{l},$
$x_{1},$

$\cdots$ , $x_{n}$) is formally
calculable uniformly in $\theta,$ $\psi_{1},$ $\cdots$ , $\psi_{\iota}$ , then by the definition there is a system
$E(f:g, g_{1}, \cdot.. g_{\iota}, a_{1}, \cdots, a_{n})$ of equations such that, for any fixed choice of
$\theta,$ $\psi_{1},$

$\cdots,$
$\psi_{l},$ $E_{gg^{1}}^{\theta\psi_{1}}:::_{e^{l}}^{\psi_{l}},$ $E(f:g, g_{1}, \cdots, g_{l}, a_{1}, \cdots, a_{n})\mapsto f(x_{1}, \cdots, x_{n})=x$ where $x_{1},$ $\cdots,$ $x_{n},$ $x$

are symbols for ordinals, if and only if $f(x_{1}, , x_{n})=x\in E_{\iota}^{\lambda x_{1}\cdots x_{n}\varphi(\theta,\psi_{1},\cdots\psi_{l,x_{1},\cdots,x_{n^{)}}}}$ .
Choose $p$ variables, say $c_{1},$ $\cdots,$ $c_{p}$ , not occurring in $E$, and denote by
$E^{T}(f:g, g_{1}, \cdot.. g_{\iota}, a_{1}, \cdot.. a_{n}, c_{1}, \cdot.. c_{p})$ the system resulting from $E$ by changing
simultaneously each part $h(r_{1}, , r_{s})$ where $h$ is a function letter and $r_{1},$

$\cdots$ , $r_{s}$

are terms to $h(r_{1}, \cdots , r_{s}, c_{1}, \cdots, c_{p})$ . Let $\hat{g}_{1},$ $\cdots$ , $\hat{g}_{l}$ be distinct function letters
not occurring in $E$. Let $E^{*}(f:g,\hat{g}_{1}, \hat{g}_{l}, a_{1}, a_{n}, c_{1}, \cdot c_{p})$ be the system
consisting of the equations

$g_{1}(a_{1}, \cdots, a_{n_{1}}, c_{1}, \cdots c_{p})=\hat{g}_{1}(a_{1}, \cdots a_{n})$ ,

$g_{l}(a_{1}, \cdots, a_{n_{l}}, c_{1}, \cdots, c_{p})=\hat{g}_{l}(a_{1}, \cdots, a_{n’})$

and of the equations of $E^{\uparrow}$ .
Then we have

$E_{gi}^{\lambda s_{1}\cdots s_{q}\theta^{*}(s_{1},\cdots,s_{q},c1,\ldots.c_{D_{g_{1}g}^{)\psi_{1}\cdot.\cdot.\cdot.\psi_{l}}}},$ $E\leftarrow f(x_{1}, \cdots, x_{n})=x$

where $x_{1},$ $\cdots,$ $x_{n}$ and $x$ are symbols for ordinals, if and only if

$E_{g\hat{g}1\hat{g}^{l}}^{\theta^{*\psi_{1}.\ldots\psi_{l}}},$ $E^{*}|-f(x_{1}, \cdots, x_{n}, 0_{c_{1}}, \cdots 0_{c_{p}})=x$ ,

for each choice of $\theta^{*},$ $\psi_{1},$ $\cdots\psi_{l},$
$c_{1}$ , , $c_{p}$ . The proof of this is parallel to that

in [2, p. 345], and the argument given there can be also applied to our case
with rules $R_{2},$ $R_{4}$ added.

In particular, we see in course of the proof that the following holds.

$E^{\lambda}S_{1\epsilon_{1}\ldots..s_{q},c_{1},\cdots,c_{?E}})\psi_{1}\cdot.\cdot.\cdot.\emptyset\iota g^{s_{q}\theta^{*}\langle)}g_{1}g_{l}’|-f(x_{1}, \cdots x_{n})=x$ ,

where $x_{1},$ $\cdots x_{n}$ and $x$ are symbols for ordinals, if and only if
(3)

$E_{ta\}g(a_{1}^{1},a_{Q},0_{CJ}}^{\lambda s\cdot.\cdot.\cdot.sq\theta^{*}(s,\cdot\cdot.\cdot s_{Q},c_{1},\cdot\cdot c_{p})}a_{1q}^{1}:\cdot,;_{0_{c_{p^{)}}}}$
$E_{\hat{g}_{1}\cdots g}^{\psi_{1}\cdots\psi_{l^{l}}}\wedge,$ $E^{*_{1}}-f(x_{1}, \cdots.x_{n}, 0_{c_{1}}, \cdots, 0_{c_{p}})=x$ ,

for each choice of $\theta^{*},$ $\psi_{1},$
$\cdots,$

$\psi_{l},$
$c_{1},$

$\cdots$ , $c_{p}$ .

In the above, $E_{ta_{1}\cdot a\}g^{(}(a_{1}^{1},\cdots,a_{Q},0_{c_{1}},\cdots,0_{c_{p^{)}}}}^{\lambda s_{1}\cdot.\cdot.\cdot sq_{q}\theta^{*}s,\cdots,sq,c_{1},\cdots.cp)}$ is the set of the equations $g(y_{1},$
$\cdots,$ $/\iota_{q}$ ,

$0_{c}$ ,, $\cdot$ .. , $0_{c_{p}}$) $=y$ which are in $E_{g}^{\theta^{*}}$ , for each fixed ordinals $c_{1}$ , $\cdot$ .. , $c_{p}$ .
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\S 2. The partial recursive functions and their formal calculability.

2.1. In this section, we use various notations and terminology, which
are given in [8] (in particular, in \S 1 of [8]), without further notice. We
slightly modify the primitive recursive schemata of Takeuti-Kino, but our
modification is not essential.

By the definition given by Takeuti-Kino, a function $\varphi(\psi_{1}, \cdots , \psi_{l}, x_{1}, \cdots, x_{n})$ .
$wh\circ.rel\geqq 0$ and $n>0$ , i.s primitive recursive, if it is introduced by a finite
series of applications of the following schemata $(I)-(XIII)$ , where $\psi,$ $\psi_{1},$

$\cdots,$
$\varphi_{l}^{(}$

are function variables, $\chi,$ $\chi_{1},$
$\cdots$ , $\chi_{m}$ are previously introduced functions and

$m>0$ :
(I) $\varphi(x)=x^{\prime}$ .

(IIa) $\varphi(x)=0$ . (IIb) $\varphi(x)=\omega$ .

(III) $\varphi(x)=x$ .

(IV) $\varphi(x, y)=I_{q}(x, y)$ .

(V) $\varphi(x, y)=\max(x, y)$ .
(VI) $\varphi(x, y)=j(x, y)$ .

(VIIa) $\varphi(x)=g^{1}(x)$ . (VIIb) $\varphi(x)=g^{2}(x)$ .
(VIII) $\varphi(\psi, x_{1}, \cdots x_{n})=\psi(x_{1}, \cdots , x_{n})$ .
(IX) $\varphi(\psi_{1}, \cdots \psi_{l}, x_{1}, \cdots, x_{n})=\chi(\psi_{1},$

$\cdots,$
$\psi_{l},$ $\chi_{1}(\psi_{1}, \cdots \psi_{l}, x_{1}, \cdots, x_{n})$ ,

... $\chi_{m}(\psi_{1}, \cdots, \psi_{l}, x_{1}, \cdots, x_{n}))$ .
(Xa) $\varphi(\psi_{1}, \cdots\psi_{\iota}, x_{1}, \cdots, x_{n}. x)=\chi(\psi_{1}, \cdots, \psi_{l}, x_{1}, \cdots, x_{n})$ .
(Xb) $\varphi(\psi_{1}, \cdots\psi_{l}, x, x_{1}, \cdots, x_{n})=\chi(\psi_{1}, \cdots, \psi_{\iota}, x_{1}, \cdots, x_{n})$ .

(XIa) $\varphi(\psi_{1}, \cdots , \psi_{l}, \psi, x_{1}, \cdots , x_{n})=\chi(\psi_{1}, \cdots , \psi_{\iota}, x_{1}, \cdots, x_{n})$ .

(XIb) $\varphi(\psi, \psi_{1}, \cdots , \psi_{l}, x_{1}, \cdots , x_{n})=\chi(\psi_{1}, \cdots, \psi_{l}, x_{1}, \cdots , x_{n})$ .

(X1I) $\varphi(\psi_{1}, \cdots\psi_{l}, x_{1}, \cdots , x_{n}, x)=\mu z_{z<x}[\chi(\psi_{1}, \cdots. \psi_{l}, x_{1}, \cdots, x_{n}, z)=0]$ ,

where $\mu z_{z<x}R(\cdots, z)$ is the least ordinal $z<x$ such that $R(\cdots, z)$ if $(Ez)_{z<x}R(\cdots, z)$

and $\chi$ otherwise.

(XIII) $\varphi(\psi_{1}, \cdots , \psi_{l}, x, x_{1}, \cdots , x_{n})=C(\lambda z\varphi^{x}(\psi_{1}, \cdots \psi_{l}, z, x_{1}, \cdots x_{n})$ .
$\psi_{I\prime}\cdots\psi_{l},$ $x,$ $x_{1},$ $\cdots x_{n}$),

where $C(\psi, \psi_{1}, \cdot.. \psi_{\iota}, x, x_{1}, \cdot.. x_{n})$ is a function combination and $\psi$ is a function
variable of one argument.

A function $conr\supset inationC(\psi_{1}$ , $\cdot$ .. , $\psi_{l},$
$x_{1}$ , $\cdot$ .. $x_{n})$ , an expression for the am-

biguous value of a function, can be defined by induction so that it is con-
structed syntactically from some of the ordinal number variables $x_{1}$ . $\cdots$ . $x_{n}$ ,
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some of the function variables $\psi_{1},$ $\cdots$ , $\psi_{l}$ , the constants: $0,$ $\omega,$ $l_{q},$ $\max,$ $j,$ $g^{1},g^{2}$ ,

the operators: ‘, $\mu z_{z<x}$ , and functions introduced by the application of Schema
(XIII) to previously constructed function combinations, without the use of
$\lambda$ -notation (cf. [2, \S 44]).

Now, we take Schema (XIII’) in place of (XIII), as follows:

(XIII’) $\varphi(\psi_{i}, \cdots , \psi_{l}, x, x_{1}, \cdots , x_{n})=\chi(\lambda z\varphi^{x}(\psi_{1}, \cdots, \psi_{l}, z, x_{1}, \cdots , x_{n})$ ,

$\psi_{1},$
$\cdots,$

$\psi_{\iota},$ $x,$ $x_{1},$ $\cdots x_{n}$),

where $\chi(\psi, \psi_{1}, \cdots\psi_{l}, x, x_{1}, \cdots , x_{n})$ is a previously introduced function and $\psi$ is
a function variable with one argument. Then we can define the concept of a
primitive recursive description of a function $\varphi(\psi_{1}, \cdots , \psi_{\iota}, x_{1}, \cdots x_{n})$ in terms
of Schemata $(I)-(XII)$ and (XIII’), and we have:

A function $\varphi(\psi_{1}, \cdots , \psi_{l}, x_{1}, \cdots , x_{n})$ is primitive recursive in the preceding
sense, if and only if there is a primitive recursive description of $\varphi$ in terms of
Schemata $(I)-(XII)$ and (XIII’).

PROOF. Given a primitive recursive function $\varphi$ , we show by inductiofi on
the number of applications of Schemata $(I)-(XIII)$ that there exists a primitive
recursive description of $\varphi$ . For this, it will suffice to treat only the case for
the schema (XIII) of transfinite recursion. Let $\varphi(\psi_{1}, \cdots\psi_{\iota}, x, x_{1}, \cdots, x_{n})$

$=C(\lambda z\varphi^{x}(\psi_{1}, \cdots , \psi_{\iota}, z, x_{1}, \cdots, x_{n}), \psi_{1}, \cdots\psi_{\iota}, x, x_{1}, \cdots, x_{n})$ where $C(\psi,$ $\psi_{1},$ $\cdots$ , $\psi_{l},$ $x,$ $x_{1}$ ,
$x_{n})$ is a function combination, and assume that the previously by $(XIII)($

inrroduced functions, which are used to construct $C$ , are exactly $\xi_{1},$ $\cdots$ , $\xi_{j}$ .
Put $\chi(\psi, \psi_{1}, \cdots , \psi_{l}, x, x_{1}, \cdots , x_{n})=C(\psi, \psi_{1}, \psi_{\iota}, x, x_{1}, ,.. , x_{n})$ . Then similarly to
$\# A$ of [2, p. 224] (also cf. [2, \S 44, Example 1, p. 221]), we obtain a primitive $\cdot$

recursive derivation of $\chi$ from $\varphi_{1}^{\prime}$ , $\cdot$ .. $\psi_{\iota}$ , say in order of $\xi_{1}$ , $\cdot$ $\xi_{j}$ :

(4) $\varphi_{1},$ $\cdots,$ $\varphi_{n_{1}},$
$\xi_{1},$

$\cdots,$ $\varphi_{n_{2}},$
$\xi_{2},$

$\cdots,$ $\varphi_{nf},$ $\xi_{j},$
$\cdots,$ $\chi$

with a fixed analysis4) where Schemata $(I)-(XII)$ are applied.
Now by the hypothesis of the induction, there is a primitive recnrsive“

description $\varphi_{t1},$
$\cdots$ , $\varphi_{ik_{i}}(=\xi_{i})$ , for each $i=1,$ $\cdots$ , $j$ . In (4) we replace each func-

tion $\xi_{i}$ by the sequence $\varphi_{i1},$
$\cdots$ , $\varphi_{ik_{i}}$ , and supply $\varphi$ as the last. The resulting

sequence is a (probably redundant) primitive recursive description of $\varphi$ in
terms of $(I)-(XII)$ and (XIII’).

Conversely, given a primitive recursive description $\varphi_{1},$ $\cdots$ , $\varphi_{k}(=\varphi)$ , we
show by course-of-values induction on the length $k$ of the description that $\varphi$

is primitive recursive (i. e. definable by a series of applications of Schemata
$(I)-(XIII))$ ; at the same time we shall see that $\varphi$ is expressible as a function
combination.

Cases 1-8: $\varphi$ is introduced by one of Schemata $(I)-(VlII)$ . These cases

4) Cf. [2, p. 234]
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are trivial. In fact, say $\varphi(x, y)=\max(x, y)$ by (V), where $\max(x, \gamma)$ is a func-
tion combination by itself.

Case 9: $\varphi(\psi_{1}, \cdots, \psi_{l}, x_{1}, \cdots, x_{n})=\chi(\psi_{1},$ $\cdots$ , $\psi_{l},$ $\chi_{1}(\psi_{1}, \cdots , \psi_{\iota}, x_{1}, \cdots , x_{n}),$
$\cdots,$

$\chi_{m}(\psi_{1}$ ,
.. $\psi_{l},$ $x$ , $\cdot$

$x_{n}$)) by Schema (IX), where $\chi,$ $\chi_{1}$ , $\cdot$

$\chi_{m}$ precede $\varphi(=\varphi_{k})$ in the
description. Then by the hypothesis of the induction $\varphi$ is primitive recursive.
Also assume as the hypothesis of the induction that there are function com-
binations expressing $\chi,$ $\chi_{1},$

$\cdots$ , $\chi_{m}$ , denoted by $C(\psi_{1}, \cdots \psi_{l}, y_{1}, y_{m}),$ $C_{1}(\psi_{1},$ $\cdots$ ,
$\psi_{l},$

$x_{1},$
$\cdots$ , $x_{n}$), $\cdots$ , $C_{m}(\psi_{1}, \cdots, \psi_{l}, x_{1}, \cdots , x_{n})$ , respectively. Then $\varphi$ is expressible as

the function combination $C(\psi_{1},\cdots, \psi_{l}, C_{1}(\psi_{1},\cdots, \psi_{\iota}, x_{1},\cdots, x_{n}),\cdots, C_{m}(\psi_{1},\cdots, \psi_{\iota}, x_{1},\cdots, x_{n}))$ .
Case 10: $\varphi(\psi_{1}, \cdots , \psi,, x_{1}, \cdots , x_{n}, x)=\chi(\psi_{1},$

$\cdots,$
$(b_{\iota}, x_{1}, \cdots, x_{n})$ or $\varphi(\psi_{1},$

$\cdots,$
$\psi_{\iota},$ $x,$ $x_{1}$ ,

... $x_{n}$) $=\chi(\psi_{1} . \psi_{l}, x_{1}, \cdot.. x_{n})$ by Schema (X), where $\chi$ precedes $\varphi$ in the des-
cription. Assume as the hypothesis of the induction that $\chi$ is expressible as
a function combination $C(\psi_{1}, \cdot. \psi_{\iota}, x_{1}, \cdot x_{n})$ . Then $C(\psi_{1}, \cdot \psi_{\iota}, x_{1}, \cdot. x_{n})$ is a
function combination expressing $\varphi(\psi_{1}, \cdots , \psi_{\iota}, x_{1}, \cdots , x_{n}, x)$ (or $\varphi(\psi_{1},$ $\cdots$ , $\psi_{\iota},$ $x,$ $x_{1}$ ,

... , $x_{n}$)) by itself, and is also denoted by $C(\psi_{1}, \cdots , \psi_{l}, x_{1}, \cdots , x_{n}, x)$ (or $C(\psi_{1},$ $\cdots$ ,
$\psi_{l},$ $x,$ $x_{1},$ $\cdots,$ $x_{n}$)).

Case 11: Similar to the case 10.
Case 12: $\varphi(\psi_{1}, \cdots , \psi_{\iota}, x_{1}, \cdots , x_{n}, x)=\mu z_{z<x}[\chi(\psi_{1}, \cdots \psi_{\iota}, X_{1}, \cdots x_{n}, z)=0]$ by

Schema (XII), where $\chi$ precedes $\varphi$ in the description. Assume as the hypothesis
of the induction that $\chi$ is primitive recursive and is expressible as a function
combination, denoted by $C(\psi_{1}, \cdots , \psi_{\iota}, x_{1}, \cdots x_{n}, z)$ . Then by the definition, $\varphi$ is
primitive recursive. The function combination $\mu z_{z<}{}_{x}C(\psi_{1}, \cdots \psi_{\iota}, x_{1}, \cdots , x_{n}, z)$

expresses the ambiguous value of $\varphi$ .
Case 13: $\varphi(\psi_{1}, \cdots, \psi_{\iota}, x, x_{1}, \cdots, x_{n})=\chi(\lambda z\varphi^{x}(\psi_{1}, \cdots, \psi_{\iota}, z, x_{1}, \cdots, x_{n}),$ $\psi_{1},$

$\cdots,$
$\psi_{l},$ $x,$ $x_{1}$ ,

... , $x_{n}$) by Schema (XIII), where $\chi(\psi, \psi_{1}, \cdot. , \psi_{l}, x, x_{1}, \cdot. , x_{n})$ precedes $\varphi$ in
$\varphi_{1},$ $\cdots$ , $\varphi_{k}(=\varphi)$ . Assume as the hypothesis of the induction that $\chi$ is expressible
as a function combination, denoted by $C(\psi, \psi_{1}, \cdots , \psi_{l}, x, x_{1}, \cdots , x_{n})$ . Then, for
each fixed choice of $\psi_{1},$ $\cdots$ , $\psi_{l}$ and $x_{1},\cdots,$ $x_{n}$ , we see by transfinite induction on $x$ :

$\varphi(\psi_{1}, \cdots, \psi_{\iota}, x, x_{1}, \cdots, x_{n})=C(\text{{\it \‘{A}}} z\varphi^{x}(\psi_{1}, \cdots, \psi_{\iota}, z, x_{1}, \cdots, x_{n}), \psi_{1}, \cdots, \psi_{\iota}, x, x_{1}, \cdots, x_{n})$

Thus, $\varphi$ can be introduced by Schema (XIII), and $\varphi(\psi_{1}, \cdot , \psi_{l}, x_{1}, \cdot, x_{n})$ is a
function combination itself. Q. E. D.

Now we define the partial recursive functions. For this, we rewrite
Schemata $(I)-(XII),$ (XIII) with $‘\simeq 5$ ) in place of $‘=‘,$ except for $‘=’$ in the
bracket $[]$ on the right-hand side of Schema (XII), and let $\psi,$ $\psi_{1}$ , $\cdot$ , $\psi_{\iota}$ range
over the partial functions. Here we use the interpretation that $\mu z_{z<x}[\chi(\psi_{1},$ $\cdots$ ,
$\psi_{l},$

$x_{1},$ $\cdots$ $x_{n},$ $z$) $=0$] is defined if and only if $(z)_{z<x}[\chi(\psi_{1}, \cdots , \psi_{l}, x_{1}, \cdots , x_{n}, z)$ is
defined] (likewise for the partial predicates $(Ez)_{z<x}[\chi(\psi_{1}, \cdots , \psi_{\iota}, x_{1}, \cdots x_{n}, z)=0]$ ,

5) See, $e$ . $g$ . $[2$ , \S 63 $]$ .
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$(z)_{z<x}[\chi(\psi_{1}, \cdots , \psi_{l}, x_{1}, \cdots , x_{n}, z)=0])$ but in (XIII) $\varphi^{x}(\psi_{1}, \cdots , \psi_{l}, z, x_{1}, \cdots , x_{n})$ is
undefined exactly if $z<x$ A [ $\varphi$ ( $\psi_{1},$

$\cdots,$
$\psi_{l},$ $z,$ $x_{1},$

$\cdots$ , $x_{n}$) is undefined] where

$\varphi^{x}(\psi_{1}, \cdots, \psi_{l};z, x, \cdots, x)\simeq\{0\varphi(\psi_{1}, \cdots, \psi_{l}, z, x_{1}, \cdots, x_{n})$

if $z<x$ ,

otherwise.

To those schemata we add further

(XIV) $\varphi(\psi_{1}, \cdots , \psi_{\iota}, x_{1}, \cdots , x_{n})\simeq\mu z[\chi(\psi_{1}, \cdots , \psi_{\iota}, x_{1}, \cdots , x_{n}, z)=0]$

under the interpretation that $\mu z[\chi(\psi_{1}, \cdots , \psi_{\iota}, x_{1}, \cdots , x_{n}, z)=0]$ is defined if and
only if $(Ez)[\chi(\psi_{1}, \cdots , \psi_{\iota}, x_{1}, \cdots , x_{n}, z)=0$ A $(t)_{i\leqq z}[\chi(\psi_{1}, \cdots , \psi_{l}, x_{1}, \cdots , x_{n}, t)$ is de-
fined]].

A function $\varphi(\psi_{1}, \cdots, \psi_{\iota}, x_{1}, \cdots, x_{n})$ is partial recursive, if there is a partial
recursive description of it in terms of Schemata $(I)-(XII),$ $(XIII^{\prime})$ and (XIV).

A partial recursive function $\varphi(\psi_{1}, \cdots, \psi_{l}, x_{1}, \cdots , x_{n})$ , where $\psi_{1},$ $\cdots$ , $\psi_{\iota}$ range over
the completely defined functions, is general recursive, if it is defined for all
the values of arguments.

We also call a function $\varphi(\psi_{1}$ , $\cdot$ .. , $\psi_{l},$
$x_{1}$ , $\cdot$ .. , $x_{n})$ , where $1\geqq 0$ and $n>0$ , prim-

itive, partial (general) recursive in the classical sense, if it can be introduced
by adding a schema:

(0) $\varphi(x)=\alpha$ ,

where $\alpha$ is a constant ordinal $<\omega_{\gamma}$ , to the primitive, partial recursive schemata,
respectively. Then, if a function $\varphi(\psi_{1}, \cdots , \psi_{l}, x_{1}, \cdots , x_{n})$ is primitive (or partial,
general) recursive in the classical sense, a finite number of constant ordinals,

say $\alpha_{1}$ , $\cdot$ .. $\alpha_{m}$ , are used in the definition of $\varphi$ . We say for such a function to
be primitive (resp. partial, general) recursive in $\alpha_{1},$ $\cdots\alpha_{m}$ .

2.2. To argue the formal calculability of the partial recursive functions,

we begin by showing the effective calculability of some particular primitive
recursive functions.

Let $S$ denote a system of equations of the forms $s(a, O)=a,$ $h_{1}(c, a)=s(a, c)^{\prime}$

and $s(a, b)=\sup_{\angle}h(z, a),$ $M$ a system consisting of the equations of $S$ and of
equations of the forms $m(a, 0)=0,$ $h_{2}(c, a)=s(m(a, c),$ $a$) and $m(a, b)=\sup h(z, a)$ ,

where $s$ is the principal function letter of $S$ , and $R$ a system consisting of
the equations of $M$ and of equations of the forms $r(a, 0)=0^{\prime},$ $h_{3}(c, a)=m(r(a, c),$ $a$)

and r(a, b) $=\sup_{z<}1h_{3}(z, a)$ , where $m$ is the principal function letter of $M$.
Then by transfinite induction on $y$ (for (6), (7), using Lemma 1, succes-

sively) we see easily:

(5) $S-s(0_{x}, 0_{y})=0_{z}$ if and only if $x+y=z$ for any ordinals $x,$ $y$ and $z$ .

(6) $M|-m(0_{x}, 0_{y})=0_{z}$ if and only if $x\cdot y=z$ for any ordinals $x,$ $y$ and $z$ .
(7) $R-r(0_{x}, 0_{y})=0_{z}$ if and only if $x^{y}=z$ for any ordinals $x,$ $y$ and 2
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Now we choose function letters $f,$ $g$ and $h$ which do not occur in $R$ , and
consider $E$ consisting of the equations of $R$ , whose principal function letter
is $r$ , and of equations of the forms:

$h(z, a_{1}, \cdots , a_{n})=r(0, g(a_{1}, \cdots , a_{n}, z)),$ $f(a_{1}, \cdots a_{n}, 0)=0^{\prime}$

$f(a_{1}, \cdots , a_{n}, a)=r$( $O$ , sup.$<ah$( $z,$ $a_{1},$
$\cdots$ , $a_{n}$)).

Let $\psi(x_{1}, \cdot. x_{n}, z)$ be a given function. By (7) we see easily that for any
ordinals $x_{1},$

$\cdots$ , $x_{n},$ $x$

$E_{g}^{\psi},$ $E\mapsto f(0_{x_{1}}, \cdots , 0_{x_{n}}, 0_{x})=0_{y}$

only for $y=0$ or 1 ; because to deduce $f(0_{x_{1}}, \cdot.. , 0_{x_{n}}, 0_{x})=0_{?1}$ , for any symbol
$0_{y}$ , we must use $f(a_{1}, \cdot , a_{n}, a)=r(0, \sup_{z<a}h(z. a_{1}, \cdot.. , a_{n}))$ as the principal equa-
tion, and we have by Lemma 1 that, for any ordinals $v$ and $w,$ $r(O, O.)=0$. is
deducible from the equations of $R$ only, hence $0^{\tau)}=w$ . Moreover, we see the
following

LEMMA 3. For any ordinals $x_{1}$ , $\cdot$ .
$\chi_{n}$ and $x$ ,

$E_{g}^{\psi},$ $E-f(0_{x_{1}}, \cdots , 0_{x_{n}}, 0_{x})=0$

if and only if $(Ez)_{z<x}[\psi(x_{1}, \cdots , x_{n}, z)=0]$ .
PROOF. Consider any $n+1$ ordinals $x_{1},$

$\cdots$ , $x_{n},$ $x$ and assume $(Ex)_{z<x}[\psi(x_{1}$ ,

$x_{n},$ $z$) $=0$]. Then for every $z<x,$ $\psi(x_{1}, \cdot. x_{n}, z)$ is defined and there is an
ordinal $b<x$ such that $\psi(x_{1}, \cdots , x_{n}, b)=0$ . Hence, $g(0_{x_{1}}, \cdots , 0_{x_{n}}, 0_{z})=0_{y}\in E_{g}^{\psi}$ for
every $z<x$ and some $y$ , and in particular $g(0_{x_{1}}, \cdot 0_{x_{n}}, 0_{b})=0\in E_{Si}^{\psi}$ for that
ordinal $b$ . Now we choose the equation $f(a_{1}, \cdots , a_{n}, a)=r(O, \sup_{7<a}h(z, a_{1}, \cdots , a_{n}))$

and apply the rule $R_{1}$ successively to obtain

(8) $f(0_{x_{1}}, \cdots , 0_{x_{n}}, 0_{x})=r(0, \sup_{z<0_{x}}h(z, 0_{x_{1}}, \cdots , 0_{x_{n}}))$ .

At this position, we establish the contributory deductions of the minor
premises for the application of $R_{4}$ . Using the equation $h(z, a_{1}, \cdots , a_{n})=r(0$ ,
$g(a_{1}, \cdots , a_{n}, z))$ , and applying $R_{1}$ to substitute the respective symbols corre-
sponding to the ordinals $x_{1},$ $\cdots$ , $x_{n}$ and each ordinal $z<x$ for the variables
$a_{1},$ $\cdots$ , $a_{n},$ $z$ , respectively, we obtain the equations $h(0_{z}, 0_{x_{1}}, \cdots , 0_{x_{n}})=r(0,$ $g(0_{x_{1}}$ ,
... , $0_{x_{n}},$ $0_{z}$)). From each of the latters it results $h(0_{z}, 0_{x_{1}}, , , 0_{x_{n}})=r(0,0_{y})$ by
the rule $R_{3}$ with $g(0_{x_{1}}, \cdots , 0_{x_{n}}, 0_{z})=0_{\iota}$, in $E^{\psi}$ as a minor premise. In particular,
$h(0_{b}, 0_{x_{1}}, \cdot.. , 0_{x_{n}})=r(0,0)$ is deducible. On the other hand, by (7) there is a
deduction of $r(0,0_{y})=0_{0^{y}}$ from the equations of $R$ for any ordinal $y$ , where
$0_{0^{y}}$ is the symbol corresponding to 1 or $0$ according to $y=0$ or $y>0$ . By $R_{8}$

we then have an ascent

(9) $\{h(0_{z}, 0_{x_{1}}, \cdots, 0_{x_{n}})=0_{0^{y}}\}_{z<x}$ .
This includes a prime equation $h(\backslash \prime_{\backslash })_{b},$ $0_{x_{1}},$ $\cdots$ , $0_{x_{n}}$) $=0_{1}$ , so the supremum of it
is $0_{1}$ .
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Now, we can use $R_{4}$ with (8) as the major premise and (9) as the minor
premises to deduce $f(0_{x_{1}}, \cdots, 0_{x_{n}}, 0_{x})=r(0,0_{1})$ , which implies $f(0_{x_{1}}, \cdots , 0_{x_{\eta}}, 0_{x})=0$

by $R_{3}$ , since by (7) $R\mapsto r(O, 0_{1})=0$ .
Conversely, to deduce $f(0_{x_{1}}, \cdots , 0_{x_{n}}, 0_{x})=0$ from $E$ we must use the same

principal equation and the same substitutions as above. Hence $r(O$ , sup. $<0_{x}h(z,$ $0_{x_{1}}$ ,

... , $0_{x_{n}}$)) must be replaced by $0$ in consequence of a series of applying rules
and of using further equations of $E$ . By (7) and Lemma 1, we see easily
that for all $z<xh(0_{z}, 0_{x_{1}}, \cdots , 0_{x_{n}})=0_{y}$ must be infered, including at least one
of prime equation with $0_{v}$ for $y>0$ as the right member. Here, to deduce
$h(0_{z}, 0_{x_{1}}, \cdots , 0_{x_{n}})=0_{y}$ for any $z<x$ and $y$ we must use the equation $h(z, a_{1}, \cdots , a_{n})$

$=r(0, g(a_{1}, \cdots , a_{n}, z))$ and the equations $g(0_{x_{1}}, \cdots, 0_{x_{n}}, 0_{z})=0_{y}$ , whence $g(0_{x_{1}}$ , $\cdot$ ,

$0_{x_{n}},$ $0_{z}$) $=0_{y}\in E_{g}^{\psi}$ ; in particular, as is easily seen from (7) and Lemma 1,
$g(0_{x_{1}}, \cdots , 0_{x_{n}}, 0_{z})=0$ for some ordinal $z$ must belong to $E^{\psi}$ . The latters imply
that $\psi(x_{1}, \cdot.. , x_{n}, z)$ are all defined for $z<x$ and $\psi(x_{1}, \cdot.. , x_{n}, z)=0$ for some
ordinal $z<x$ . Thus we have $(Ez)_{z<x}[\psi(x_{1}, \cdots , x_{n}, z)=0]$ .

In the above, we saw that the system $E$ of equations defines the represent-
ing function of $(Ez)_{z<x}[\psi(x_{1}, \cdots , x_{n}, z)=0]$ as a function formally calculable in
$\psi$ . Then we may write such a system as

(10) $E(f, \exists z<ag(a_{1}, \cdots , a_{n}, z))$ ,

where $f,$ $g$ denote the principal, given function letters, respectively.
Dually (or more easily), we have a system of equations which may be

written for the sake of brevity as

(11) $E(f, \forall z<ag(a_{1}, \cdots, a_{n}, z))$ ,

where $f,$ $g$ denote the principal, given function letters, respectively, and which
defines the representing function of the partial predicate $(z)_{z<x}[\psi(x_{1}, \cdots , x_{n}, z)$

$=0]$ as a function formally calculable from $\psi$ .
LEMMA 4. $\mu z_{z<x}[\psi(x_{1}, \cdots , x_{n}, z)=0]$ is formally calculable in $\psi$ .
Indeed, $f,$ $g,$ $h_{1},$ $h_{2},$ $s$ being distinct function letters, we consider the system

$E(h_{1}, \exists x<zg(a_{1}, \cdot.. a_{n}, x))$ of equations taken in such a way that $s$ is the
principal function letter of its subsystem $S$ and $f,$ $h_{2}$ do not occur in it, fol-
lowed by the equations of the forms: $f(a_{1}, \cdots, a_{n}, 0)=0,$ $h_{2}(z, a_{1}, \cdots, a_{n})=s(f(a_{1}$ ,
... , $a_{n},$ $z$), $h_{1}(a_{1}, \cdots, a_{n}, z^{\prime}))$ and $f(a_{1}, \cdots, a_{n}, a)=\sup_{z\mathfrak{Q}}h_{2}(z, a_{1}, \cdots, a_{n})$ . We shall
denote it by $E(f, \mu z<ag(a_{1}, a_{n}, z))$ . Then by (5), Lemma 1 and 3, we have
that, for any ordinals $\chi_{1}$ . . , $\chi_{n}\chi$ and $y$ ,

$E_{g}^{\psi},$ $E(f, \mu z<ag(a_{1}, \cdots, a_{n}, z))-f(0_{x_{1}}, \cdots , 0_{x_{n}}, 0_{x})=0_{y}$ ,

if and only if $\mu y_{y<z}[\psi(x_{1}, \cdots , x_{n}, z)=0]$ is defined and its value is $y$ (the informal
reasoning for the case of number-theoretic functions in [2, 228-229] suggests
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the present proof).
Next, let $f,$ $g,$ $h_{1},$ $h_{2}$ be distinct function letters. We take the system con-

sisting of the equations of $E(h_{1}, \exists x<zg(a_{1}, \cdots , a_{n}, x))$ , chosen in such a way
that it does not contain $f,$ $h_{2}$ , and of the equations of the forms:

$h_{2}(0^{\prime}, 0, z)=z$ ,

$f(a_{1}, \cdots , a_{n})=h_{2}(h_{1}(a_{1}, \cdots , a_{n}, z), h(a_{1}, \cdots , a_{n}, z^{\prime}), z)$ ,

and denote it by $E(f, \mu zg(a_{1}, \cdot. a_{n}, z))$ . Then, we have the following lemma,
the proof of which is obtained similarly to [2, 279-281] by using Lemmata
1, 3:

LEMMA 5. $E_{g}^{\psi},$ $E(f, \mu zg(a_{1}, \cdot.. a_{n}, z))|-f(0_{x_{1}}$ , $\cdot$ .. $0_{x_{n}})=0_{y}$ if and only $iJ$

$(Ez)$[ $(t)_{c\leqq z}(\psi(x_{1},\cdots,$ $x_{n},$ $t)$ is defined) A $\psi(x_{1},\cdots$ , $x_{n},$ $z)\simeq O$], where $y\simeq\mu z[\psi(x_{1},\cdots, x_{n}, z)$

$=0]$ .
This shows that the function $\mu z[\psi(x_{1}, \cdots x_{n}, z)=0]$ is formally calculable

in $\psi$ .
2.3. LEMMA 6. The functions \‘Ax $\cdot$ $x^{\prime},$ $\lambda x\cdot 0,$ $\lambda x\cdot\omega,$ $\lambda x\cdot x,$ \‘AxyIq(x,y),

$\lambda xy\max(x, y),$ $\lambda xyj(x,y),$ $\lambda xg^{1}(x)$ and $\lambda xg^{2}(x)$ are all effectively calculable.
PROOF. For the functions $\lambda x\cdot x^{\prime},$ $\lambda x\cdot 0,$ \‘Ax $\cdot$ $x$ , we have immediately the

systems $E_{J},$ $E_{IIa},$ $E_{II1}$ of equations (each of them consists of one single equa-
tion), by translating Schemata (I), (IIa), (III), respectively, into the formalism,

so that each of them defines the corresponding one as a effectively calculable
function.

Let $f,$ $h_{1},$ $h_{2},$ $r$ be distinct function letters. We choose $R,$ $E(h_{2}, \forall x<ah_{1}(y, x))$ ,
$E(f, \exists y<bh_{2}(a, y))$ in such a way that the auxiliary function letters of each
of them be distinct from those of the others and from $f,$ $h_{1},$ $h_{2},$ $r$ and that the
principal function letter of $R$ be $r$ . Denote by $E(f, <)$ the system consisting
of the equations of $R,$ $f(O, b)=r(O, b),$ $h_{1}(y, x)=f(x, y)$ , the equations of $E(h_{2}$ ,

$\forall x<ah_{1}(y, x))$ and $E(f, \exists y<bh_{2}(a, y))$ , in the order exhibited. As it is easily
seen, the following recursion holds:

$Iq(0, b)=0^{b}$ ,

$Iq(a, b)=\{01$
if $(Ey)_{y<b}(x)_{x<a}[Iq(x,y)=0]$ ,

otherwise .
By (7), Lemma 3 and its dual and using Lemma 1, this informal argument
suggests the proof that

$E(f, <)|-f(0_{x}, 0_{y})=0_{z}$ if and only if $Iq(x,y)=z$

and hence $\lambda xyIq(x,y)$ is effectively calculable.
Using this, the dual of Lemma 3, Lemma 5 and Lemma 1 (or using the

counterpart of Lemma IIe of [2, \S 54]), we see that \‘Ax $\cdot$ $\omega$ is also effectively
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calculable. In fact, $E_{Ib}$ : the equations of $E(h_{1}, <),$ $h_{2}(a, x, y)=h_{1}(y^{\prime}, x)$ , the
equations of $E(h_{3}, \forall y<xh_{2}(a, x, y))$ , deleted the equation $h_{3}(a, 0)=0$ , and the
equations of $E(f, \mu xh_{3}(a, x))$ (with the same conditions as those mentioned
above for the definition of $E(f, <))$ defines $\lambda x\cdot\omega$ , i. e. $E_{IIb}-f(0_{x})=0_{\omega}$ for any
ordinal $x$ ; for, we have $\omega=\mu x\{lq(0, x)=0\wedge(y)_{y<x}[Iq(y^{\prime}, x)=0]\}$ , where
$(Ex)\{Iq(0, x)=0\Lambda(y)_{y<x}[Iq(y^{\prime}, x)=0]\}$ .

As $E_{V}$ , the following system of equations may be chosen:

h(O, a, b) $=a,$ $h(O^{\prime}, $a$, b)=b$ and f(a, b) $=\sup_{x<0},,h(x, $a $, b)$ ,

from which $f(0_{x}, 0_{y})=0_{z}$ is deducible if and only if $\max(x,y)=z$ .
Now we consider the function

$\varphi(a, b)=\chi(\max(a, b))+b+a\cdot Iq(b, \max(a, b))$

where $\chi(c)$ is defined by recursion as follows:

$\left\{\begin{array}{l}\chi(0)=0,\\\chi(c)=\mu z((y)_{y<c}(\chi(y)+(y\cdot 2)^{\prime}\leqq z)).\end{array}\right.$

Here, $\chi(c)$ is effectively calculable; for, translating this definition of $\chi$ into the
forms:

$f(O)=0,$ $h(y)=s(f(y), (m(y, 0^{\prime\prime}))^{\prime}),$ $f(a)=\sup_{y<a}h(y)$ ,

we see easily by (5), (6) and Lemma 1 that, for any ordinals $x$ and $y,$ $f(0_{x})=0_{y}$

is deducible from $M$ and these equations if and only if $\chi(x)=y$ , when $M$ is
chosen in such a way that it does not contain $f$ nor $h$ , its principal function
letter is $m$ and the principal function letter of its subsystem $S$ is $s$ . Hence,
by the effective calculability of the functions $\lambda xy\max(x,y),$ $\lambda xy\cdot x+y,$ $\lambda xy\cdot xy$

and $\lambda xyIq(x,y)$ and using Lemma 1 (or the counterpart of Lemma IIe of [2,

\S 54]), we have the effective calculability of $\lambda xy\varphi(x,y)$ . On the other hand,
we see that

$\varphi(a, b)<\varphi(c, d)_{\leftarrow}^{\rightarrow}\max(a, b)<\max(c, d)$

$\vee$ $(\max(a, b)=\max(c, d)\wedge$ ($b<d\vee(b=d$ A $a<c$))),

and therefore $\varphi(a, b)=j(a, b)$ for any ordinals $a$ and $b$ (see, [8, \S 1] and cf.
G\"odel [1, Chapter III, 7.81, p. 28]). This shows that $\lambda xyj(x,y)$ is effectively
calculable.

Finally, as to the function $g^{1},g^{2}$ , by Lemmata 3, 4 and 1 (or using the
counterpart of Lemma IIe of [2, \S 54]) it will suffice to remark that

$g^{1}(a)=\mu x_{x<a}(Ey)_{y<a}[j(x,y)=a]$

$g^{2}(a)=\mu x_{x<a}(j(g^{1}(a), x)=a)$

and
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$x=y_{\leftarrow}^{\rightarrow}Iq(x, y)=1\wedge lq(y, x)=1$

$\rightarrow\sim Iq(0, Iq(x, y)\cdot lq(y, x))=0$ .

2.4. Now, we are going to prove the main theorem of this section:
THEOREM 1. For each $1\geqq 0,$ $n>0$ : If $\varphi(\psi_{1}, \cdots, \psi_{l}, x_{1}, \cdots, x_{n})$ is parliat

recursive, then it is formally calculable uniformly in $\psi_{1},$ $\cdots$ , $\psi_{l}$ .
PROOF, Given a partial recursive function $\varphi(\psi_{1}. \cdots , \psi_{l}, x_{1}, \cdots , x_{n})$ with any

given numbers $1\geqq 0,$ $n>0$ , we construct a system $E(f:g_{1}, \cdots g_{\iota}, a_{1}, \cdots , a_{n})$ which
defines $\varphi$ as a formally calculable function uniformly in $\psi_{1},$ $\cdots$ , $\psi_{l}$ , by course-
of-values induction on the length $k$ of a given partial recursive description
$\varphi_{1},$

$\cdots$ , $\varphi$ ic of $\varphi$ . The cases $(I)-(XII)$ , (XIII’), (XIV) correspond to Schemata
\langle $I$ )$-(XII),$ $(XIII^{\prime})$ , (XIV) by which $\varphi_{k}(=\varphi)$ may occur in the description.

Case $(I)-(VII)$ : These were already established in Lemma 6.
Case (VIII): $\varphi(\psi, x_{1}, \cdots , x_{n})\simeq\psi(x_{1}, \cdots x_{n})$ . Let $E(f:g, a_{1}, \cdots, a_{n})$ be the

system of an equation of the form $f(a_{1}$ , $\cdot$ .. $a_{n})=g(a_{1}$ , $\cdot$
., $a_{n})$ .

Case (IX): $\varphi(\psi_{1}, \cdots , \psi_{l}, x_{1}, \cdots, x_{n})\simeq\chi(\psi_{1},$
$\cdots,$

$\psi_{\iota},$ $\chi_{1}(\psi_{1}, \cdots , \psi_{l}, x_{1}, \cdots , x_{n}),$ $\cdots$

$\chi_{m}(\psi_{1}, \cdots , \psi_{l}, x_{1}, \cdots , x_{n}))$ . By the hypothesis of the induction, there exist systems
$H_{1}(h_{1} : g_{1}, \cdots , g_{\iota}, a_{1}, \cdots , a_{n}),$ $\cdots$ , $H_{m}(h_{m} : g_{1}, \cdots , g_{\iota}, a_{1}, \cdots, a_{n})$ and $H(h:g_{1},$ $\cdots,$ $g_{\iota},$ $a_{1}$ ,

, $a_{m}$) of equations such that, for each choice of $\psi_{1},$ $\cdots$ , $\psi_{l}$ ,

$E_{g_{1}^{1}gi}^{\psi.\psi,}::.,$ $H_{j}-h_{j}(0_{x_{1}}, \cdots , 0_{x_{n}})=0_{y_{f}}$

if and only if $\chi_{j}(\psi_{1}, \cdots , \psi_{l}, x_{1}, \cdots , x_{n})\simeq y_{j}$ for $j=1,$ $\cdots$ , $m$ ,

and
$E_{g_{1}g_{l}}^{\psi_{1}\cdot.\cdot.\cdot.\psi_{l}},$ $H-h(0_{y1}$ , $\cdot$ .. $0_{ym})=0_{y}$ if and only if $\chi(\psi_{1}$ , $\cdot$ .. $\psi_{l},y_{1}$ , $\cdot$ .. $y_{m})\simeq y$ ,

for any ordinals $x_{1},$ $x_{n},y_{1}$ , , $y_{m}$ and $y$ . Here we can choose these systems
so that the function letters occurring in each one of $H_{1},$ $\cdots H_{m},$ $H$ are distinct
from those occurring in the others excepting the given function letters $g_{1},$ $\cdots$ , $g_{l}$ .
Let $f$ be a function letter not occurring in $H_{1},$ $\cdots$ , $H_{m}$ nor in $H$. Denote by
$E(f:g_{1}, \cdots , g_{l}, a_{1}, \cdots , a_{n})$ the system consisting of the equations of $H_{1},$

$\cdots,$
$H_{m},$ $H$

and of the equation

$f(a_{1}, \cdots , a_{n})=h(h_{1}(a_{1}, \cdots, a_{n}), \cdots, h_{m}(a_{1}, \cdots , a_{n}))$ .

Then, we get easily that for each choice of $\psi_{1},$ $\cdots$ , $\psi_{l}$ ,

$E_{g}^{\psi_{1}}:::_{g}^{\psi_{l}},$ $E(f:g_{1}, \cdots , g_{\iota}, a_{1}, \cdots , a_{n})-f(0_{x_{1}}, \cdots 0_{x_{n}})=0_{y}$ ,

if and only if $\varphi(\psi_{1}, \cdot.. \psi_{l}, x_{1}, \cdot x_{n})\simeq y$ , for any ordinals $x_{1}$ , $\cdot$ .. $x_{n}$ and $y$ ,

In the above, to establish the consistency property ‘ only if ‘, we shall use the
counterpart of Lemma IIc of [2, \S 54].

Case (Xa): $\varphi(\psi_{1}, \cdots , \psi_{l}, x_{1}, \cdots , x_{n}, x)\simeq\chi(\psi_{1}, \cdots , \psi_{l}, x_{1}, \cdots , x_{n})$ . By the hy-
pothesis of the induction, there is a system $H(h:g_{1}, \cdots , g_{\iota}, a_{1}, \cdots , a_{n})$ of equa-
tions such that, for each choice of $\psi_{1},$ $\cdots$ , $\psi_{\iota}$ ,
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$E_{g^{1}}::_{g^{l}},$ $H-h(0_{x_{1}}$ , ,.. , $0_{x_{n}})=0_{y}$ , if and only if $\chi(\psi_{1},$ $\cdots$ , $\psi_{\iota}$ ,
(12)

$X_{1}$ , $\cdot$ ..
$x_{n}$) $\simeq v$ , for any ordinals $\chi_{1}$ , $x_{n}$ and $\gamma$ .

Then let $E(f : g_{1}, \cdots . g_{\iota}, a_{1}, \cdots , a_{n}, a)$ be the system consisting of the equations
of $H$ and of the equation

$f(a_{1}, \cdots, a_{n}, a)=h(a_{1}, \cdots, a_{n})$

where $f$ is a function letter not occurring in $H$.
Case (Xb): $\varphi(\psi_{1}, \cdots, \psi_{\iota}, x, x_{1}, \cdots, x_{n})\simeq\chi(\psi_{1}, \cdots, \psi_{l}, x_{1}, \cdots , x_{n})$ . Similarly to

the above, we have a system $E(f : g_{1}, , g_{l}, $a $, a_{1}, , a_{n})$ of equations with the
desired property.

Case (XI): $\varphi(\psi_{1}, \cdots, \psi_{\iota}, \psi, x_{1}, \cdots x_{n})\simeq\chi(\psi_{1}, \cdots, \psi_{l}, x_{1}, \cdots, x_{n})$ or $\varphi(\psi,$ $\psi_{1},$ $\cdots$ .
$\psi_{l},$

$x_{1}$ , $\cdot$ .. , $x_{n}$) $\simeq\chi(\psi_{1}$ , $\cdot$ .. , $\varphi_{l}^{\prime},$

$x_{1}$ , $\cdot$ .. , $x_{n})$ . By the hypothesis of the induction, for
$\chi$ there is a system $H(h:g_{1}, , g_{\iota}, a_{1}, , a_{n})$ of equations such that, for each
choice of $\psi_{1},$ $\cdots$ , $\psi_{l}$ , we have (12). Let $f,$ $g$ be function letters not occurring
in $H$. Then the system $E(f:g_{1}, \cdots g_{\iota}, g, a_{1}, \cdots, a_{n})$ , consisting of the equation
$g(a_{1}$ , $\cdot$ .. , $a_{p})=g(a_{1}$ , $\cdot$ .. $a_{p})$ where $p$ is the number of arguments of $\psi$ and of
those of $H$ followed by $f(a_{1}$ , $\cdot$ . $a_{n})=h(a_{1}, a_{n})$ , is the desired one for $\varphi$ .

Case (XII): $\varphi(\psi_{1}, \cdots \psi_{l}, x_{1}, \cdots. x_{n}, x)\simeq\mu z_{z<x}[\chi(\psi_{1}, \cdots , \psi_{l}, x_{1}, \cdots , x_{n}, z)=0]$ .

By the hypothesis of the induction, there is a system $H(h:g_{1}, \cdots , g_{\iota}, a_{1}, \cdots , a_{n}, z)$

of equations such that, for each choice of $\psi_{1},$ $\cdots$ $\psi_{l}$ ,

$E_{g_{1}^{1}}.:_{g},$ $H-h(0_{x_{1}}, \cdots , 0_{x_{n}}, 0_{z})=0_{w}$ if and only if

(13) $\chi(\psi_{1}, \cdots , \psi_{l}, x_{1}, \cdots , x_{n}, z)\simeq w(i$ . $e$ . $h(0_{x_{1}}, \cdots , 0_{x_{n}}, 0_{z})=0_{w}$

$\in E_{h}^{\lambda x(\psi_{1},\psi_{l},x_{1},\cdots,x_{n},z)}x_{1}\cdots x_{n^{Z}}\cdots,)$ , for any ordinals $x_{1},$ $\cdots,$ $x_{n},$ $z$ and $w$ .

Here we choose the system $E(f:\mu z<ah(a_{1}, \cdots , a_{n}, z))$ defined in Lemma 4 so
that the function letters except $h$ do not occur in $H$. Let $E(f:g_{1},$ $\cdots$ , $g_{\iota},$ $a_{1}$ ,
... , $a_{n},$ $a$) be the system:

$H(h:g_{1}, \cdots , g_{\iota}, a_{1}, \cdots , a_{n}, z),$ $E(f, \mu z<ah(a_{1}, \cdots, a_{n}, z))$ .
Then we can see, for any fixed choice of $\psi_{1},$ $\cdots$ , $\psi_{\iota}$ , the following:

$\varphi(\psi_{1}, \psi_{l}, x_{1}, \cdots, x_{n}, x)\simeq y$

$\leftarrow\rightarrow\mu z_{z<x}[\chi(\psi_{1}, \cdots, \psi_{l}, x_{1}, \cdots, x_{n}, z)=0]\simeq y$

$\leftarrow\rightarrow E_{h}^{\lambda x_{1}\cdots x_{n}z\chi(\psi_{1}\ldots..\psi_{l}.x_{1\prime}\cdots x_{n},z)},$ $E(f, \mu z<ah(a_{1}, \cdots, a_{n}, z))$

$-f(0_{x_{1}}, \cdots, 0_{x_{n}}, 0_{x})=0_{y}$

(by Lemma 4)

$\leftarrow\rightarrow E_{g^{1}}^{\psi_{1}}:::_{g^{l}}^{\psi_{l}},$ $HE(f, \mu z<ah(a_{1}, \cdots, a_{n}, z))|-f(0_{x_{1}}, \cdots, 0_{x_{n}}, 0_{x})=0_{y}$

using (13), and also–for the proof of $‘\leftarrow$ ‘ –by the counterpart of Lemma
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IIc of [2, \S 54]), for any ordinals $x_{1},$
$\cdots$ , $x_{n},$ $x$ and $y$ .

Therefore, we have that, for each choice of $\psi_{1}$ , $\cdot$ . , $\psi_{l}$ ,

$E_{g_{1}^{1}gi}^{\psi.\psi’}::.,$ $E(f:g_{1}, \cdots , g_{l}, a_{1}, \cdots , a_{n}, a)l-f(0_{x_{1}}, \cdots , 0_{x_{n}}, 0_{x})=0_{y}$ ,

if and only if $\varphi(\psi_{1}, \cdot \psi_{\iota}, x_{1}, x_{n}, x)\simeq y$ , for any ordinals $\chi_{1}$ . $x_{n},$ $x$ and $y$ .
Case (XIII): $\varphi(\psi_{1}, \cdots , \psi_{i}, x, x_{1}, \cdots , x_{n})\simeq\chi(\lambda z\varphi^{x}(\psi_{1}, \cdots, \psi_{\iota}, z, x_{1}, \cdots , x_{n}),$ $\psi_{1}$ ,

$\psi_{\iota},$ $x,$ $x_{1},$ $\cdots,$ $x_{n}$). By the hypothesis of the induction $\lambda xx_{1}\cdots x_{n}\chi(\psi,$ $\psi_{1},$ $\cdots$ ,

$\psi_{l},$ $x,$ $x_{1},$
$\cdots$ , $x_{n}$), where $\psi$ is a function variable with one argument, is formally

calculable uniformly from $\psi,$ $\psi_{1},$ $\cdots$ , $\psi_{l}$ ; $i$ . $e$ . there exists a system of equations
$H(h:g, g_{1}, \cdots , g_{\iota}, $a $, a_{1}, \cdots , a_{n})$ with $h$ as the principal function letter and with
$g,$ $g_{1},$

$\cdots$ , $g_{l}$ as the given function letters such that, for each choice of $\psi,$ $\psi_{1},$
$\cdots,$

$\psi_{l}$ ,

$E^{\psi\psi}:::^{\psi},$ $H(h:g, g_{1}, \cdots, g_{\iota}, $a $, a_{1}, \cdots, a_{n})|-h(0_{x}, 0_{x_{1}}, \cdots , 0_{x_{n}})=0_{y}$ ,

(14) if and only if $\chi(\psi, \psi_{1}, \cdots , \psi_{\iota}, x, x_{1}, \cdots , x_{n})\simeq y$ ,

for any ordinals $x,$ $x_{1},$ $\cdots$ , $x_{n}$ and $y$ .

Now, for each choice of $\psi_{1}$ , , $\psi_{l}$ , by the definition of $\varphi$ and (14) we see
immediately that

$E_{g_{1}}:::_{g_{l}},$ $E_{g}^{\lambda z\varphi x_{(\psi_{1},\cdots,\psi_{l},z,x_{1},\ldots x_{n^{)}}}},$ $H(h:g, g_{1}, \cdots, g_{l}, $a $, a_{1}, \cdots, a_{n})$

(15) $-h(0_{x}, 0_{x_{1}}, \cdots , 0_{x_{n}})=0_{y}$ , if and only if $\varphi(\psi_{1}, \cdots, \psi_{l}, x, x_{1}, \cdots , x_{n})$

$\simeq y$ , for any ordinals $x,$ $x_{1},$ $\cdots$ , $x_{n}$ and $y$ .
Using Lemma 2, we can take the system $H^{*}(h:g,\hat{g}_{1},$ $\cdots$ , $\hat{g}_{l},$ a $,$

$a_{1},$ $\cdots$ , $a_{n},$ $c,$ $c_{1}$ ,
... , $c_{n}$) to be such that $H^{*}$ defines $\lambda xx_{1}$ $x_{n}cc_{1}\cdots c_{n}\chi(\text{{\it \‘{A}}} z\psi^{*}(z, c, c_{1}, \cdots, c_{n}),$ $\psi_{1},$ $\cdots$ ,

$\psi_{\iota},$ $x,$ $x_{1},$
$\cdots$ , $x_{n}$) as a formally calculable function uniformly in $\psi^{*},$ $\psi_{1}$ , $\cdot$

., , $\psi_{l}$ .
Let $f,$ $f_{1},$ $f_{2},$ $f_{8}$ , be function letters not occurring in $H^{*}$ , and consider the

equations:
$f_{2}(0, b, a_{1}. \cdots, a_{n})=f(b, a_{1}, \cdots , a_{n})$ ,

$f_{3}(0, b, a_{1}, \cdots , a_{n})=0$

$g(b, $a $, a_{1}, \cdots, a_{n})=f_{2}(f_{1}(b, a),$ $b,$ $a_{1},$ $\cdots$ , $a_{n}$) ,

$g(b, $a $, a_{1}, \cdots , a_{n})=f_{3}(f_{1}(0, f_{1}(b, a)), b, a_{1}, \cdots, a_{n})$ .
We shall denote the system of these equations by $G(g, f^{a} (b, a_{1}, \cdots , a_{n}))$ . Let
$\psi_{1},$ $\cdots$ , $\psi_{\iota}$ be given functions with the specified number of arguments, respec-
tively. For each $n+1$ -tuple of ordinals $x,$ $x_{1},$

$\cdots$ , $x_{n}$ , we define $F_{x\cdots x_{n}}^{x_{1}}$ to be the
set of equations $f(0_{z}, 0_{x_{1}}, \cdot. 0_{x_{n}})=0_{y}$ , where $\varphi(\psi_{1}, \cdot.. \psi_{\iota}, z, x_{1}, \cdot.. x_{n})\simeq y$ , for all
$z<x$ and $y$ . $\ln$ particular $F_{x_{1}\cdots x_{n}}^{x}$ is empty, if $x=0$ . Then we see immediately
that

$F_{x\cdots x_{n}}^{x_{1}},$ $E_{\iota^{q}}^{t_{1}},$ $G(g, f^{a} (b, a_{1}, \cdots , a_{n}))-g(0_{z}, 0_{x}, 0_{x_{1}}, \cdots , 0_{x_{n}})=0_{y}$ ,

if and only if
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$g(0_{z}, 0_{x}, 0_{x_{1}}, \cdot.. 0_{x_{n}})=0_{y}\in E\lambda z\varphi x_{(\psi_{1_{00}},\ldots,\psi_{lz}..’\cdots,x_{n^{)}}}$:

Therefore, when we choose $E(f_{1}, <)$ so that the auxiliary function letters do
not occur in $G(g, f^{a} (b, a_{1}, \cdots , a_{n}))$ , by the counterpart of Lemma IIc of [2, \S 54],
we have

$F_{x\cdots x_{n}}^{x_{1}},$ $E(f_{1}, <)G(g, f^{a} (b, a_{1}, \cdots , a_{n}))\leftarrow g(0_{z}, 0_{x}, 0_{x_{1}}, \cdots , 0_{x_{n}})=0_{y}$ ,
(16)

if any only if $g(0_{z}, 0_{x}, 0_{x_{1}}, \cdots, 0_{x_{\eta}})=0_{y}\in E_{tb\}g(b,0_{x},0_{x,,0x_{n})}}^{\lambda z\varphi(\psi_{1},\cdots,\psi_{l_{\rceil}z.’.x1,\cdots,x_{n^{)}}}}x$.

Now let $E(f : \hat{g}_{1}, \cdot.. , \hat{g}_{l}, $a $, a_{1}, \cdots , a_{n})$ be the system consisting of the eqUct

tions of $E(f_{1}, <)G(g, f^{a} (b, a_{1}, \cdot.. a_{n}))$ (which may be also abbreviated by $E_{1}$ ,

where $E(f_{1}, <)$ is chosen so that the auxiliary function letters occur neither
in $G(g, f^{a} (b, a_{1}, \cdots , a_{n}))$ nor in $H^{*}$), those of $H^{*}$ and of the equation

$f(a, a_{1}, \cdots , a_{n})=h(a, a_{1}, \cdots , a_{n}, $a $, a_{1}, \cdots , a_{n})$ ,

Let $\psi_{1},$ $\cdots$ , $\varphi_{l}^{\prime}$ be given functions with the specified number of $argumen\mathfrak{c}s_{t}$

respectively. For each $n+1$ -tuple of ordinals $x,$ $x_{1},$ $\cdots$ , $x_{n}$ , we denote by $G_{x_{1}\cdots x_{l}}^{x}$

be the set of equations $f(0_{z}, 0_{x_{1}}, \cdots , 0_{x_{n}})=0_{w}$ for any $z<x$ deducible from
$E_{\hat{g}_{1}\cdot\cdot\hat{g}^{l}}^{\psi_{1}\cdot.\psi_{l}},$

$E$ ( $f:\hat{g}_{1},$ $\cdots$ , gg, a $,$
$a_{1},$

$\cdots$ , $a_{n}$). Then we see:

If $h(0_{x}, 0_{x_{1}}, \cdot.. , 0_{x_{n}}, 0_{x}, 0_{x_{1}}, \cdot.. , 0_{x_{n}})$ is deducible from $E_{\hat{g^{\psi_{1^{1}}}}\cdots\hat{g}^{\psi_{\uparrow}}},$

$E$,

(17)
then it is deducible from $E_{\hat{g}_{1^{1}}\cdots\hat{g}}^{\psi\ldots(\iota_{\iota^{l}}},$ $G_{x_{1}\cdots x_{n}}^{x},$ $E_{1}H^{*}$

For, the letter $f$ does not occur in $H^{*}$ , so the last equation of $E$ is used only
to deduce equations of the form $g(z, 0_{x}, 0_{x_{1}}, \cdots , 0_{x_{n}})=w$ in the given deduction;
but by the definition of $E_{1}$ , only the equations of $G_{x_{1}\cdots x_{n}}^{x}$ are used in those
subdeductions.

For any fixed choice of $\psi_{1},$ $\cdots$ , $\psi_{l}$ (with the specified number of arguments.
respectively), we shall show by transfinite induction on $\chi$ that

$E_{g_{1}\cdots\hat{g}\iota’}^{\psi_{1}\psi_{l}}\wedge E(f:\hat{g}_{1}, \cdots , \hat{g}_{l}, $a $, a_{1}, \cdots a_{n})-f(0_{x}, 0_{x_{1}}, \cdots , 0_{x_{n}})=0_{y}$ ,

(18) if and only if $\varphi(\psi_{1}, \cdots , \psi_{\iota}, a, a_{1}, \cdots , a_{n})\simeq y(i$ . $e$ . $\varphi$ is defined

and its value is $y$), for any ordinals $x$ . $x_{1}$ , $\cdot$ .. , $x_{n}$ and $y$ .
BASIS : Let $x=0$ . For the proof of ‘if’, suppose $\varphi(\psi_{1}, \cdot.. \psi_{\iota}, 0, x_{1}, \cdot.. x_{n})$

$\simeq y$ . Then by the definition of $\varphi,$
$\chi(\lambda z\varphi^{0}(\psi_{1}, \cdots \psi_{l}, z, x_{1}, \cdots , x_{n}),$ $\psi_{1},$ $\cdots$ , $\psi_{\iota},$ $0,$

$x_{1}$ ,

... , $x_{n}$) $\simeq y$ (is true), where $\lambda z\varphi^{0}(\psi_{1}, \cdots , \psi_{l}, z, x_{1}, \cdots , x_{n})=\lambda z\cdot 0$ ; it follows by the
completeness property of (15) that

$E_{g}\lambda Z\varphi 0_{(\psi_{1}\ldots,\psi_{l,z.x_{1},\cdots.x_{n_{g_{1}e_{l}}^{)\psi_{1}}}}}..::^{d\iota}.H(h:g, g_{1}, \cdots, g_{\iota}, $a $, a_{1}, \cdots, a_{n})$

(19)
$-h(0,0_{x_{1}}, \cdots, 0_{x_{n}})=0_{y}$ .

Using (3) as given in the proof of Lemma 2 (for the choice $0,$
$x_{1}$ , $\cdot$ . $x_{n}$ of

$c,$ $c_{1}$ , $\cdot$ .. , $c_{n}$), we see that (19) implies
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$E_{\wedge\wedge}^{\psi_{1}...\psi_{l_{\dagger}}},$

$E4_{o^{\varphi(\psi_{1}}}^{z}\cdot\cdot:^{x_{x_{n^{)}}},\cdots,x_{n^{)}}},$ $H^{*}$

(20)
$-h(0,0_{x_{1}}, \cdots 0_{x_{n}}, 0,0_{x_{1}}, \cdots 0_{x_{n}})=0_{y}$ .

Then by the completeness property of (16) and the general property of de-
ducibility, $h(0,0_{x_{1}}, \cdots , 0_{x_{n}}, 0,0_{x_{1}}, \cdots , 0_{x_{n}})=0_{y}$ is deducible from $E^{\psi_{\iota\cdot.\emptyset l}}.’ E_{1}H^{*}g1\hat{g}|$

since $ F_{x_{1}\cdots x_{n}}^{0}=\phi$ ; hence $f(O, 0_{x_{1}}, \cdots 0_{x_{n}})=0_{y}$ is deducible from $E_{\hat{g}_{1}gl}^{\psi_{1}\cdot.\cdot.\cdot.\psi_{l}}\wedge,$ $E(f:\hat{g}_{1}$ ,

, $\hat{g}_{l},$ a $,$

$a_{1},$ $\cdots$ , $a_{n}$) by using the last equation of $E$ as the principal equation.
Conversely, suppose that $E^{\psi_{1}\cdots\psi_{l}}\wedge,$ $E(f:\hat{g}_{1}, \cdots , \hat{g}_{l}, $a $, a_{1}, \cdots, a_{n})\leftarrow f(0,0_{x_{1}}, \cdots , 0_{x_{n}})$

$\xi\zeta_{1}\cdots gl\wedge$

$=0_{y}$ . In $E_{\hat{g}_{1}\cdots\hat{g}_{l}^{\prime}}^{\psi_{1}\psi},$
$E$ only the equation $f(a, a_{1}, \cdot, , a_{n})=h(a, a_{1}, , a_{n}, $a $, a_{1}, a_{n})$

contains the function letter $f$ in the left member. Then to deduce $f(0,0_{x_{1}}$ ,

, $0_{x_{n}}$) $=0_{y}$ we must take it as the principal equation, to which the rule $R_{1}$

is to be applied successively to obtain $f(O, 0_{x_{1}}, \cdots , 0_{x_{n}})=h(0,0_{x_{1}},$ $\cdots$ , $0_{x_{n}},$ $0,0_{x_{1}}$ ,
$0_{x_{n}})$ followed by the application of $R_{3}$ to eliminate the letter $h$ , since no

other applications of rules along the principal branch yield $f(O, 0_{x_{1}}, \cdots , 0_{x_{n}})=0_{y}$

as the end equation. Therefore we must take the deduction of $h(O,$ $0_{x_{1}},$ $\cdots$ ,

$0_{x_{n}},$ $0,0_{x_{1}},$ $\cdots$ , $0_{x_{n}}$) $=0_{y}$ from $E_{\hat{g}\hat{g}^{1}}^{\psi_{1^{1}}\cdot.\cdot.\cdot.\psi_{l}},$
$E$ as only the contributory deduction.

Now we can use (17). In consequence it must be deducible also from
$E_{\hat{g}\hat{g}^{\prime}}^{\psi_{1}..\psi_{l}}1\cdot..’ G^{0_{x}}$ $x_{n}’ E1H^{*}$ , where $G_{x_{1}\cdots x_{n}}^{0}$ is empty by definition. We note that the
left members of equations of $H^{*}$ contain no function letters which occur $\iota n$

$E_{\hat{g}_{1^{1}\leftrightarrow}}^{\psi.\cdot.\cdot.\cdot\psi_{\iota^{l}}}\wedge J$ or in $E_{1}$ by the definitions of them, $h$ is the principal function letter
of $H^{*}$ (hence it occurs neither in $E_{\hat{g}_{1}\cdot\hat{g}^{l}}^{\psi_{1}\cdot..\psi_{l}}$ nor in $E_{1}$ ), and that only the function
ietter $g$ occurs in both $E_{1}$ and $H^{*}$ . Then by the counterpart of Lemma llc
of [2, \S 54] and using (16) for the case when $x=0$ (in this case $ F_{x\cdots x_{n}}^{x_{1}}=\emptyset$)

we necessarily have (20). From this, it follows (19), hence $\varphi(\psi_{1},$ $\cdots$ , $\psi_{l},$ $0,$ $x_{1}$ ,
... , $x_{n}$) $\simeq y$ by using (3) as given in the proof of Lemma 2 (for the choice
$0,$

$x_{1},$ $\cdots x_{n}$ of $c,$ $c_{1},$
$\cdots$ , $c_{n}$), the consistency property of (15) successively.

Thus, (18) is proved in case $x=0$ .
INDUCTION STEP: Let $x>0$ . Assume as the hypothesis of transfinite

induction that (18) holds for every ordinal $z<x$ . Then by the definitions,

$F_{x\cdots x_{n}}^{x_{1}}=G_{x_{1}\cdots x_{n}}^{x}$ .
Then we can prove (18) for $x$ similarly to the case for $x=0$ . We give the
outline of the proof:

$\varphi(\psi_{1}, \cdots\psi_{\iota}, x, x_{1}, \cdots, x_{n})\simeq y$

$\leftarrow\rightarrow E^{\lambda_{g}}z\varphi^{x}(\psi_{1}\ldots,\psi_{\dagger,z,x_{1},\cdots,x_{n_{g_{1}g^{l}}^{)\psi_{1}\cdot.\psi_{l}}}}:.,$ $H-h(0_{x}, 0_{x_{1}}, \cdots, 0_{x_{n}})=0_{y}$

(by (15))

$\Leftrightarrow E_{\hat{g}\hat{g};}^{\psi_{1^{1}}.\cdot.\cdot.\cdot\psi_{\mathfrak{l}}},$ $E^{\lambda z}\varphi x_{(\psi_{1},\ldots,\psi_{l_{1}z}}:^{x1,\cdots,x_{n^{)}}},$ $H^{*}-h(0_{x}, 0_{x_{1}}, \cdots 0_{x_{n}}, 0_{x}, 0_{x_{1}}, \cdots, 0_{x_{n}})=0_{v}$

(by (3) as given in the proof of Lemma 2 (for the choice $x,$ $x_{1}$ , $\cdot$ .. $X_{n}$ of $c,$ $c_{1}$ ,
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... $c_{n}$ ))

$\leftarrow\rightarrow E_{g_{1}\hat{g}_{l}}^{\psi_{1}..\cdot.\cdot\psi_{l}}\wedge,$ $F_{x_{1}\cdots x_{n}}^{x},$ $E_{1}H^{*}\mapsto h(0_{x},\cdot 0_{x_{1}}, \cdots, 0_{x_{n}}, 0_{x}, 0_{x_{1}}, \cdots, 0_{x_{n}})=0_{y}$

(by (16), and for $‘\leftarrow$ using the counterpart of Lemma IIc of [2, \S 54] and by
the definitions of $E_{1}$ and $H^{*}$)

$\Leftrightarrow E_{\wedge\wedge ,g_{1\Leftrightarrow l}J}^{\psi_{1}..\cdot.\cdot\psi_{l}},$ $G_{x_{1}\cdots x_{n}}^{x},$ $E_{1}H^{*}-h(0_{x}, 0_{x_{1}}, 0_{x_{n}}, 0_{x}, 0_{x_{1}}, \cdots , 0_{x_{n}})=0_{y}$

(by the hypothesis of transfinite induction)

$\Leftrightarrow E_{\hat{g}_{1}\hat{g}_{l}}^{\psi_{1}\cdot.\cdot.\cdot.\psi_{\iota}},$ $E-h(0_{x}, 0_{x_{1}}, \cdots, 0_{x_{n}}, 0_{x}, 0_{x_{1}}, \cdots 0_{x_{n}})=0_{y}$

(for $‘\rightarrow’,$ by the definition of $G_{x_{1}\cdots x_{n}}^{x}$ and using the general property of de-
ducibility; for $‘\leftarrow’,$ by (17))

$\Leftrightarrow E_{\hat{g}_{1}\hat{g}_{7}}^{\psi_{1}\cdot.\cdot.\cdot.\psi_{l}},$ $E\leftarrow f(0_{x}, 0_{x_{1}}, \cdots , 0_{x_{n}})=y$

(for $‘\leftarrow$ ’, by analysing the given deduction.)

Thus, (18) is proved for any fixed functions $\psi_{1},$ $\cdots$ , $\psi_{l}$ ; hence, we know
that $E(f:\hat{g}_{1}, \cdots , \hat{g}_{l}, $a $, a_{1}, \cdots , a_{n})$ is a desired system for the present case.

Case (XIV): $\varphi(\psi_{1}, \cdots , \psi_{l}, x_{1}, \cdots, x_{n})\simeq\mu x[\chi(\psi_{1}, \cdots , \psi_{l}, x_{1}, \cdots , x_{n}, x)=0]$ . Using
Lemma 5, we can define a system $E(f:g_{1}, \cdots , g_{\iota}, a_{1}, \cdots , a_{n})$ of equations simi-
larly to the case (XII) such that, for each choice of $\psi_{1},$ $\cdots$ , $\psi_{l}$ ,

$E_{g_{1}}:::_{g_{l}},$ $E|-f(0_{x_{1}}, \cdots , 0_{x_{n}})=0_{y}$ , if and only if $\varphi(\psi_{1},$ $\cdots$ , $\psi_{l}$ ,

$\chi_{1}\cdots$ , $x_{n})_{\sim}\simeq y$ , for any ordinals $x_{1},$ $\cdots$ , $x_{n}$ and $y$ .
Q. E. D.

Similarly we have
THEOREM 2. If $\varphi(\psi_{1}, \cdots , \psi_{l}, x_{1}, \cdots , x_{n})$ is partial recursive in the ordinals

$\alpha_{1}$ , $\cdot$ .. $\alpha_{m}$ , then it is formally calculable in $\alpha_{1}$ , $\cdot$ , $\alpha_{m}$ and uniformly in $\psi_{1},$
$\cdots,$

$\psi_{l}$ .

\S 3. Arithmetization of the formalism in the theory of ordinals.

3.1. We introduce a Godel numbering of objects of the formalism by
ordinals in such a way that the Godel number of a system of equations in
the strict sense is a natural number ( $i$ . $e$ . an ordinal $<\omega$). To the symbol $0_{\alpha}$

for the ordinal $\alpha$ we correlate the Godel number $j(3, \alpha)$ , to the $i+1- st$ variable
$v_{i}$ the Godel number $j(4, i)$ , and to the $i+1- st$ function letter $f_{i}$ the Godel
number $j(5, i)$ . Suppose that the G\"odel numbers $r,$ $r_{1},$

$\cdots$ , $r_{n}$ have already been
correlated to the terms $r,$ $r_{1},$

$\cdots$ , $r_{n}$ , respectively. Then, to $r^{\prime}$ we correlate the
G\"odel number $j(6, r)$, to $f(r_{1}$ , $\cdot$ .. , $r_{n})$ the G\"odel number $j(f,j(r_{1},j(r_{2}$ , $\cdot$ .. , $j(r_{n-1}, r_{n})$

$)))$ where $f$ is the Godel number of the function letter $f$ , and to $\sup_{x<r_{1}}r_{2}$

the G\"odel number $\dot{j}(7,j(x,j(\gamma_{1}r_{2})))$ where $x$ is the G\"odel number of the variable
$x$ . Next, to $r_{1}=r_{2}$ we correlate the Godel number $j(8, j(r_{1}, r_{2}))$ . To a system
of equations $e_{1},$

$\cdots$ , $e_{k}$ we correlate the Godel number $i(1, j(e_{1}, \cdots j(e_{k-1}, e_{k})\cdots))$
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where $e_{1},$ $\cdots$ , $e_{k}$ are the G\"odel numbers of $e_{1},$ $\cdots e_{k}$ , respectively.
In order to define the Godel number of a transfinite sequence of equations

(say, the G\"odel number of an ascent) or of a transfinite sequence of deduc-
tions, we introduce some auxiliary notions by using the model of set theory
constructed in the theory of primitive recursive functions, given in [8] (for

this model, cf. also [5], [6]). Let $S(a, b)$ be

$(u)_{u\swarrow a}(v)_{v<a}(w)_{w<a}(\langle v, u\rangle\in a\wedge\langle w, u\rangle\in a\rightarrow v\equiv w)$

$\wedge(x)_{x<a}$($x\in a\rightarrow(Ey)_{y<a}(Ez)_{z<b}(O(y)$ A $x\equiv\langle y,j(O,$ $z,$ $0)\rangle)$)

A $(x)_{x<b}(Ey)_{y<a}(\langle y,j(O, x, O)\rangle\in a)$ .
Then $S(a, b)$ is a primitive recursive predicate by $[$8, \S $3]^{6)}$ .

Now, we assume the axiom of constructibility ‘ $V=L$ ‘ (G\"odel [1]). Let
$S^{*}(a;(\prime^{f}, b)(S^{*}(a;\{a_{x}\}_{x<b}))$ denote the predicate

$S(a, b)$ A $(x)_{x<b}(\psi(x)=u(a|j(0, x, 0)))^{7)}$

$(S(a, b)$ A $(x)_{x<b}(a_{x}=u(aTi(0, x, 0))))$ ,

and $S(a;\psi, b)(S(a;\{a_{x}\}_{x<b}))$ be
$S^{*}(a;\psi, b)\Lambda(x)_{x<a}7S^{*}(x;\psi, b)(S^{*}(a;\{a_{x}\}_{x<b})\Lambda(y)_{y<a}7S^{*}(y;\{a_{x}\}_{x<b}))$ .

Then for any given ordinal $b$ and function $\psi$ with one argument (or a trans-
finite sequence $\{a_{x}\}_{x<b}$ of ordinals), there exists one and only one ordinal $a$

such that we have $S(a;\psi, b)$ (or $S(a;\{a_{x}\}_{x<b})$). Using this, we correlate to an
ascent $\{e_{\xi}\}_{\xi<\alpha}$ the G\"odel number $j(\omega, a)$ where $S(a;\{a_{\xi}\}_{\xi<\alpha})$ and $a_{\xi}$ is the G\"odel

number of the prime equation $e_{\xi}$ of the ascent, under the assumption of the
axiom of constructibility.

By the definition, a deduction is in the tree form with infinitely many,
but finite in length, branches in general. Hence, by induction corresponding

to the definition of ‘ deduction ‘, we can assign the G\"odel number $d$ to a deduc-
tion $D$ , whose end equation is $e$ with the Godel number $e$ , from a set $F$ of
equations as follows:

0. If $D$ consists of only one equation in $F$, then $d=j(2, e)$ .
1, 2. If $D_{1}$ is a deduction with the Godel number $d_{1}$ from $F$, and $D$ is

6) For the definitions of the $f$ unctions or $pre$ dicates: $i(x, y, z),$ $x\in y,$ $x\equiv y$ . $\langle x, y\rangle$ ,

$O(y)$ , see [8, p. 204, p. 205 and p. 208]. These are all primitive recursive by their
definitions.

7) $u(x)$ is a primitive recursive function such that $u(a)=the$ ordinal to which $a$

corresponds if $a$ is an ordinal in the model, $u(a)=0$ otherwise ; cf. [8, p. 206]. $a|b$

is defined as follows:

$aTb=\{0\mu y_{y<a}(\langle y, b\rangle\in a)otherwiseifthereexists$
a $y$ such that $y<a$ and $\langle y, b\rangle\in a$ ,

The function $xTy$ is evidently primitive recursive; cf. [8, p. 207].
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$\frac{D_{1}}{e}$ by $R_{1}$ or $R_{2}$ , then $d=’(2,j(e, g^{2}(d_{1})))$ .

3. If $D_{1},$ $D_{2}$ are deductions with the G\"odel numbers $d_{1},$ $d_{2}$ , respectively,

from $F$ and $D$ is $\underline{D}_{1_{\frac{D_{2}}{e}}}$ by $R_{3}$ , then $d=j(2,j(e,j(g^{2}(d_{1}), g^{2}(d_{2}))))$ .
4. If $D_{1}$ is a deductlon with the G\"odel number $d_{1}$ from $F,$ $\{D_{2,\xi}\}_{\xi<\alpha}$ is a

sequence of deductions of the members of an ascent $\{e_{\xi}\}_{\xi<a}$ with the G\"odel

number $a$ from Fand $D$ is $\underline{D_{1}\{D}_{z,\underline{\xi}}\}_{\xi<\alpha}e$ by $R_{4}$ , then $d=j(2,j(e,j(g^{2}(d_{1}),j(a, d_{2}))))$

where $S(d_{2}, \{g^{2}(d_{2,\xi})\}_{\xi<\alpha})$ and $d_{2,\xi}$ is the G\"odel number of $D_{2,\xi}$ .
Thus, the G\"odel number can be uniquely correlated to each object of the

system, under the assumption of the axiom of constructibility if necessary.
As is easily seen from the property of the function 7, distinct ordinals are,
of course, assigned as G\"odel numbers to distinct objects.

3.2. Let $v(x, y)$ be defined by

$v(x, y)=y$ $1f$ $x=0$

$=g^{2}(1)(\delta(x), y))^{8)}$ if $ x>0\Lambda x<\omega$

$=0$ otherwise.

Using [8, Proposition $ 3\rfloor$ , we see easily that this function is primitive recur-
sive. We use below the abbreviation $[a]_{n}$ for the function $g^{1}(1)(n, a))$ , where
$ n<\omega$ .

Now, we define primitive recursive predicates and functions corresponding
to the respective metamathematical predicates and functions for our formal
system, via the Godel numbering defined above for the objects, similarly to
[2, \S 56].

Or $(a),$ $V(a)$ and $Fl(a)$ are the predicates expressing that ‘
$a$ is the Godel

number of a symbol for ordinal ‘, ‘
$a$ is the Godel number of a variable ‘ and

‘
$a$ is the Godel number of a function letter’, respectively. Then we have

Or $(a)\leftarrow\rightarrow g^{1}(a)=3$ ,

$ V(a)=g^{1}(a)=4\wedge a<\omega$ ,

$Fl(a)\Leftrightarrow g^{1}(a)=5$ A $ a<\omega$ .

Let $Or^{-1}(a)$ be defined by

$Or^{-1}(a)=\mu x_{x<a}(a=j(3, x))$ .

If $a$ is the Godel number $0$] the symbol ] $or$ an ordinal $b$ , then $Or^{-1}(a)=b$ ;
$Or^{-1}(a)=a$ , otherwise.

$Tm^{*}(a)$ is ‘
$a$ is the $G\dot{0}del$ number of a term in the strict sense‘, that is

8) $\delta(x)=z$ if $x=z^{\prime}$ ; otherwise, $\delta(x)=x$ . See [8, p. 201]
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$ Tm^{*}(a)\Leftrightarrow a=9\vee V(a)\vee$ [$g^{1}(a)=6$ A $Tm^{*}(g^{2}(a))$]

V [$Fl([a]_{0})$ A $(En)_{0<n<\omega}(Tm^{*}(1)(n,$ $a))\wedge(i)_{0<i<n}Tm^{*}([a]_{i}))$]

$\vee$ [ $g^{1}(a)=7\Lambda V([a]_{1})\wedge Tm^{*}([a]_{2})$ A $Tm^{*}(\iota)(3,$ $a))$].

When $a=0$ , all disjunctive members on the right-hand side are evidently
false; hence we have 7 $Tm^{*}(O)$ . When $a>0$ , we see that $g^{2}(a)<a(g^{1}(a)\leqq a)$ ,

by the property of $j$ and the definition of $g^{2}(g^{1})$ , hence we have also $[a]_{i}<a$

and $t$)$(n, a)<a$ , for $0<i<n$ and $ n<\omega$ . Let $\tau(x)$ be the representing function
of $Tm^{*}(x)$ . Then, putting

$R(\psi, a)_{\leftarrow}^{\rightarrow}a=9\vee V(a)\vee[g^{1}(a)=6\wedge\psi(g^{2}(a))=0]$

V [$Fl([a]_{0})$ A $(En)_{0<n<\omega}(\psi(\iota)(n,$ $a))=0$ A $(i)_{0<i<n}(\psi([a]_{i})=0))$]

$\vee[g^{1}(a)=7\wedge V([a]_{1})\wedge\psi([a]_{2})=0\wedge\psi(t)(3, a))=0]$ ,

we get $\tau(a)=\chi(\lambda z\tau^{a}(z), a)$ where $\chi(\psi, a)$ is the representing function of the
primitive recursive predicate $R(\psi, a)$ . Therefore, the predicate $Tm^{*}(a)$ is prim-
itive recursive (cf. [2, \S 43, Example 3]). This argument can be applied
also to predicates given below.

$Tm(a)_{\leftarrow}^{\rightarrow}Or(a)\vee V(a)\vee[g^{1}(a)=6\wedge Tm(g^{2}(a))]$

V [$Fl([a]_{0})$ A $(En)_{0<n<\omega}(Tm(1)(n,$ $a))$ A $(i)_{0<?<?2}Tm([a]_{i}))$]

$\vee$ [ $g^{1}(a)=7\Lambda V([a]_{1})$ A $Tm([a]_{2})$ A $Tm(\iota)(3,$ $a))$].

Then the predicate $Tm(a)$ is true if and only if $a$ is the Godel number of $a$

term.
$Eq^{*}(e),$ $Eq(e),$ $SE^{*}(z)$ and SE $(z)$ are the predicates expressing that ‘

$e$ is
the Godel number of an equation in the strict sense ‘, ‘

$e$ is the Godel number
of an equation ’, ‘

$z$ is the Godel number of a system of equations in the strict
sense ’ and ‘

$z$ is the Godel number of a system of equations ’, respectively.
Then we have

$Eq^{*}(e)\Leftrightarrow g^{1}(e)=8$ A $Tm^{*}(g^{1}(g^{2}(e)))$ A $Tm^{*}(g^{2}(g^{2}(e)))$ ,

$Eq(e)\rightarrow\leftarrow g^{1}(e)=8$ A $Tm(g^{1}(g^{2}(e)))$ A $Tm(g^{2}(g^{2}(e)))$ ,

$SE^{*}(z)_{\rightarrow}^{\leftarrow}[z]_{0}=1$ A $(En)_{0<n<\omega}(Eq^{*}(\iota)(n, z))$ A $(i)_{0<i<n}Eq^{*}([z]_{i}))$ ,

and
SE $(z)\Leftrightarrow[z]_{0}=1\Lambda(En)_{0<n<\omega}(Eq(\iota)(n, z))$ A $(i)_{0<7<n}Eq([z]_{i}))$ .

$Sb(d, e, t, x)$ is ‘
$t,$ $\chi$ and $e$ are the Godel numbers Of a term $t$ , a variable $x$

and a term or an equation $e$ , respectively, and $d$ is the Godel number of the
term or the equations $d$ which $result\wedge s$ from $e$ by substituting $t$ for $x$ ’, that is
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$Sb(d, e, t, x)_{\leftarrow}^{\rightarrow}Tm(t)$ A $V(x)\wedge(Tm(e)\vee Eq(e))$

$\wedge[(e=x\Lambda d=t)\vee(V(e)\Lambda e\mp x\wedge d=e)\vee(Or(e)\wedge d=e)$

V ( $[d]_{0}=[e]_{0}\neq 7$ A $(En)_{0<n<\omega}(Sb(\iota/(n, d),$ $\iota/(n, e),$ $t,$ $x$ )

A $(i)_{0<?<n}Sb([d]_{i}, [e]_{i}, t, x)))$

V ($[d]_{0}=[e]_{0}=7$ A $[d]_{1}=[e]_{1}\neq\chi\wedge Sb([d]_{2}, [e]_{2}, t, x)$

$\wedge Sb(\iota)(3, d),$ }) $(3, e),$ $t,$ $x$ ))].

To see that $Sb(d, e, t, x)$ is primitive recursive, it will suffice to consider in
the same way as in [2, p. 257] the predicate $Sb(z, t, x)$ such that

$Sb(z, t, x)_{\leftarrow}^{\rightarrow}Sb(g^{1}(z),g^{2}(z),$ $t,$ $x$ );

because $j([g^{1}(z)]_{i}, [g^{2}(z)]_{i})<z$ and $j(\nu(n, g^{1}(z)),$ $v(n, g^{2}(z)))<z$ for $0<i<n$ and
$ n<\omega$ , when $z>0$ and $g^{1}(z)>0$ .

Let $Ct(e, x)$ be the predicate

$(Tm(e)\vee Eq(e))\wedge V(x)\Lambda 7Sb(e, e, 9, x)$

Then $Ct(e, x)$ is true, if and only if $e$ is the Godel number of a term or an
equation $e$ and $x$ is the Godel number of a variable $x$ such that $e$ contains $x$

free.
$Cn_{1}(c, d)_{\leftarrow}^{\rightarrow}Eq(d)$ A $(Ex)_{x<l}(Ea)_{a<c}$($Or(a)$ A $Ct(d,$ $x)\wedge Sb(c,$ $d,$ $a,$ $x)$).

$Cn_{2}(c, d)_{\rightarrow}^{\leftarrow}Eq(d)$ A $(x)_{x<l}7Ct(d, x)$ A $(Et)_{t<a}(Ea)_{a<a}[Tm(t)$ A $Ct(t, 16)$

$\wedge Or(a)\wedge Sb(d, t,j(6, a), 16)$ A $Sb(c, t,j(3, Or^{-1}(a)+1), 16)$].

$Cn_{3}(c, d, e)\Leftrightarrow Eq(e)$ A $Fl(g^{1}([e]_{1}))$ A $(En)_{0<n<\omega}[Or(\iota)(n, [e]_{1}))$

$\wedge(i)_{0<<n}Or([e]_{1,i})]\wedge Or(\nu(2, e))\wedge Eq(d)$

$\wedge(x)_{x<d}7Ct(d, x)$ A $c=i(8,j([d]_{1},1)(2, c)))$

$\wedge(Et)_{\iota<a}[Tm(t)$ A $Ct(t, 16)\wedge Sb(\nu(2, d),$ $t,$ $[e]_{1},16$)

A $Sb())(2, c),$ $t,$ $\iota$) $(2, e),$ $16$)]

where $[d]_{i,j}$ abbreviates $[[d]_{i}]_{j}$ . Then $Cn_{1}(c, d)(Cn_{2}(c, d)),$ $Cn_{3}(c, d, e)$ express
$\iota_{C}$ is the Godel number of an equation $c$ which is an immediate consequence

of an equation $d$ with the $G\dot{o}del$ number $d$ by $R_{1}(R_{2})$ ‘,
’

$c,$
$d$ and $e$ are the Godel numbers of equations $c,$ $d$ and $e$ , respectively,

such that $c$ is an immediate consequence of $d$ and $e$ by $R_{3}$ ,

respectively.
Hereafter we assume the axiom of constructibility.
Let As$(a)$ be ‘

$a$ is the Godel number of an ascent ‘, and $Sup(a, b)$ be ’
$b$ is

the Godel number of the supremum of an ascent with the Godel number $a$
’

Then these are
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As $(a)\Leftrightarrow g^{1}(a)=\omega$ A $(Ey)_{y<a}(Et)_{t<a}[S(g^{2}(a),y)$ A $Fl(g^{1}(t))$

$\Lambda$ { $g^{2}(t)=16\vee(En)_{1<n<\omega}([t]_{1}=16\wedge Or()\supset(n,$ $t))$ A $(i)J<i<nOr([t]_{i}))$ }

A $(x)_{x<y}$( $g^{1}(a^{(x)})=8$ A $Sb([a^{(x)}]_{1},$ $t,j(3,$ $x),$ $16)$ A Or $(\nu(2,$ $a^{(x)}))$)]

where $a^{(x)}=u(g^{2}(a)ti(0, x, 0))$ ,

$Sup(a, b)_{\leftarrow}^{\rightarrow}As(a)$ A $(x)_{x<l(a)}(\nu(2, a^{(x)})\leqq b)$ A Or $(b)$

A $(y)_{y<b}[Or(y)\rightarrow(Ex)_{x<l(a)}(y<\nu(2, a^{(x)}))]$

$\backslash vherel(a)=\mu z_{z<a}S(g^{2}(a), z)$ .
We can see easily that $Sup(a, b)\rightarrow b<a^{\prime}$ . Hence, put

$Sup(a)=\mu z_{z<a^{\prime}}Sup(a, z)$ .

Then we have a primitive recursive predicate $Cn_{4}(c, d, a)$ expressing that ‘
$c,$

$d$

and $a$ are the Godel numbers of equations $c,$
$d$ and an ascenl $A$ , respectively,

such that $c$ is an immediate consequence of $d$ and $A$ by $R_{4}$ . In fact,

$Cn_{4}(c, d, a)\rightarrow\leftarrow As(a)$ A $Eq(d)$ A $(x)_{x<d}7Ct(d, x)$

A $c=f(8, j([d]_{1}, \iota)(2, c)))$ A $(Eu)_{u<a}(Ex)_{x<a}(Et)_{b<a}[Tm(u)$

$\wedge Ct(u, 16)$ A $V(x)$ A $Tm(t)$ A $Ct(t, x)$ A $Sb([a^{(0)}]_{1}, t, 9, x)$

A $Sb(\nu(2, d),$ $u,j(7,j(x,j(j(3, l(a)), t))),$ $16$) $\wedge Sb(\iota)(2, c),$ $u,$ $Sup(a),$ $16$)].

Let $D(z, y)$ denote the predicate ‘
$z$ is the Godel number of a system $oJ$

equations $Z$, and $y$ is the $G\dot{0}del$ number of a deduction from $Z’$ , and $D(\psi_{1},$ $\cdots$

$\psi_{l},$ $z,$ $y$) the predicate ‘
$z$ is the $G\dot{0}del$ number of a system of equations $Z$ (whose

given function letters are $g_{1},$ $\cdots$
$g_{\iota}$), and $y$ is the Godel number of a deduction

from $E_{g_{1}}^{\psi_{1}}:::_{g^{\int_{l}}}^{\psi},$ $Z$ ’ for completely defined functions $\psi_{1},$ $\cdots$ , $\psi_{l}$ with $n_{1},$ $\cdots$ , $n_{\iota}$ varia-
bles, respectively. Let $[x]_{*}=\chi$ if $g^{1}(x)=8$ ; otherwise, $=g^{1}(x)$ . Then by the
definition of the G\"odel number of a deduction, we have

$D(z, y)_{\leftarrow}^{\rightarrow}$ SE $(z)$ A $g^{1}(y)=2$

A {[$Eq(g^{2}(y))$ A $(Ei)_{0<i<\omega}(g^{2}(y)=[z]_{i}\vee(g^{2}(y)=\iota)(i,$ $z)))$]

$\vee[Cn_{1}([y]_{1}, [v(2, y)]_{*})\wedge D(z,j(2, \nu(2,y)))]$

V [ $Cn_{2}([y]_{1},$ $[v(2,$ $y)]_{*})$ A $D(z,$ $j(2,$ $v(2,y)))$]

V [$Cn_{3}([y]_{1},$ $[y]_{2’*},$ $[v(3,$ $y)]_{*})\wedge D(z,j(2,$ $[y]_{2}))$ A $D(z,j(2,$ $v(3.y)))$]

$\vee[Cn_{4}([y]_{1}, [y]_{2’*}, [y]_{3})$ A $S(v(4, y),$ $l([y]_{3}))$ A $(x)_{x<l([y]_{3})}([y]_{3}^{(x)}$

$=[u(\nu(4, y)tj(0, x, 0))]_{*}\wedge D(z,j(2, u(\nu(4, y)|j(0, x, 0)))))]\}$ ,

and that $D(\psi_{1}, \psi_{\iota}, z, y)$ is expressible by the predicate obtainable by inserting
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(21) $[[y]_{1}=8\wedge[y]_{2,0}=g_{1}\wedge(Eu_{1})_{u_{1}<y}\cdots(Eu_{n_{1}})_{u_{n_{1}}<y}([y]_{2,1}=j(3, u_{1})$

$\wedge\cdots\wedge[y]_{2,n_{1}-1}=j(3, u_{n11}-)$ A $\nu(n_{1}, [y]_{2})=j(3, u_{n_{1}}))$

A $\nu(3,y)=j(3, \psi_{1}(u_{1}, \cdots u_{n_{1}}))$]

$\vee$ $\cdot$ .-.....-.......-. ... V

[ $[y]_{1}=8$ A $[y]_{2,0}=g_{l}$ A $($Eu $1)_{u_{1}<y}\cdots(Eu_{n_{l}})_{un’<y}([y]_{2,1}=j(3, u_{1})$

$\wedge\cdots\Lambda[y]_{2,n\iota-1}=j(3, u_{n\iota-1})$ A $\nu(n_{l}, [y]_{2})=j(3, u_{n(}))$

A }) $(3,y)=\int(3, \psi_{l}(u_{1}, \cdots, u_{n\dagger},))$],

where $g_{1},$ $\cdots$ , $g_{l}$ are the Godel numbers of $g_{1},$ $\cdots$ , $g_{l}$ , as the first disjunctive
member in the braces $\{$ $\}$ in the right member of the above equivalence,
using $D(\psi_{1}, \cdots \psi_{l}, z, *)$ in place of $D(z, *)$ .

Now, we consider the predicate $z$ is the Godel number of a system of
equations $Z$, and $y$ is the Godel number of a deduction from $Z$ of a prime equa-
tion $f(x_{1}, \cdots , x_{n})=x$ , where $f$ is the principal function letter of $Z,$ $x_{1},$ $\cdots$ , $x_{n}$ are
the symbols corresponding to the ordinals $x_{1},$

$\cdots$ , $x_{n}$ , respectively, and $x$ is a
symbol for ordinal ‘, and denote it by $S_{n}(z, x_{1}, \cdots , x_{n},y)$ . We can also consider
the predicate denoted by $S_{n}(\psi_{1}, \cdots , \psi_{l}, z, x_{1}, \cdots , x_{n}, y)$ , reading ‘ from $E_{g_{1}^{1}.g_{l}^{b}}^{\psi.\cdot.\psi},$ $Z$

’ in
place of ‘ from $Z$

’ in the above.
Then by the definition, we see that

$S_{n}(z, x_{1}, \cdots , x_{n}, y)_{\leftarrow}^{\rightarrow}D(z,y)$ A $(Ei)_{0<i<\omega}\{[\nu(i, z)]_{0}=8$

$\Lambda[Fl([g^{2}(y)]_{*,1,0})$ A $[g^{2}(y)]_{*,1.0}=[v(i, z)]_{1,0}$ A $[g^{2}(y)]_{*,1.1}=j(3, x_{1})$

$\Lambda\cdots$ A $[g^{2}(y)]_{*,J,n-1}=j(3, x_{n-1})$ A $\nu(n, [g^{2}(y)]_{*,1})=j(3, x_{n})$

A Or $(’(2, [g^{2}(y)]_{*}))]$ }.

Therefore, $S_{n}(z, x_{1}, \cdot. x_{n}, y)$ is primitive recursive. For $S_{n}(\psi_{1}$ , $\cdot$ .. $\psi_{l},$ $z,$ $x_{1}$ , $\cdot$ .. ,

$x_{n},$ $y$). we have an equivalence like $S_{n}(z, x_{1}, \cdot x_{n}, y)$ , except reading $D(\psi_{1}$ , $\cdot$ . ,

$\psi_{\iota},$

$z,$ $\gamma$) ’ in place of ’
$D(z, y)$

‘ ; hence it is also primitive recursive.
Let $U(y)$ be defined by

$U(y)=Or^{-1}(\nu(2, [g^{2}(y)]_{*}))$ .

Then $U(y)$ is a primitive recursive function such that $U(y)=x$ , whenever $y$ is
the Godel number of a deduction of an equation of the form $r=0_{x}$ .

Thus, we have established the following results, under the assumption of
the axiom of constructibility:

A function $\varphi(x_{1}, \cdots x_{n})$ is formally calculable (uniformly) $m\psi_{1},$ $\cdots$ , $\psi_{l}(1\geqq 0)$

where $\psi_{1},$
$\cdots,$

$\psi_{l}$ are any completely defined functions of $n_{1},$ $\cdots,$ $n_{l}$ variables,

respectively, if and only if there exists an ordinal $e$ such that

(22) $ e<\omega$
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(23) $(x_{1})\cdots(x_{n})[\varphi(x_{1}, \cdots , x_{n})$ is defined
$\rightarrow\leftarrow(Ey)S_{n}(\psi_{1}, \cdots, \psi_{l}, e, x_{1}, \cdots, x_{n}, y)]$ ,

and

(24) $(x_{1})\cdots(x_{n})(y)[S_{n}(\psi_{1}, \cdots, \psi_{l}, e, x_{1}, \cdots, x_{n}, y)\rightarrow U(y)\simeq\varphi(x_{1}, \cdots, x_{n})]$ .
In general, a function $\varphi(x_{1}, \cdots , x_{n})$ is formally calculable in $\alpha_{1},$

$\cdots$ , $\alpha_{m}$ , and
(uniformly) in $\psi_{1},$ $\cdots$ $\psi_{l}$ , where $\alpha_{1},$ $\cdots$ , $\alpha_{m}$ are any constant ordinals and $\psi_{1},$ $\cdots$ , $\psi_{l}$

are any completely defined functions of $n_{1},$ $\cdots,$ $n_{l}$ variables, respectively, if and
only if there exists an ordinal $e$ (the Godel number of a system $E(0_{et1}, \cdots , 0_{a_{m}})$

of equations) such that (23) and (24) hold, where generally $ e>\omega$ but $e$ is con-
structed from $\alpha_{1},$ $\cdots$ , $\alpha_{m}$ by primitive recursive functions.

\S 4. Theorems on recursive functions and the hierarchy $\{\Sigma_{k}^{ord}, \Pi_{k}^{ord}\}_{k=1,2,\cdots}$

4.1. In this section, we assume the axiom of constructibility, and suppose
$\psi_{1},$ $\cdots$ , $\psi_{l}$ range over the completely defined functions of $n_{1},$ $n_{l}$ variables,

respectively.
For each $l\geqq 0$ , let

$T_{n}(\psi_{1}, \cdots, \psi_{l}, z, x_{1}, \cdots, x_{n}, y)_{\leftarrow}^{\rightarrow}S_{n}(\psi_{1}, \cdots, \psi_{\iota}, z, x_{1}, \cdots, x_{n}, y)$

$\wedge(t)_{t<y}7S_{n}(\psi_{1}, \cdots, \psi_{l}, z, x_{1}, \cdots, x_{n}, t)$ ,

following Kleene’s famous notation. Then, we have

(25) $(Ey)T_{n}(\psi_{1}, \cdots, \psi_{l}, z, x_{1}, \cdots, x_{n},y)\Leftrightarrow(Ey)S_{n}(\psi_{1}, \cdots, \psi_{l}, z, x_{1}, \cdots, x_{n}, y)$ .
Now, using these primitive recursive predicates we can proceed as in the
Kleene’s theory of recursive functions of natural numbers. First of all, we
have the normal from theorem (cf. [2, p. 288, p. 292 and p. 330]):

THEOREM 3. For each $1\geqq 0$ and $n>0$ : Given any function $\varphi(x_{1}$ , $\cdot$ .. , $x_{n})$

formally calculable (uniformly) in $\psi_{1},$ $\cdots$ , $\psi_{l}$ , a natural number $e$ can be found
such that

(26) $\varphi(x_{1}, \cdots , x_{n})$ is $defined\Leftrightarrow(Ey)T_{n}(\psi_{1}, \cdots , \psi_{l}, e, x_{1}, \cdots , x_{n}, y)$ ,

(27) $\varphi(x_{1}, \cdots, x_{n})\simeq U(\mu yT_{n}(\psi_{1}, \cdots’\psi_{l}, e, x_{1}, \cdots, x_{n},y))$ ,

and

(28) $(x_{1})\cdots(x_{n})(y)[T_{n}(\psi_{1}, \cdots, \psi_{l^{\prime}}, e, x_{1}, \cdots, x_{n},y)\rightarrow U(y)\simeq\varphi(x_{1}, \cdots x_{n})]$ .

Furthermore, we have the following theorem.
THEOREM 4. For each $1\geqq 0,$ $m>0$ and $n>0$ : Given any function $\varphi(x_{1}$ ,

... , $x_{n}$) formally calculable in constant ordinals $\alpha_{1},$
$\cdots$ , $\alpha_{m}$ , and (uniformly) in

functions $\psi_{1}$ , $\cdot$ , $\psi_{l}$ , an ordinal $e$ can be found such that

(29) $e=\nu(\alpha_{1}, \cdots\alpha_{m})$
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where $\nu$ is a primitive recursive function known from the syntactical form of
the system $E(0_{\alpha_{1}}, \cdots, 0_{a_{m}})$ of equations which defines $\varphi(x_{1}, \cdots , x_{n})$ as a formally
calculable function from $\alpha_{1}$ , $\cdot$

$\alpha_{m},$ $\psi_{1}$ , $\cdot$ , $\psi_{\iota},$ (26)
$,$

(27), and (28) hold. Thus, $it$

holds that

(30) $\varphi(x_{1}, \cdots, x_{n})\simeq U(\mu T_{n}(\psi_{1}, \cdots\psi_{l}, \nu(\alpha_{1}, \cdots, \alpha_{m}), x_{1}, \cdots, x_{n}, y))$ .

When a function $\varphi(x_{1}, \cdots , x_{n})1S$ formally calculable uniformly in $\psi_{1},$ $\cdots$ , $\psi_{l}$

( $\ln\alpha_{1},$ $\cdots$
$\alpha_{m}$ , and uniformly in $\psi_{1},$

$\cdots,$
$\psi_{l}$) we write this as $\varphi(\psi_{1}, \psi_{l}, x_{1}, \cdots, x_{n})$ ,

and say $\varphi(\psi_{1}$ , $\cdot$ .. $\psi_{\iota},$
$x_{1}$ , $\cdot$ .. $x_{n})$ to be formally calculable (in $\alpha_{1}$ , $\cdot$ .. $\alpha_{m}$). Then,

from the above theorems, if follows that a formally calculable (in $\alpha_{1},$ $\cdots\alpha_{m}$)

function $\varphi(\psi_{1}, \cdots , \psi_{l}, x_{1}, \cdots, x_{n})$ is partial recursive (in $\alpha_{1},$ $\cdots,$ $\alpha_{m}$). Unifying this
with Theorem 1 (2), we have

THEOREM 5. For each $l\geqq 0$ and $n>0$ : A function $\varphi(\psi_{1}, \cdot., , \psi_{\iota}, x_{1}, \cdots , x_{n})$

is partial recursive (in $\alpha_{1},$ $\cdots,$ $\alpha_{m}$), if and only if it is formally calculable (in
$\alpha_{1}$ , $\alpha_{m}$), when $\psi_{1},$ $\cdots$ , $\psi_{l}$ range over the completely defined functions.

To obtain the predicate $T_{n^{1}}^{n\cdots n\prime}$ $(w_{1}, \cdots , w_{l}, z, x_{1}, \cdots , x_{n}, y)$ similar to Kleene’s
(cf. [2, 290-291]), we proceed as follows.

When $\psi$ is a function variable with $n$ arguments, let $\sigma_{n}(\psi,y)$ be the func-
tion defined by

$\sigma_{n}(\psi, y)=\mu wS(w, \{\psi(x)\}_{x<y})$ for $n=1$ ,

$=\mu wS(w, \{\psi(x_{1}, \cdots , x_{n})\}_{j(x_{1},\cdots,J^{(x_{n-1}},x_{n})\cdots)<y})$ for each $n>1$ .
By the definition of the predicate $S$ , we see immediately that, for each $n$ :

(31) $\psi(x)=u(\sigma_{1}(\psi, y)tj(0, x, 0))$ when $x<y$ ,

(32) $\psi(x_{1}, \cdots, x_{n})=u(\sigma_{n}(\psi,y)7j(0,j(x_{1}, \cdots,j(x_{n\leftarrow 1}, x_{n})\cdots), 0))$

when $j(x_{1}, \cdots , j(x_{n-1}, x_{n})\cdots)<y$ ,

and that $\sigma_{n}(\psi, y)$ $1S$ general recursive. We shall abbreviate $l$ unctions
$u(\sigma_{1}(\psi, y)7j(0, x, 0)),$ $u(\sigma_{n}(\psi,y)tj(0,j(x_{1}, \cdots,j(x_{n-1}, x_{n})\cdots), 0))(n>1)$ by $(\sigma_{1}(\psi, y))_{x}$ ,

$(\sigma_{n}(\psi, y))_{x_{1}\cdots x_{n}}$. respectively.
Using (31) or (32), we can write $\psi_{i}(u_{1}, \cdots, u_{n})(i=1, \cdots, l)$ in (21) as

$(\sigma_{n_{i}}(\psi_{i}, y))_{u_{1}\cdots u_{nj}}$ ; for, even if $n_{i}>1$ , we have not only $u_{j}<y(j=1, \cdots , n_{i})$ but
also $j(u_{1}, \cdots , j(u_{n_{i^{-1}}}, u_{n_{i}})\cdots)<y$ , as is easily seen from the definitions. Hence,

we obtain the predicate $D^{n_{1}\cdots n_{l}}(w_{1}, \cdots , w_{l}, z,y)$ instead of $D(\psi_{1}, \cdots , \psi_{l}, z, y)$ by
replacing $\psi_{i}(u_{1}$ , $\cdot$ .. $u_{n_{i}})$ in (21) by $(w_{i})_{u_{1}\cdots u_{n;}}$ for each $\iota=1$ , $\cdot$ .. , 1. Then, using
$D^{n1n_{p}}(w_{1}, \cdots , w_{l}, z, y)$ in place of $D(\psi_{1}, \cdots, \psi_{l}, z, y)$ , we have a primitive recursive
predicate $S_{n}^{n_{1}\cdots n/}(w_{1}. \cdots , w_{l}, z, x_{1}, \cdot.. , x_{n}, y)$ for each $1>0,$ $n>0$ such that

$S_{n^{1l}}^{n}n(\sigma_{n_{1}}(\psi_{1},y),$ $\cdots\sigma_{n\prime}(\psi_{l}, y),$ $z,$ $x_{1},$ $\cdots,$ $x_{n},$ $y$)

$\rightarrow\leftarrow S_{n}(\psi_{1}. \cdots. \psi_{l}, z, x_{1}, \cdots x_{n}, y)$ .



28 T. $\prime r_{UGU\acute{E}}$

Let $T_{n^{1n\prime}}^{n}(w_{1}, \cdots , w_{l}, z, x_{1}, \cdots, x_{n}, y)$ be the predicate

$S_{n}^{n_{1}\cdots n_{l}}(w_{1}, \cdots w_{l}, z, x_{1}, \cdots, x_{n}, y)$ A $(t)_{t<y}7S_{n}^{n_{1}\cdots n_{l}}(w_{1}, \cdots\prime w_{\iota}, z, x_{1}, \cdots x_{n}, t)$ .

Using this, we have by the normal form theorem that, given a partial
recursive function $\varphi(\psi_{1}, \cdots \psi_{\iota}, x_{1}, \cdots x_{n})$ , a natural number $e$ can be found such
that

$\varphi(\psi_{1}, \cdots, \psi_{\iota}, x_{1}, \cdots x_{n})\simeq U(\mu yT_{n^{1}}^{n\cdots n\prime}(\sigma_{n_{1}}(\psi_{1}, y),$
$\cdots,$

$\sigma_{n\prime}(\psi_{l},y),$ $e,$ $x_{1},$ $\cdots,$ $x_{n},y$)).

This shows the following: For example, let $\omega_{\gamma}=\omega_{1},$ $l=1$ and $n_{1}=1$ . Given
a partial recursive function $\varphi(\psi, x_{1}, \cdots , x_{n})$ , for each $\psi,$

$x_{1},$ $\cdots$ , $\chi_{n}$ if $\varphi(\psi, x_{1}, \cdots , x_{n})$

is defined, its value depends only on at most countably many values $\psi(z)$ for
the function argument $\psi$ .

REMARK. $T_{n}(\psi_{1}, \cdots , \psi_{l}, z, x_{1}, \cdots, x_{n}, y),$ $T_{n^{1}}^{n\cdots n_{l}}(w_{1}, \cdots, w_{l}, z, x_{1}, \cdots, x_{n}, y)$ are prim-
itive recursive, but, unfortunately, $T^{n_{1}\cdots nl}(\sigma_{n_{1}}(\psi_{1},y),$ $\cdots\sigma_{n_{l}}(\psi_{\iota},y),$ $z$ . $x_{1},$ $\cdots x_{n},$ $y$)

is general (not primitive, at present) recursive, in contrast to the Kleene’s
case (cf. [2, 290-291]).

4.2. On account of Theorem 5, we say, following to Kleene’s terminology,
that any natural (ordinal) number $e$ such that (27) holds defines $\varphi$ recursively
(in $\alpha_{1},$ $\cdots$ , $\alpha_{m}$) or is a Godel number of $\varphi$ (from $\alpha_{1},$ $\cdots$ , $\alpha_{m}$). Now we have a
counterpart of [2, Theorem XXIII] for our case.

THEOREM 6. For each $m,$ $n>0$ , there is a primitive recursive function
$Sb_{n}^{m}(z, y_{1}, \cdot y_{m})$ such that, if $e$ defines recursively $\lambda y_{1}$ $y_{m}x_{1}$ $x_{n}\varphi(y_{1}$ , $\cdot$

$y_{m},$ $x_{1}$ ,
... , $x_{n}$), then, for each fixed m-tuple $y_{1}$ , $\cdot$

., , $y_{m}oJ^{\cdot}$ ordinal numbers, $Sb_{n}^{m}(e,$ $y_{1}$ , $\cdot$

., ,

$y_{m})$ defines recursively $\lambda x_{1}$ ... $x_{n}\varphi(y_{1}$ , $\cdot$ .. $y_{m},$ $x_{1}$ , $\cdot$ .. $x_{n})$ in $y_{1}$ , $\cdot$ . $y_{m}$ , and, when
$z,$ $y_{1}$ , $\cdot$ .. , $\gamma_{m}$ are nalural numbers, so is $Sb^{m_{\ell}}(z, y_{1}, \cdot. ,y_{m})$ .

Similarly for the case $1>0$ .
PROOF. Similar to the proof of [2, Theorem XXIII]. By the definition,

$\varphi(y_{1}, \cdots , y_{m}, x_{1}, \cdots, x_{?},)\simeq U(\mu yT_{m+n}(e, y_{1}, \cdots, ;)_{m}^{f}, \lambda_{1}^{\prime}, \cdots , x_{n}, y))$ . Since $\lambda zy_{1}\cdots y_{m}x_{1}\cdots x_{n}$

$U(\mu yT_{m+n}(z, y_{1}, \cdots y_{m}, x_{1}, \cdots x_{n}, y))$ is partial recursive, it is formally calculable
by Theorem 1. Then, we can find a system of equations defining that func-
tion as a formally calculable function. Let $D$ be such a system, and $g$ denote
its principal function letter. Now, we choose a function letter $f$ which does
not occur in $D$ . For any choice of ordinals $z,$ $y_{1},$ $\cdots$ , $y_{m}$ , let $C$ consist of the
equations of $D$ followed by the equation

$f(a_{1}, \cdots , a_{n})=g(0_{z}, 0_{v1}, \cdots , 0_{y_{m}}, a_{1}, \cdots a_{n})$ .
Let $d,f,$ $g,$ $a_{1}$ , $\cdot$ .. , $a_{n}$ be the G\"odel numbers of $D,$ $f,$ $g,$ $a_{1}$ , , $a_{n}$ , respectively.
Then, the Godel number of $C$ is the ordinal

$i(1,j([d]_{1},$ $\cdots,\int([d]_{s-1},j(v(s, d),j(8,j(j(f,j(a_{1}, \cdots,j(a_{n-1}, a_{n})\cdots))$ ,

$i(g,j(j(3, z),j(j(3, y_{1}), \cdots,j(j(3, y_{m}),j(a_{1}. \cdots,j(a_{n-1}, a_{n})\cdots))\cdots)))))))\cdots))$
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where $s=\mu x_{x<d}Eq(v(x, d))$ . We write this as $Sb_{n}^{m}(z, y_{1}, \cdot.. , y_{m})$ . $Sb_{n}^{m}(z, y_{1}, \cdot.. y_{m})$

is a desired function. Indeed, $Sb_{n}^{m}(z, y_{1}, \cdots , y_{m})$ is primitive recursive and, for
each fixed m-tuple $y_{1},$ $\cdots y_{m}$ of ordinals, $Sb_{n}^{m}(e, y_{1}, \cdots y_{m})$ defines $\lambda x_{1}$ $x_{n}\varphi(y_{1}$ ,
... , $y_{m},$ $x_{1},$

$\cdots$ , $x_{n}$) recursively in $y_{1},$ $\cdots y_{m}$ .
COROLLARY. For each natural number $n>0$ : If a function $\varphi(x_{1}, \cdots, x_{n})$ is

parlial recursive in $\alpha_{1},$
$\cdots$ , $\alpha_{m}$ , then a natural number $e$ can be found such that

$Sb_{n}^{m}(e, \alpha_{1}, \cdots , \alpha_{m})$ is a Godel number of $\varphi$ from $\alpha_{1},$ $\cdots$ , $\alpha_{m}$ .
THE OUTLINE OF THE PROOF. Given a function $\varphi(x_{1}, \cdots , x_{n})$ partial recur-

sive in $\alpha_{1}$ , $\cdot$ .. $\alpha_{m}$ , we can find, by Theorem 2, a system $E(0_{\alpha_{1}}$ , $\cdot$ .. $0_{am})$ of
equations which defines $\varphi$ as a function formally calculable from $\alpha_{i}$ . $\cdots$ , $\alpha_{m}$ .
Choose variables $y_{1},$ $\cdots y_{m}$ and a function letter $f$ not occurring in $E(0_{a_{1}},$ $\cdots$ ,
$0_{a_{m}})$ . $\ln$ each equation of $E(0_{a_{1}}, \cdots 0_{\alpha m})$ . change simultaneously each part
$h(r_{1}. \cdots , r_{p})$ to $h(r_{1}, \cdots r_{p}, y_{1}, \cdots , y_{m})$ and then each svmbol $0_{a_{i}}(i=1, \cdots , m)$ to
the variable $y_{i}$ . respectively. To the system of equations thus obtained, add
the equation

$f(y_{1}, \cdots, y_{m}, a_{1}, \cdots a_{n})=g(a_{1}, a_{n}, y_{1}, \cdots, y_{m})$ ,

where $g$ is the principal function letter of $E(0_{\alpha_{1}}, \cdots, 0_{\alpha_{m}})$ , as the last equation.
Let $E$ be the resulting system. The G\"odel number $e$ is a desired one; $i$ . $e$ .
$ e<\omega$ and $e$ defines $\lambda y_{1}$ $y_{m}x_{1}\cdots x_{n}\varphi(y_{1}, \cdot , y_{m}, x_{1}, \cdots , x_{n})$ recursively, where

$\varphi(x_{1}, \cdots, x_{n})\simeq\varphi(\alpha_{1}, \cdots \alpha_{m}, x_{1}, \cdots, x_{n})$ .

As the other corollary to Theorem 6, we have the following recursion
theorem (cf., $e$ . $g.,$ $[2$ , Theorem XXVII]).

THEOREM 7. For each natural number $n>0$ : Given any partial recursive
function $\psi(z, x_{1}, \cdots , x_{n})$ , a natural number $e$ can be found which defines $\varphi(x_{1},$ $\cdots$ ,
$x_{n})$ recursively, where

$\varphi(x_{1}, \cdots, x_{n})\simeq\psi(e, x_{1}, \cdots, x_{n})$ .

The proof is similar to that of Theorem XXVII in [2], and $e=Sb_{n}^{1}(f,f)$

$<\omega$ , where $f$ is a natural number which defines $\lambda yx_{1}$ $x_{n}(\prime\prime(Sb_{n}^{1}(y, y),$
$x_{1},$ $\cdots$ , $x_{n}$)

recursively.
4.3. We can apply usefully the predicates $T_{n}(z, x_{1}, \cdots, x_{n}, y)(n=1,2, \cdots)$

to develop the theory of hierarchy $\{\Sigma_{k^{\gamma}}^{O}a\Pi_{k}^{o\gamma(}l\}_{k=1.2},\cdots$ (cf. [8, \S 5]), built on the
quantified forms of the predicates of ordinals which are expressible syntacti-
cally by starting with general recursive predicates and using the symbolism
of the first order predicate calculus. Hence, we have a version or another
easy proof for each of the enumeration ([8, Corollary to Theorem 4]), hierarchy
([8, Theorem 5]), Post’s Theorem ([8, Theorem 3]), etc. of [8, \S \S 5, 6].

For example, given any general recursive predicate $R(a, b)$ of two vari-
ables, consider the partial recursive function $\mu xR(a, x)$ . Then, by the defini-
tion,
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$\mu xR(a, x)$ is $defined\rightarrow\leftarrow(Ex)R(a, x)$ .
By Theorems 1, 3, a natural number $e$ can be found such that it defines
$\mu yR(x, y)$ recursively. Hence, using (26) of Theorem 3,

(33) $(Ex)R(a, x)_{\leftarrow}^{\vee}(Ex)T_{1}(e, a, x)$ .

Thus, we see: The predicate $(Ex)[z<\omega\wedge T_{1}(z, a, x)]$ enumerates9) the pred-
icates $P(a)$ of the form $\sum_{1}^{ord}$ with general recursive scope. Similarly we have
the enumerating predicates for the classes of predicates of the other forms
in $\{\sum_{k}^{ora}, \Pi_{k}^{ora}\}_{k=1.2},\cdots$ . From this, it follows immediately that the class of the
predicates of the form $\sum_{\kappa^{\prime a}}^{o}$ (or $II_{k}^{orcl}$) is the same whether a general recursive
or only a primitive recursive predicate be allowed as the scope. (cf. [8, the
second part of Theorem 3]).

Now, we can give another proof of Theorem 5 (the hierarchy theorem)

of [8]. Indeed, for the form $\Sigma_{1}^{or}a$ it suffices to take the predicate $(Ex)T_{1}(a, a, x)$ .
This is evidently of the form $\sum_{1}^{o\prime}$ ’, but it can not be expressed in the dual
form $\Pi_{1}^{ord}$ . Similarly for the other forms. Furthermore, we add the complete
form theorem (cf., $e$ . $g.,$ $[3$ , VII]).

THEOREM 8. The predicate $(Ex)T_{1}(a, a, x)$ is a complete $predicate^{1)}$ of the
form $\Sigma_{1}^{or(}\iota$ . Similarly for the other forms in $\{\Sigma_{k}^{o\prime a}, \Pi_{k}^{ord}\}_{k=1,2},\cdots$

PROOF. Given any predicate $(Ex)R(a_{1}, \cdots , a_{n}, x)$ with general recursive
scope $R$ , consider the function ; $a_{1}\ldots a_{n}z\mu xR(a_{1}, \cdots a_{n}, x)$ . Since this function
is partial recursive, there is a Godel number, say $e(e<\omega)$ , of it. Then, for
any fixed n-tuple $a_{1}$ , $\cdot$ .. , $a_{n}$ of ordinals, $Sb_{1}^{n}(e, a_{1}, \cdot.. , a_{n})$ is a G\"odel number of
the function $\lambda z\mu xR(a_{1}, \cdot.. , a_{n}, x)$ , which is defined if and only if $(Ex)R(a_{1}$ , $\cdot$ . ,

$a_{n},$ $x$) for any $z$ . Hence, by Theorem 4, we have

$(Ex)R(a_{1}, \cdots , a_{n}, x)_{\leftarrow}^{\rightarrow}(Ex)T_{1}(Sb_{1}^{n}(e, a_{1}, \cdots , a_{n}), z, x)$

$\rightarrow\leftarrow(Ex)T_{1}(Sb_{1}^{n}(e, a_{1}, \cdots , a_{n}), Sb_{1}^{n}(e, a_{1}, \cdots , a_{n}), x)$

(by substituting $Sb_{1}^{n}$ ( $e,$ $a_{1},$ $\cdots$ , $a_{n}$) for $z$).

We consider the predicates obtained by using ‘ general recursive in the
classical sense’ or ‘ general recursive in the ordinals $\alpha_{1},$ $\cdots$ , $\alpha_{m}$ in place of
‘ general recursive ‘ in the definition of the (gr)-predicates (see [8, p. 206]),

and denote the corresponding quantified form (or the class of the predicates
of that form) by $\Sigma_{k}^{ord}(\omega_{\gamma})(\Pi_{k}^{ora}(\omega_{\gamma}))$ or $\Sigma_{k}^{ora,\alpha_{1},\cdots,\alpha_{m}}(\Pi_{k}^{ora.a_{1\prime}\cdots.\alpha_{m}})$ , respectively.

The following will be remarkable.
The predicate $(Ex)T_{1}(z, a, x)$ ($(Ex)[z<\omega$ A $T_{1}(Sb_{1}^{m}$($z,$ $\alpha_{1},$ $\cdots$ , $\alpha_{m}$), $a,$ $x)]$) enu-

merates the predicates of the form $\sum_{1}^{ora}(\omega_{\gamma})(\sum_{1}^{ora,\alpha_{1},\cdots,\alpha_{m}})$ , and the predicate
\langle$Ex$ ) $T_{1}(a, a, x)$ , which is of the Jorm $\sum_{1}^{ora}$ and is a complete predicate of it, $is$

9) Cf. [2, Discussion of \S 57, p. 282].
10) For the terminology ‘ complete predicate ’, $e$ . $g.$ , see [3, p. 196].
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a complete predicate also of the predicates in $\sum_{J}^{ora}(\omega_{\gamma})$ . Similarly for the other
forms.

In \S 4.2-3. we treated only the case where the number 1 of function vari-
ables $=0$ . We remark that one can extend that to the case $l>0$ , without
any difficulty.

Tokyo University of Education
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