Note on holomorphically convex complex spaces

By Joji KAJIWARA

(Received June 7, 1963) (Revised July 9, 1963)

Hirzebruch [4] proved that for any 2-dimensional complex space Y there exists a 2-dimensional complex manifold X which is obtained by a proper modification of Y in the inuniformisable points of Y. If Y is a Stein space, then X is obviously a holomorphically convex complex manifold. In the present paper we shall conversely consider the conditions that a holomorphically convex complex space can be obtained by a proper modification of a Stein space. (In the present paper we mean by a complex space an α space $=\beta_n$ space in Grauert-Remmert [3].)

The following lemma is a special case of the theorem of factorization of Remmert-Stein [9].

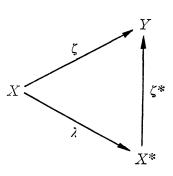
LEMMA 1. Let ζ be a proper holomorphic mapping of an n-dimensional connected complex space X onto an n-dimensional Stein space Y such that ζ induces an isomorphism of the integral domain I(Y) of all holomorphic functions in Y onto the integral domain I(X) in X. Then (X, ζ, Y) is a proper modification. Moreover, if each connected component of the set of degeneracy E of ζ is compact in X, then (X, ζ, Y) is a proper points-modification.

PROOF. If n=1, ζ is biholomorphic. Therefore we may assume that $n \ge 2$. Let x be any point of X. We denote by σ_x the connected component of $\zeta^{-1}\zeta(x)$ containing x. σ_x is a nowhere discrete connected compact analytic set in X if $x \in E$. We shall introduce an equivalence relation R in X as follows;

x and $y \in X$ are equivalent modulo R if $\sigma_x = \sigma_y$.

Let $X^* = X/R$ be the factor space of X by the equivalence relation R. If we consider the canonical mappings $\lambda: X \to X^*$ and $\zeta^*: X^* \to Y$, then the commutativity holds in the following diagram;

J. KAJIWARA

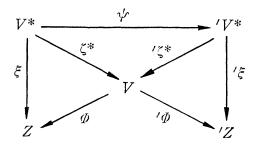


Since ζ is proper, λ and ζ^* are proper. We shall introduce a complex structure in the Hausdorff space X^* such that λ is holomorphic. Let y be any point of $\zeta(E)$. There exists a neighbourhood V of y with the following property;

There exists a proper holomorphic mapping Φ of V onto a domain Z of C^n such that (V, Φ, Z) is an analytic ramified covering of Z.

Then $(w_1, w_2, \dots, w_n) = \Phi \circ \zeta$ is a proper mapping of $\zeta^{-1}(V)$ onto Z with the set of degeneracy $E \cap \zeta^{-1}(V)$. From Grauert-Remmert [3] the set L of all inuniformisable points of $\zeta^{-1}(V)$ is an (n-2)-dimensional analytic thin set in $\zeta^{-1}(V)$. Let M be the set of all points of x of $\zeta^{-1}(V)-L$ such that $\partial(w_1, w_2, \dots, w_n)/\partial(t_1, t_2, \dots, t_n) = 0$ for some local coordinates t_1, t_2, \dots, t_n of x. Then *M* is a pure (n-1)-dimensional analytic set in $\zeta^{-1}(V)-L$. From Remmert-Stein [8] the closure \overline{M} of M in $\zeta^{-1}(V)$ is an analytic set in $\zeta^{-1}(V)$. Since the set of branch points of an analytic ramified covering is a pure 1-codimensional analytic set from Grauert-Remmert [3], we have $L \subset \overline{M}$. It holds that $E \cap \zeta^{-1}(V) \subset \overline{M} \cup L = \overline{M}$. $N = \Phi \circ \zeta(\overline{M})$ is an analytic set in Z from Remmert [7] since $\Phi \circ \zeta$ is proper. We put $V^* = \lambda(\zeta^{-1}(V))$. $\Phi \circ \zeta$ induces naturally a nowhere degenerate proper mapping ξ of V^* onto Z. Since ξ is a local homeomorphism of $V^* - \xi^{-1}(N)$ onto Z - N and N is an analytic set in Z such that $\xi^{-1}(N)$ nowhere separates $V^{(1)}$, (V^*, ξ, Z) is an analytic ramified covering of Z with the critical set N. Obviously ζ^* is holomorphic. Let ' Φ be another proper holomorphic mapping of V onto a domain 'Z of C^n such that (V, ϕ, Z) is an analytic ramified covering of Z. The corresponding analytic sets in $\zeta^{-1}(V)$ and in 'Z and the corresponding analytic ramified covering of 'Z with the critical set 'N is denoted, respectively, by ' \overline{M} , 'N and (V^*, ξ, Z) . Let ψ be the canonical injective mapping of V^* onto V^* . Then the commutativity holds in the following diagram;

¹⁾ We say that a set A nowhere separates a connected set B, if $B-A \cap B$ is connected and locally connected.



Therefore ψ is a homeomorphism of V^* onto V^* and $\zeta \circ \psi = \Psi \circ \zeta^*$ is a holomorphic mapping of V^* onto Z. Hence ψ is a holomorphic mapping of V^* onto V^* . The complex structure in $\lambda(\zeta^{-1}(V))$ does not depend on the special choice of Φ . Since $\xi \circ \lambda = \Phi \circ \zeta$ is holomorphic, λ is a holomorphic mapping of $\zeta^{-1}(V)$ onto V^* . Thus we can introduce a complex structure in X^* such that $\lambda: X \to X^*$ and $\zeta^*: X^* \to Y$ are holomorphic.

Suppose that there exists a nowhere discrete compact analytic set A in X^* . Then $\lambda^{-1}(A)$ is a nowhere discrete compact analytic set in X and $\zeta(\lambda^{-1}(A))$ is a compact analytic set in a Stein space Y. Therefore $\zeta(\lambda^{-1}(A))$ is a finite set in Y. Hence A itself is a finite set in X^* . But this is a contradiction. Therefore X^* contains no nowhere discrete compact analytic set and X^* is a Stein space. $(X, E, \lambda, X^*, \lambda(E))$ is a proper modification of a Stein space X^* in the analytic set $\lambda(E)$. Since λ induces an isomorphism of $I(X^*)$ onto I(X), ζ^* is a biholomorphic mapping of X^* onto Y from Remmert [6]. Therefore $(X, E, \zeta, Y, \zeta(E))$ itself is a proper modification of a Stein space Y in the analytic set $\zeta(E)$. If each connected component of E is compact in X, then $\zeta(E)$ is a discrete set in Y. Hence $(X, E, \zeta, Y, \zeta(E))$ is a proper points-modification of Y in the discrete set $\zeta(E)$.

A nowhere discrete compact analytic set A in a complex space X is called an *exceptional analytic set* if there exists a proper points-modification (X, A, ζ, Y, D) of a complex space Y in a discrete subset D of Y. Grauert [2] proved that A is an exceptional analytic set, if and only if there exists a strongly pseudoconvex neighbourhood U of A such that A is a maximal compact analytic subset of $U \Subset X$. Similarly to Grauert [2] we shall prove the following theorem.

THEOREM 1. A 2-dimensional connected holomorphically convex complex space X is obtained by a proper points-modification of a Stein space Y if and only if there exist two holomorphic functions in X which are analytically independent at each point of X.

PROOF. The necessity of Theorem 1 follows immediately. Therefore it suffices to prove the sufficiency of Theorem 1 in case that X is not K-complete. From Remmert [6] there exists a Stein space Y and a proper holomorphic mapping ζ of X onto Y such that ζ induces naturally an isomorphism of I(Y)

onto I(X). We shall prove that (X, ζ, Y) is the desired proper points-modification of Y.

Since there exist two holomorphic functions in X which are analytically independent at each point of X, Y is a 2-dimensional Stein space. From Remmert [7] the set of degeneracy E of ζ is a nowhere discrete analytic set in X and $\zeta(E)$ is also an analytic set in Y. Let x_0 be any point of E such that x_0 is a uniformisable point of X and that E is irreducible and regular in x_0 . Then there exists a neighbourhood U of x_0 such that any point of U is uniformisable and that E is irreducible and regular in each point of $U \cap E$. Since $x_0 \in E$, $\zeta^{-1}\zeta(x_0)$ is 1-dimensional in x_0 . Therefore for a sufficiently small neighbourhood U, $U \cap \zeta^{-1}\zeta(x_0)$ is a pure 1-dimensional analytic set in U. We have $U \cap \zeta^{-1}\zeta(x_0) = U \cap E$. Since E is irreducible at each point of $U \cap E$, we have $U \cap \zeta^{-1}\zeta(x_0) = U \cap E$.

This means $\zeta(U \cap E) = \zeta(x_0)$. We denote the connected components of E by E_i $(i=1, 2, \cdots)$. Then each $\zeta(E_i)$ consists of only a single point y_i $(i=1, 2, \cdots)$ and $\{y_i; i=1, 2, \cdots\}$ is an analytic set in Y, that is, a discrete set in Y. Therefore each E_i is a pure 1-dimensional compact analytic set in X. From Lemma 1 (X, ζ, Y) is the desired proper points-modification of a Stein space Y.

We shall prove that Theorem 1 is a special case of a result in Grauert [2]. A complex space X is called to be *exhausted by strongly pseudoconvex domains* if there exists a sequence of strongly pseudoconvex domains X_n as follows;

- (1) $X_n \Subset X_{n+1}$ ($n = 1, 2, \cdots$),
- (2) $X = \bigcup_{n=1}^{\infty} X_n$.

THEOREM 2. A connected holomorphically convex complex space X can be exhausted by strongly pseudoconvex domains if and only if X can be obtained by a proper points-modification of a Stein space Y.

PROOF. If there exists a proper modification (X, E, ζ, Y, D) of a Stein space Y in a discrete set $D = \{y_i; i=1, 2, \dots\}$, then from Narasimhan [5] there exists a strongly plurisubharmonic function p > 0 in Y such that $\{y; p(y) < c\}$ is relatively compact in Y for any c > 0. $p \circ \zeta$ is plurisubharmonic in X. There exists a sequence of positive numbers c_n as follows;

- (1) $c_n < c_{n+1}$ and $c_n \rightarrow \infty$ as $n \rightarrow \infty$,
- (2) $\{y; p(y) = c_n\} \cap D = \phi \text{ for } n = 1, 2, \cdots$.

Since ζ is a biholomorphic mapping of X-E onto Y-D, $p \circ \zeta$ is strongly plurisubharmonic in X-E. Therefore $B_n = \{x; p \circ \zeta(x) < c_n\}$ is a relatively compact strongly pseudoconvex open set of X. If we take a suitable connected component X_n of B_n for any n, then X_n is a relatively compact strongly pseudoconvex domain of X such that $X_n \Subset X_{n+1}$ and $X = \bigcup_{n=1}^{\infty} X_n$. Hence X can be exhausted by strongly pseudoconvex domains.

Conversely, we shall suppose that X can be exhausted by strongly pseudoconvex domain X_n $(n = 1, 2, \dots)$. From Remmert [6] there exists a proper holomorphic mapping ζ of X onto a Stein space Y such that ζ induces naturally an isomorphism of I(Y) onto I(X). From Grauert [2] there exists a compact set $K_n \subset X_n$ such that any nowhere discrete compact analyic set $A \subset X_n$ is contained in K_n for any n as X_n is strongly pseudoconvex. Therefore the dimension of Y coincides with that of X. If we denote the set of degeneracy of ζ by E, then we have $E \cap X_n \subset K_n$. Each connected component E_i of E is a nowhere discrete compact analytic set in X. $\zeta(E_i)$ consists of a single point y_i . From Lemma 1 (X, E, ζ, Y, D) is a proper modification of Y in the discrete set D. q. e. d.

We can summerize the above results in the following theorem:

THEOREM 3. If X is a 2-dimensional holomorphically convex complex space, the following three conditons are equivalent;

- (1) X can be obtained by a proper points-modification of a Stein space.
- (2) There exist two holomorphic functions in X which are analytically independent at each point of X.
- (3) X can be exhausted by strongly pseudoconvex domains.

We remark that in a similar way Theorem 1 can be generalized in the case of an n-dimensional complex space as follows;

THEOREM 4. An n-dimensional connected holomorphically convex complex space X is obtained by a proper modification of a Stein space if and only if there exist n holomorphic functions in X which are analytically independent at each point of X.

> Department of Mathematics Kanazawa University

References

- [1] H. Grauert, On point modifications, Contributions to function theory, Tata Institute of Fundamental Research, Bombay, 1960, 139-144.
- [2] H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., 146 (1962), 331-368.
- [3] H. Grauert und R. Remmert, Komplexe Räume, Math. Ann., 136 (1958), 243-316.
- [4] H. Hirzebruch, Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen, Math. Ann., 126 (1953), 1-22.
- [5] R. Narasimhan, The Levi problem for complex spaces, Math. Ann., 142 (1961), 355-365, II, ibid., 146 (1962), 195-216.
- [6] R. Remmert, Reduction of complex spaces, Sem. on analytic func. I, Princeton, 1957, 190-205.

J. KAJIWARA

- [7] R. Remmert, Holomorphe und meromorphe Abbildungen komplexer Räume, Math. Ann., 133 (1957), 328-370.
- [8] R. Remmert und K. Stein, Über die wesentliche Singularitäten analytischer Mengen, Math. Ann., 126 (1953), 263-306.
- [9] R. Remmert und K. Stein, Eigentliche holomorphe Abbildungen, Math. Z., 73 (1960), 150-189.
- [10] K. Stein, Analytische Zerlegungen komplexer Räume, Math. Ann., 132 (1956), 63-93.
- [11] K. Stein, Die Existenz komplexer Basen zu holomorphe Abbildungen, Math. Ann., 136 (1958), 1-8.