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Let $k$ be a perfect field and let $G$ be a connected semi-simple algebraic
group defined over $k$ . It is known that $G$ has a maximal torus $T$ defined
over $k$ (Rosenlicht [2]). Fixing once for all such a torus $T$, denote by $B$ the
set of all Borel subgroups of $G$ containing $T$. Our purpose is to prove the
following

THEOREM. Every group in $B$ is defined over $k$ if and only if $T$ is trivial
over $k$ . When that is so, all groups in $B$ are conjugate by k-rational points of
the normalizer of $T$.

For some purpose the following trivial restatement is useful.
$CoROLLARY$ . Let $K/k$ be an extension such that $K$ is perfect. Then, every

group in $B$ is defined over $K$ if and only if $T$ is split by K. When that is so,
all groups in $B$ are conjugate by K-rational points of the normalizer of $T$.

PROOF OF THEOREM. We begin with arranging the basic notions in
S\’eminaire Chevally [1] from the Galois theoretical view point.

Denote by $N$ the normalizer of $T$ and by $W$ the Weyl group $N/T$ of $T$.
Let $\overline{k}$ be the algebraic closure of $k$ and $\mathfrak{g}=\mathfrak{g}(\overline{k}/k)$ be the Galois group of $\overline{k}/k$ .
Since every coset of $W$ contains a k-rational point, one can define the action
of $\mathfrak{g}$ on $W$ by

$w^{\sigma}=s^{\sigma}mod T$, where $w=smod T$ and $s\in N_{\overline{k}}.*$

The group $\mathfrak{g}$ acts on the character module $\hat{T}$ since every character is k-rational.
Furthermore, $W$ acts on $\hat{T}$ by

$(w\chi)(t)=\chi(s^{-1}ts)$ , where $w=smod T$, $s\in N$ .
One verifies easily that

$(w\chi)^{\sigma}=w^{\sigma}\chi^{\sigma}$ for $\sigma\in \mathfrak{g},$ $w\in W,$ $\chi\in\hat{T}$ .

In other words, $\hat{T}$ has a $(\mathfrak{g}, W)$-module structure. By linearity, this structure
is trivially extended to the vector space $\hat{T}^{Q}=Q\otimes\hat{T}$.

*For an algebraic set $A$ we denote by $A_{K}$ the subset of K-rational points.
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Let $K/k$ be a finite Galois splitting field for $T$. The action of $\mathfrak{g}$ on $\hat{T}$ is
essentially that of the finite group $\mathfrak{g}(K/k)$ , the Galois group of $K/k$ . Denoting
by $(\xi, \eta)$ a usual noncanonical inner product on $\hat{T}^{Q}$ , put

$\langle\xi, \eta\rangle=\Sigma_{w\in_{\mathfrak{g}}W_{(K/k)}}((w\xi)^{\sigma}, (w\eta)^{\sigma})$ .

It is clear that $\langle\xi, \eta\rangle$ is a positive definite inner product on $\hat{T}^{Q}$ which is
$(\mathfrak{a}, W)$-invariant in the sense that

$\langle w\xi, w\eta\rangle=\langle\xi^{\sigma}, \eta^{\sigma}\rangle=\langle\xi, \eta\rangle$ for $w\in W,$ $\sigma\in \mathfrak{g}$ .

An injective homomorphism $x$, defined over $\overline{k}$ , of the additive group $G_{a}$ of
the universal domain into $G$ is called a one parameter group of $G$ . By a
root of $G$ with respect to $T$ we mean a character $\alpha\in\hat{T}$ for which holds the
relation

$tx_{n}(\lambda)t^{-1}=x_{c\iota}(\alpha(t)\lambda)$ , $t\in T,$ $\lambda\in G_{a}$

for a suitable one parameter group $x_{a}$ . The totality of roots with respect to
$T$ will be denoted by $\Delta$ . It is easy to verify that $\alpha^{\sigma}$ belongs to the one
parameter group $x_{a^{\sigma}}=x_{\alpha}^{\sigma}$ and $ w\alpha$ belongs to the one parameter group $x_{w\alpha}(\lambda)$

$=sx_{\alpha}(\lambda)s^{-1}$ , with $w=smod T$. Thus, $\mathfrak{g}$ and $W$ induce permutations on $\Delta$ . As
a group of linear transformations on the vector space $\hat{T}^{Q},$ $W$ is generated by
the symmetries $w_{a}$ with respect to $\alpha\in\Delta$ . By using the inner product $\langle\xi, \eta\rangle$ ,
$w_{\alpha}$ is expressed as

$w_{\alpha}\xi=\xi-\underline{2}\langle\langle\alpha^{\frac{\alpha,\xi}{\alpha}}\rangle^{\rangle}\alpha,$
$\xi\in\hat{T}^{Q}$ .

In view of the $(\mathfrak{g}, W)$-invariance of the $\langle\xi, \eta\rangle$ on the $(\mathfrak{g}, W)$-space $\hat{T}^{Q}$, one
verifies easily that

(1) $u_{a}^{\sigma}=w_{\alpha^{\sigma}}$ for $\sigma\in \mathfrak{g},$
$\alpha\in\Delta$ .

Let $H_{\alpha}$ be the hyperplane composed of $\xi\in\hat{T}^{Q}$ such that $\langle\xi, \alpha\rangle=0$ . Any
maximal convex set of the complement of $\bigcup_{a\in\Delta}H_{\alpha}$ in $\hat{T}^{Q}$ is called a chamber.

Each chamber $C$ is characterized by a $\{\pm 1\}$ -valued function $\epsilon(\alpha)$ with $\epsilon(-\alpha)$

$=-\epsilon(\alpha)$ in such a way that

$C=$ { $\xi\in\hat{T}^{Q}$ ; $\epsilon(\alpha)\langle\xi,$ $\alpha\rangle>0$ for all $\alpha\in\Delta$ }.

Since C’ is characterized by the function $\epsilon_{\sigma}(\alpha)=\epsilon(\alpha^{\sigma^{-1}})$ , the Galois group $\mathfrak{g}$

permutes chambers. On the other hand, it is well known that the Weyl group
$W$ permutes chambers simply and transitively.

Now, let $B$ be a Borel subgroup of $G$ containing $T:B\in B$ . There is at
least one $B$ which is defined over $\overline{k}$ . Since any other $B_{1}\in B$ is written as
$B_{1}=sBs^{-1}$ with $s\in N_{\overline{h}}$ , one sees that every group in $B$ is defined over $\overline{k}$ . It
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is fundamental that $W$ permutes groups in $B$ simply and transitively by
$wB=sBs^{-1}$ , $w=s$ $mod T$

(Chevalley [1, Expos\’e $n^{O}$ . $9$ , \S 3]). The Galois group $\mathfrak{g}$ also permutes these
groups in an obvious way. For a group $B$ in $B$, put

$\Delta_{B}=\{\alpha\in\Delta;{\rm Im} x_{\alpha}\subset B\}$ .
One can easily verify that $w\Delta_{B}=\Delta_{wB}$ and $\Delta_{B}^{\sigma}=\Delta_{B^{\mathcal{J}}}$ . Since $\Delta_{B}$ satisfies the
condition for “ positive roots”, the set

$C_{B}=$ { $\xi\in\hat{T}^{Q}$ ; $\langle\xi,$ $\alpha\rangle>0$ for all $\alpha\in\Delta_{B}$ }

becomes a chamber (Chevalley [1, Expos\’e $n^{o}$ . $14$ , \S 4]). By virtue of the
$(\mathfrak{g}, W)$-invariance of $\langle\xi, \eta\rangle$ , one sees that

(2) $wC_{B}=C_{wB}$ , $w\in W$ ,

(3) $C_{B}^{\sigma}=C_{B^{\sigma}}$ , $\sigma\in \mathfrak{g}$ .
Since the set $\{wC_{B}, w\in W\}$ forms a partition of the complement of $\bigcup_{\alpha\in\Delta}H_{\alpha}$ in

$\hat{T}^{Q},$ (2) implies that the set $\{C_{B}, B\in B\}$ forms the same partition. Hence,
from (3), one gets
(4) $C_{B}^{\sigma}=C_{B}$ $<>$ $B^{\sigma}=B$ .

We are now ready to prove our theorem. Suppose first that $T$ is trivial
over $k$ . In terms of characters, this means that $\xi^{\sigma}=\xi$ for all $\sigma\in \mathfrak{g},$

$\xi\in\hat{T}^{Q}$.
Since the chambers $C_{B}$ are subsets of $\hat{T}^{Q},$

$C_{B}^{\sigma}=C_{B}$ for all $\sigma\in \mathfrak{g},$ $B\in B$. Hence,
by (4), $B^{\sigma}=B$ for all $\sigma\in \mathfrak{g},$ $B\in B,$ $i$ . $e.$ , every $B\in B$ is defined over $k$ . Con-
versely, suppose that every $B\in B$ is defined over $k$ . Again by (4) $C_{B}^{\sigma}=C_{B}$

for all $\sigma\in \mathfrak{g},$ $B\in B$, and hence every chamber is invariant under $\mathfrak{g}$ . From (2),
(3), $wC_{B}=(wC_{B})^{\sigma}=(C_{wB})^{\sigma}=C_{(wB)^{\sigma}}=C_{w^{\sigma}B^{\sigma}}=w^{\sigma}C_{B^{\sigma}}=w^{\sigma}C_{B}^{\sigma}=w^{\sigma}C_{B}$ , and so $w^{\sigma}=w$

for all $\sigma\in \mathfrak{g},$ $w\in W$. Hence, by (1), $w_{\alpha}=w_{a^{\mathcal{O}}}$ for all $\alpha\in\Delta,$ $\sigma\in \mathfrak{g}$ . Thus $\alpha$ and
$\alpha^{\sigma}$ are colinear and, since both are roots, one must have $\alpha^{\sigma}=\pm\alpha$ . Suppose
that $\alpha^{\sigma}=-\alpha$ and take $B\in B$ such that $\alpha\in\Delta_{B}$ . Then $-\alpha=\alpha^{\sigma}\in\Delta_{B}^{\sigma}=\Delta_{B^{\sigma}}=\Delta_{B}$ ,

a contradiction. Hence every $\alpha\in\Delta$ is invariant by $\mathfrak{g}$ . Since roots generate
$\hat{T}^{Q}$, the g-module $\hat{T}$ is trivial, $i$ . $e.,$ $T$ is trivial over $k$ . Finally, suppose that
Tistrivial over k. Take any B, $B_{1}\in B$ . $Thereisans\in N_{\overline{k}}suchthatB_{1}=sBs^{\rightarrow 1}$ .
Since $B,$ $B_{1}$ are defined over $k$ by what we have proved, one has $B_{1}=s^{\sigma}Bs^{-\sigma}$

for $\sigma\in \mathfrak{g}$ , and hence $ s^{-1}s^{\sigma}\in$ $($normalizer of $B)_{\cap}N_{\overline{k}}=B\cap N_{\overline{k}}=T_{\overline{k}}$ (Chevalley
[1, Expos\’e $n^{o}$ . $9$ , \S 3]). As $(s^{-1}s^{\sigma})$ is a cocycle of $\mathfrak{g}$ in $T_{k}$ and Tis trivial over
$k$ , one can find, by Hilbert’s Theorem 90, a point $t\in T_{\overline{k}}$ such that $s^{-1}s^{\sigma}=t^{-1}t^{\sigma}$ .
Hence $B_{1}=uBu^{-1}$ with $u=st^{-1}\in N_{\overline{k}}$ , Q. E. D.
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