On the field of definition of Borel subgroups of semi-simple algebraic groups

Dedicated to Professor Y. Akizuki for his 60th birthday

By Takashi Ono

(Received May 6, 1963)

Let k be a perfect field and let G be a connected semi-simple algebraic group defined over k. It is known that G has a maximal torus T defined over k (Rosenlicht [2]). Fixing once for all such a torus T, denote by **B** the set of all Borel subgroups of G containing T. Our purpose is to prove the following

THEOREM. Every group in B is defined over k if and only if T is trivial over k. When that is so, all groups in B are conjugate by k-rational points of the normalizer of T.

For some purpose the following trivial restatement is useful.

COROLLARY. Let K/k be an extension such that K is perfect. Then, every group in **B** is defined over K if and only if T is split by K. When that is so, all groups in **B** are conjugate by K-rational points of the normalizer of T.

PROOF OF THEOREM. We begin with arranging the basic notions in Séminaire Chevally [1] from the Galois theoretical view point.

Denote by N the normalizer of T and by W the Weyl group N/T of T. Let \bar{k} be the algebraic closure of k and $g = g(\bar{k}/k)$ be the Galois group of \bar{k}/k . Since every coset of W contains a \bar{k} -rational point, one can define the action of g on W by

 $w^{\sigma} = s^{\sigma} \mod T$, where $w = s \mod T$ and $s \in N_{\overline{k}}$.*

The group g acts on the character module \hat{T} since every character is \bar{k} -rational. Furthermore, W acts on \hat{T} by

 $(w\chi)(t) = \chi(s^{-1}ts)$, where $w = s \mod T$, $s \in N$.

One verifies easily that

$$(w\chi)^{\sigma} = w^{\sigma}\chi^{\sigma}$$
 for $\sigma \in \mathfrak{g}, w \in W, \chi \in \hat{T}$.

In other words, \hat{T} has a (g, W)-module structure. By linearity, this structure is trivially extended to the vector space $\hat{T}^{\boldsymbol{q}} = \boldsymbol{Q} \otimes \hat{T}$.

^{*} For an algebraic set A we denote by A_K the subset of K-rational points.

Let K/k be a finite Galois splitting field for T. The action of \mathfrak{g} on \hat{T} is essentially that of the finite group $\mathfrak{g}(K/k)$, the Galois group of K/k. Denoting by (ξ, η) a usual noncanonical inner product on $\hat{T}^{\mathbf{q}}$, put

$$\langle \xi, \eta
angle = \sum_{w \in W \atop \sigma \in \mathfrak{g}(K/k)} ((w\xi)^{\sigma}, (w\eta)^{\sigma})$$
 .

It is clear that $\langle \xi, \eta \rangle$ is a positive definite inner product on \hat{T}^{q} which is (\mathfrak{g}, W) -invariant in the sense that

$$\langle w \xi, \, w \eta
angle = \langle \xi^{\sigma}, \, \eta^{\sigma}
angle = \langle \xi, \, \eta
angle \qquad ext{for} \quad w \in W, \; \sigma \in \mathfrak{g} \, .$$

An injective homomorphism x, defined over \overline{k} , of the additive group G_a of the universal domain into G is called a one parameter group of G. By a root of G with respect to T we mean a character $\alpha \in \hat{T}$ for which holds the relation

$$tx_{\alpha}(\lambda)t^{-1} = x_{\alpha}(\alpha(t)\lambda), \quad t \in T, \ \lambda \in G_a$$

for a suitable one parameter group x_{α} . The totality of roots with respect to T will be denoted by Δ . It is easy to verify that α^{σ} belongs to the one parameter group $x_{\alpha\sigma} = x_{\alpha}^{\sigma}$ and $w\alpha$ belongs to the one parameter group $x_{w\alpha}(\lambda) = sx_{\alpha}(\lambda)s^{-1}$, with $w = s \mod T$. Thus, g and W induce permutations on Δ . As a group of linear transformations on the vector space \hat{T}^{Q} , W is generated by the symmetries w_{α} with respect to $\alpha \in \Delta$. By using the inner product $\langle \xi, \eta \rangle$, w_{α} is expressed as

$$w_{\alpha}\xi = \xi - \frac{2\langle \alpha, \xi \rangle}{\langle \alpha, \alpha \rangle} \alpha, \ \xi \in \hat{T}^{Q}.$$

In view of the (g, W)-invariance of the $\langle \xi, \eta \rangle$ on the (g, W)-space \hat{T}^{q} , one verifies easily that

(1)
$$w^{\sigma}_{\alpha} = w_{\alpha}$$
 for $\sigma \in \mathfrak{g}, \ \alpha \in \mathcal{J}$.

Let H_{α} be the hyperplane composed of $\xi \in \hat{T}^{\mathbf{Q}}$ such that $\langle \xi, \alpha \rangle = 0$. Any maximal convex set of the complement of $\bigcup_{\alpha \in \mathcal{A}} H_{\alpha}$ in $\hat{T}^{\mathbf{Q}}$ is called a chamber. Each chamber *C* is characterized by a $\{\pm 1\}$ -valued function $\epsilon(\alpha)$ with $\epsilon(-\alpha) = -\epsilon(\alpha)$ in such a way that

$$C = \{ \xi \in \hat{T}^{\mathbf{Q}} ; \varepsilon(\alpha) \langle \xi, \alpha \rangle > 0 \text{ for all } \alpha \in \varDelta \}.$$

Since C^{σ} is characterized by the function $\varepsilon_{\sigma}(\alpha) = \varepsilon(\alpha^{\sigma^{-1}})$, the Galois group g permutes chambers. On the other hand, it is well known that the Weyl group W permutes chambers simply and transitively.

Now, let *B* be a Borel subgroup of *G* containing $T: B \in \mathbf{B}$. There is at least one *B* which is defined over \overline{k} . Since any other $B_1 \in \mathbf{B}$ is written as $B_1 = sBs^{-1}$ with $s \in N_{\overline{k}}$, one sees that every group in **B** is defined over \overline{k} . It

is fundamental that W permutes groups in \boldsymbol{B} simply and transitively by

$$wB = sBs^{-1}$$
, $w = s \mod T$

(Chevalley [1, Exposé n°. 9, §3]). The Galois group \mathfrak{g} also permutes these groups in an obvious way. For a group B in B, put

$$\Delta_B = \{ \alpha \in \varDelta ; \text{ Im } x_\alpha \subset B \}.$$

One can easily verify that $w \Delta_B = \Delta_{wB}$ and $\Delta_B^{\sigma} = \Delta_{B^{\sigma}}$. Since Δ_B satisfies the condition for "positive roots", the set

$$C_B = \{ \boldsymbol{\xi} \in \hat{T}^{\boldsymbol{Q}}; \langle \boldsymbol{\xi}, \boldsymbol{\alpha} \rangle > 0 \text{ for all } \boldsymbol{\alpha} \in \boldsymbol{\varDelta}_B \}$$

becomes a chamber (Chevalley [1, Exposé n°. 14, §4]). By virtue of the (\mathfrak{g}, W) -invariance of $\langle \xi, \eta \rangle$, one sees that

$$wC_{B} = C_{wB}, \quad w \in W$$

Since the set $\{wC_B, w \in W\}$ forms a partition of the complement of $\bigcup_{\alpha \in \mathcal{A}} H_{\alpha}$ in $\hat{T}^{\mathbf{q}}$, (2) implies that the set $\{C_B, B \in \mathbf{B}\}$ forms the same partition. Hence, from (3), one gets

(4)
$$C_B^{\sigma} = C_B \quad \Leftrightarrow \quad B^{\sigma} = B.$$

We are now ready to prove our theorem. Suppose first that T is trivial over k. In terms of characters, this means that $\xi^{\sigma} = \xi$ for all $\sigma \in \mathfrak{g}$, $\xi \in \hat{T}^{Q}$. Since the chambers C_B are subsets of \hat{T}^{Q} , $C_B^{\sigma} = C_B$ for all $\sigma \in \mathfrak{g}$, $B \in B$. Hence, by (4), $B^{\sigma} = B$ for all $\sigma \in \mathfrak{g}$, $B \in \boldsymbol{B}$, i.e., every $B \in \boldsymbol{B}$ is defined over k. Conversely, suppose that every $B \in \mathbf{B}$ is defined over k. Again by (4) $C_B^{\sigma} = C_B$ for all $\sigma \in \mathfrak{g}$, $B \in \mathbf{B}$, and hence every chamber is invariant under \mathfrak{g} . From (2), (3), $wC_B = (wC_B)^{\sigma} = (C_{wB})^{\sigma} = C_{(wB)\sigma} = C_{w^{\sigma}B^{\sigma}} = w^{\sigma}C_{B^{\sigma}} = w^{\sigma}C_B$, and so $w^{\sigma} = w$ for all $\sigma \in \mathfrak{g}$, $w \in W$. Hence, by (1), $w_{\alpha} = w_{\alpha}\sigma$ for all $\alpha \in \mathcal{A}$, $\sigma \in \mathfrak{g}$. Thus α and α^{σ} are colinear and, since both are roots, one must have $\alpha^{\sigma} = \pm \alpha$. Suppose that $\alpha^{\sigma} = -\alpha$ and take $B \in \mathbf{B}$ such that $\alpha \in \mathcal{A}_{\mathbf{B}}$. Then $-\alpha = \alpha^{\sigma} \in \mathcal{A}_{\mathbf{B}}^{\sigma} = \mathcal{A}_{\mathbf{B}^{\sigma}} = \mathcal{A}_{\mathbf{B}}$, a contradiction. Hence every $\alpha \in \mathcal{A}$ is invariant by g. Since roots generate \hat{T}^{q} , the g-module \hat{T} is trivial, i.e., T is trivial over k. Finally, suppose that T is trivial over k. Take any $B, B_1 \in \mathbf{B}$. There is an $s \in N_{\overline{k}}$ such that $B_1 = sBs^{-1}$. Since B, B_1 are defined over k by what we have proved, one has $B_1 = s^{\sigma}Bs^{-\sigma}$ for $\sigma \in \mathfrak{g}$, and hence $s^{-1}s^{\sigma} \in (\text{normalizer of } B) \cap N_{\bar{k}} = B \cap N_{\bar{k}} = T_{\bar{k}}$ (Chevalley [1, Exposé n°. 9, §3]). As $(s^{-1}s^{\sigma})$ is a cocycle of \mathfrak{g} in T_k and T is trivial over k, one can find, by Hilbert's Theorem 90, a point $t \in T_{\bar{k}}$ such that $s^{-1}s^{\sigma} = t^{-1}t^{\sigma}$. Hence $B_1 = uBu^{-1}$ with $u = st^{-1} \in N_{\bar{k}}$, Q. E. D.

> University of British Columbia and University of Pennsylvania

References

- [1] C. Chevalley, Classification des groupes de Lie algébriques, Paris, 1958.
- [2] M. Rosenlicht, Some rationality questions on algebraic groups, Ann. Mat. Pura Appl., 43 (1957), 25-50.