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\S 1. Introduction. The problem.

As is well-known, Bessel function of the first kind $J_{n}(x)$ satisfies the
recurrence formula

$J_{n+1}(x)-\frac{2n}{x}J_{n}(x)+J_{n-1}(x)=0$ . (1)

For a fixed value $x$, we may compute the values of $J_{2}(x),J_{3}(x),$ $\cdots$ through the
formula (1), if we know the values of $J_{0}(x)$ and $J_{1}(x)$ . However, this method
does not fit to the practice, because the formula (1) implies serious unstabilityl).

Even if the initial values of $J_{0}(x)$ and $J_{1}(x)$ have a little error, the successive
values of $J_{n}(x)$ given by (1) will, in general, tend to $+\infty$ or $-\infty$ , although the
true values of $J_{n}(x)$ must tend to $0$ when $ n\rightarrow+\infty$ .

On the other hand, it is useful to apply the formula (1) from large values
of $n$ to the smaller ones. Precisely speaking, the value of $J_{n}(x)$ is computed
by the following algorism.

1. Choose sufficiently large $N$, which will be discussed later, and put
$j_{N+1}^{*}=0$, $ j_{N}^{*}=\epsilon$ .

Here $\epsilon$ is usually taken as the smallest positive number admissible in the
computor, viz., $10^{-10}$ or $2^{-128}$ , etc.

2. Compute $j_{n}^{*}$ $(n=N-1, N-2, \cdots , 1, 0)$ by the recurrence formula

$j_{n-1}^{*}=\frac{2n}{x}j_{n}^{*}-j_{n+1}^{*}$ . (1)

3. Noting the relation

$J_{0}(x)+2\sum_{n=1}^{\infty}J_{2n}(x)=1$ ,

the values of $J_{n}(x)$ are obtained by

$J_{n}(x)=\frac{1}{K}j_{n}^{*}$ (2)

where we have put

1) This unstability is well known; $e$ . $g$ . see Uno [4].
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$K=j_{0}^{*}+2\sum_{n}j_{2n}^{*}$ ; $1\leqq n$ , $2n\leqq N$ . (3)

The difficulty of this method lies in the choice of the starting value $N$.
If $N$ is chosen too small, the formula (2) does not give the correct values of
$J_{n}(x)$ . While, if $N$ is chosen too large, we need considerable amount of com-
putations, and further, overflow may occur during the computations of $j_{n}^{*}$ .

As for the starting value $N$, Mr. I. Uoki’ (Toyo Kogyo Co., Hiroshima)

has given the following empirical formula, if the accuracy of $10^{-10}$ for the
values of $J_{n}(x)$ is needed.

$N=7x+6$ for $0.1\leqq x<1$

$N=2x+10$ for $1\leqq x<10$ . (4)

$N=1.3x+16$ for $10\leqq x\leqq 100$

This is very convenient for practical application.
He further tried much experiments to determine the limit of starting

value $N$ for which the overflow will not occur. We shall call this limit “ the

overflow limit ” in the followings.
The purpose of the present paper is to determine theoretically the over-

flow limit $N$. The main result is the formula (17) in \S 2, and as we shall
show in \S 3, this is fairly nice approximation of the overflow limit.

The author is deeply grateful to Prof. S. Moriguti (Univ. of Tokyo) and
Prof. T. Uno (Nihon Univ.) for their valuable suggestions during the pre-
paration of the paper.

\S 2. Theoretical consideration on the overflow limit.

Since the values of $j_{n}^{*}(n=0,1, \cdots)$ are proportional to those of $J_{n}(x)$ ,

we may consider $j_{n}^{*}$ as the true value of $J_{n}(x)$ as far as the mutual ratios are
concerned.

If $x$ is sufficiently large, Nicolson’s formula3‘ gives the approximate values
of $J_{n}(x)$ as follows.

$J_{n}(x)=\frac{t^{1/3}}{3^{2/3}x^{1/3}}[I_{\frac{1}{3}}(t)-I_{1,3}(t)]$ for $n\geqq x$ , (5)

$J_{n}(x)=\frac{t^{1/3}}{3^{2/3}x^{1/}o}[J_{\frac{1}{3}}(t)+J_{\frac{1}{3}}(t)]$ for $n\leqq x$ (6)

2) The result is published in Uno [5]. In his original formula, $N=5$ for $x<0.1$ ,

but in the author’s opinion, this method must not be used for such small values of $x$ .
3) Jahnke-Emde [2], P. 142, Watson [6], P. 249. The author is grateful to Prof.

Moriguti for his kindness to indicate this formula to the author. The outline of the
proof is due to [3].
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where

$t=\frac{2^{3/2}}{3}x|1-\frac{n}{x}|^{3/2}$ (7)

In Watson’s book [6], the formulas (5) and (6) are proved by integral
representation. Here we shall give the outline of an alternative proof.

Putting $v=n/x-1,J_{n}(x)=g(v)$ , the recurrence formula (1) reads

$\delta^{2}g(v)/\delta v^{2}=2x^{2}vg(v)$ ,

where the left hand side means the second difference. Tending $\delta v\rightarrow 0$ , we
have the following differential equation

$g^{\prime\prime}(v)=2x^{2}vg(v)$ . (8)

The equation (8) is transformed into a Bessel’s differential equation of order
1/3, changing the independent variable from $v$ to $t=xv^{s/2}$ . The formulas $(5y$

and (6) follow if we solve it under the initial conditions
$g(v)\rightarrow 0$ for $ v\rightarrow+\infty$ ,

$g(0)=J_{x}(x)=\frac{\Gamma(1/3)}{2^{2/3}3^{1/6}\pi x^{1/3}}$ , (9)

and
$g_{+}^{\prime}(0)=g_{-}^{\prime}(0)$ .

We further remark an asymptotic formula of $J_{N}(x)$ for $N\gg x$, whose first
term is

$J_{N}(x)=(\frac{x}{2})^{N}\frac{e^{N}}{N^{N+1/2}\sqrt{2\pi}}$ . (10)s)

The formulas (5) and (6) show that starting from a sufficiently large
value $N\gg x$, and computing $j_{n}^{*}$ for $n=N-1,$ $N-2,$ $\cdots$ successively, the value

$j_{n}^{*}$ will increase monotonously for decreasing $n$ when $n\geqq x$, and $j_{n}^{*}$ will take
its maximum at $n=n_{0},$ $n_{0}$ being near $x$ and $n_{0}<x$. Precisely, the function

$\varphi(t)=t^{1/3}[J_{\frac{1}{8}}(t)+J_{-\frac{1}{3}}(t)]$

is oscillating in $t\geqq 0$ , and attains its maximum at the first zero point $t_{0}$ of
the function

$\varphi^{\prime}(t)=t^{1/3}[J_{\frac{2}{8}}(t)-J_{\frac{2}{8}}(t)]$ ,

which lies at
$t=t_{0}=0.685546$ . (11)

4) E. $g.$ , Watson [6], p. 231, known as Cauchy’s formula.
5) E. $g.$ , Watson [6], 225-227. As Horn mentioned, the formula (10) is nothing

but the first term of the Taylor expansion of $J_{N}(x)$ , where $N!$ is replaced by the
Stirling formula.
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We put
$C_{1}=\varphi(t_{0})/\varphi(0)=1.403819/0.930437=1.50877$ . (12)

Now it is plausible to assume that overflow does not occur if the maximum
of $j_{n}^{*}$ , say $j_{n_{0}}^{*}$ , is less than the upper limit of the admissible values in the com-
putor. We put

$10^{P}=the$ ratio between the largest and the smallest
positive numbers admissible in the computor.

Choosing $\epsilon$ as small as possible, the above condition is given by the inequality
$10^{P}>j_{n_{0}}^{*}/\epsilon=j_{n_{0}}^{*}/j_{N}^{*}$ . (13)

However, we must consider one more remark. Even the values $j_{n_{0}}^{*}$ and

$j_{n_{0^{-l}}}^{*}=\frac{2n}{x}0j_{n_{0}}^{*}-j_{n0+1}^{*}$

do not exceed the upper limit, the value $(2n_{0}/x)j_{n_{0}}^{*}$ may overflow, since the
factor $2n_{0}/x$ is approximately 2 in the present case. Therefore it will be
better to replace the inequality (13) by the formula

$10^{P}>2j_{n_{0}}^{*}/j_{N}^{*}$ . (13)
Now we have

$j_{n_{0}}^{*}/j_{N}^{*}=J_{n_{0}}(x)/J_{N}(x)=C_{1}J_{x}(x)/J_{N}(x)$ .
Using the asymptotic formulas (9), (10) and (12), the condition (13) reads

$2C_{1}\frac{\Gamma(1/3)2^{N}N^{N+1/2}\sqrt{2\pi}}{2^{2/3}3^{1/6}\pi x^{N+1/3}e^{N}}$

$=C_{2}(\frac{2N}{ex})^{N+1/3}N^{1/6}<10^{P}$ (14)

or
$(N+\frac{1}{3})\log_{10}\frac{2N}{ex}+\frac{1}{6}\log_{10}N<P-C_{3}$ . (15)

Here we have put

$C_{2}=\frac{\sqrt{2}C_{1}\Gamma(1/3)e^{1/3}}{3^{1/6}\sqrt{\pi}}=3.7477$ ,

$C_{3}=\log_{10}C_{2}=0.57377$ . (16)

When $x$ is about $1\sim 200,$ $N$ is approximately $10\sim 500$, and hence the term

$\frac{1}{6}\log_{10}N<0.45$

is much less than the first term in (15). Thus we may replace this term by
$0.45$, so that the overflow limit $N$ will be given by the formula

6) The values of (11) and (12) are computed from the table [1].
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$(N+\frac{1}{3})\log_{10}\frac{2N}{ex}=P-1$ . (17)

Up to here, we have implicitely assumed that $x$ is large enough. But the
formula (17) itself is also a good estimation of $N$ for rather smaller value of
$x$ . We shall give a short consideration of $N$ when $x$ is small.

If $x$ is small, the maximum of $J_{n}(x)$ will be taken at $n=n_{0}=0$ . In fact,
this is surely so if $x\leqq x_{0}=1.4207$ . In this case, the value $j_{n}^{*}$ increases rather
rapidly when $n$ decreases from $N$ to $0$ , so that roughly estimating, we may
assume that

$j_{n}^{*}=\frac{2(n+1)2(n+2)}{xx}$ .. . $\frac{2N}{x}$

Hence the condition (13) reads

$10^{P}>2j_{0}^{*}/\epsilon=2^{N+1}N!/x^{N}$ . (18)

If (18) is satisfied, the value $K$ in (3) also does not exceed the upper limit,
and then, no overflow may occur.

Using Stirling formula, (18) is replaced by

$10^{P}>\frac{N^{N+1/2}2^{N+1}\sqrt{}\overline{2\pi}}{(ex)^{N}}=2\sqrt 2\overline{\pi}(\frac{ex}{2})^{1/3}(\frac{2N}{ex})^{N+1/3}N^{1/6}$ ,

$i$ . $e.$ ,

$(N+\frac{1}{3})\log_{10}\frac{2N}{ex}<P-\frac{1}{6}\log_{10}N-C_{4}$ , (19)

where
$C_{4}=\log_{10}2\sqrt{2\pi}(\frac{ex_{0}}{2})^{1/3}=0.79537$ .

In our present case, $Nb^{\circ}.ing$ approximately less than 50, we may assume

$\frac{1}{6}\log_{10}N=0.3$ ,

so that the right hand side of (19) may be replaced by $P-1$ . The overflow
limit $N$ will be given by the equation replacing $<$ in (19) by $=$ , which
reduces just the formula (17) itself. Therefore, we may use the formula (17)

to determine $N$ also for smaller value of $x$.

\S 3. Comparison with the experiments.

First we shall compare the value $n_{0}$ with the true value. From (6), $n_{0}$ is
determined approximately by

$x-n_{0}=\frac{x^{1/\mathfrak{g}}}{2}(3t_{0})^{z/s}=0.8086x^{1/3}$ . (20)

The comparison is as follows.
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$x$ $x-n_{0}$ from (20) $x-n_{0}$ (true value)7) $J_{n_{0}}(x)/J_{x}(x)$

1 0.81 1 1.73889
2 1.02 1 1.63455
5 1.38 1 1.49817

10 1.74 2 1.53193
15 1.99 2 1.53726
20 2.19 2 1.52409
25 2.36 2 1.50787
30 2.51 3 1.49613
50 2.98 3 1.52112
70 3.34 3 1.51005

100 3.75 4 1.51327
150 4.30 4 1.51057
200 4.73 5 1.51109

$C_{1}=1.50877$

Finally, we shall give the comparison of the overflow limit $N$ computed
theoretically from the formula (17) with empirical values8‘.

$\overline{\frac{x}{1^{1_{0}^{1}}003^{0}50}}|^{\frac{P=39}{Nfrom(17)N(empirica1)}}\frac{}{2^{311_{00}^{28}}1_{07\sim 2^{30}}^{28}99966060}|^{\frac{P=100}{}}\frac{Nfrom(17)N(empirica1)}{205200,2^{60}1_{621_{90}^{60}}1_{942^{60}}^{10110}}$

As the conclusion, the formula (17) is a fairly nice approximation of the
overflow limit, which will be useful for practical estimation of the overflow
limit $N$ with given $\chi$ and $P$.

Department of Mathematics
St. Paul’s University, Tokyo

7) The true values of $x-n_{0}$ and $J_{n0}(x)/J_{x}(x)$ are due to the computations of the
values of $j_{n}^{*}$ using HIPAC 101 in St. Paul’s Univ. by the author.

8) For given values of $x$ and $p$, the value $N$ is determined in solving the equa-
tion (17) by successive approximation. The empirical values of $N$ are due to Mr. I.
Uoki and Miss H. Nagasaka (Nihon Univ.) in an unpublished note.
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