Cross sections in locally compact groups

by Keiô Nagami

(Received Jan. 14, 1963)

Steenrod [7, p. 33] conjectured that the local cross section of a closed subgroup in a compact finite dimensional group will always exist. This conjecture has been solved for some special cases by Gleason [1], Mostert [3] and Karube [2]. The purpose of this paper is to show that the conjecture is true for more general groups, i. e. locally compact finite dimensional groups ${ }^{1}$.

Throughout this paper the dimension means the covering dimension, a topological group means a T_{1}-group, a residue class means a left one and a factor space means a left one. Let G be a topological group, H a closed subgroup and ω the natural projection of G onto the factor space G / H. If there exist a neighborhood U of $\omega(H)$ and a continuous mapping σ of U into. G such that $\omega \sigma$ is the identity mapping, we call that σ is a local cross section of H in G. When $U=G / H$, we call that σ is a cross section of H in G.

Lemma 1 (Karube [2] or Nagami [5, Proof of Lemma 1.6]). If any closed subgroup of a 0-dimensional compact group has a cross section, then any closed subgroup of a finite dimensional, locally compact group has a local cross section.

Lemma 2. Let H be a closed subgroup of a 0 -dimensional compact group G. Then H has a cross section in G.

Proof. By Pontrjagin [6, Theorem 68] there exists an inverse limiting system $\left\{G_{\alpha}, \pi_{\beta}^{\alpha} ; 0 \leqq \alpha \leqq \tau\right\}$ for a suitable ordinal τ which satisfies the following. conditions:
i) Every G_{α} is a compact 0 -dimensional group.

[^0]Mostert [3] contains also some gaps.
ii) Every $\pi_{\beta}^{\alpha}, \beta<\alpha$, is an open, continuous homomorphism of G_{α} onto G_{β}.
iii) When α is an isolated ordinal, $N_{\alpha}^{\alpha-1}$, the kernel of $\pi_{\alpha-1}^{\alpha}$, is a finite group.
iv) When α is a limiting ordinal, $\cap\left\{N_{\alpha}^{\beta} ; \beta<\alpha\right\}$, where N_{α}^{β} is the kernel of π_{β}^{α}, is the identity of G_{α}.
v) G_{0} consists of only the identity.
vi) $G_{\tau}=G$.

Set $H_{\alpha}=\pi_{\alpha}^{\tau}(H), \alpha \leqq \tau$, then we have a closed subgroup H_{α} of G_{α}. Let ω_{α} be the natural projection of G_{α} onto the factor space $K_{\alpha}=G_{\alpha} / H_{\alpha}$. Define $\rho_{\beta}^{\alpha}: K_{\alpha} \rightarrow K_{\beta}, \beta<\alpha$, by : $\rho_{\beta}^{\alpha}\left(k_{\alpha}\right)=\omega_{\beta} \pi_{\beta}^{\alpha} \omega_{\alpha}^{-1}\left(k_{\alpha}\right), k_{\alpha} \in K_{\alpha}$. Then ρ_{β}^{α} is an open, onto, continuous mapping and $\left\{K_{\alpha}, \rho_{\beta}^{\alpha} ; 0 \leqq \alpha \leqq \tau\right\}$ forms an inverse limiting system.

Let σ_{0} be ω_{0}^{-1}. Now let $0 \leqq \alpha \leqq \tau$ and $\mathrm{P}(\alpha)$ be the proposition that there exist cross sections $\sigma_{\beta}: K_{\beta} \rightarrow G_{\beta}, \beta \leqq \alpha$, which satisfy $\pi_{\gamma}^{\beta} \sigma_{\beta}=\sigma_{\gamma} \rho_{\gamma}^{\beta}$ for any ordered triple $\gamma<\beta \leqq \alpha$. Then $\mathrm{P}(0)$ is true.

When α is a limiting ordinal, suppose that $\mathrm{P}(\beta)$ is true for any $\beta<\alpha$, and define $\sigma_{\alpha}: K_{\alpha} \rightarrow G_{\alpha}$ as $\sigma_{\alpha}\left(k_{\alpha}\right)=\cap\left\{\left(\pi_{\beta}^{\alpha}\right)^{-1} \sigma_{\beta} \rho_{\beta}^{\alpha}\left(k_{\alpha}\right) ; \beta<\alpha\right\}, k_{\alpha} \in K_{\alpha}$. Then $\sigma_{\alpha}\left(k_{\alpha}\right)$ consists of one and only one point by the condition iv). It can easily be seen that σ_{α} is a cross section of H_{α} in G_{α} which satisfies $\pi_{\beta}^{\alpha} \sigma_{\alpha}=\sigma_{\beta} \rho_{\beta}^{\alpha}$ for any $\beta<\alpha$. Thus $\mathrm{P}(\alpha)$ is true.

Assume that α is an isolated ordinal with $0<\alpha$ and that $\mathrm{P}(\alpha-1)$ is true. Since $N_{\alpha}^{\alpha-1}$ is finite by the condition iii), there exists an open normal subgroup L_{α} of G_{α} such that $L_{\alpha} \cap N_{\alpha}^{\alpha-1}$ consists of only the identity. Let $L_{\alpha-1}$ $=\pi_{\alpha-1}^{\alpha}\left(L_{\alpha}\right)$, then $L_{\alpha-1}$ is an open normal subgroup of $G_{\alpha-1}$ and $\pi_{\alpha-1}^{\alpha} \mid L_{\alpha}$ is an isomorphism. Let $\left\{h_{i} L_{\alpha-1} ; i=1, \cdots, s\right\}$ be the mutually disjoint collection of all the residue classes of $L_{\alpha-1}$ in $G_{\alpha-1}$. Choose $g_{i} \in G_{\alpha}, i=1, \cdots, s$, with $\pi_{\alpha-1}^{\alpha}\left(g_{i}\right)$ $=h_{i}$. Then $\left\{g_{i} L_{\alpha} N_{\alpha}^{\alpha-1} ; i=1, \cdots, s\right\}$ is the mutually disjoint collection of all the residue classes of $L_{\alpha} N_{\alpha}^{\alpha-1}$ in G_{α}. Let t be the number of all the residue classes of $H_{\alpha} \cap N_{\alpha}^{\alpha-1}$ in $N_{\alpha}^{\alpha-1}$ and u the order of $H_{\alpha} \cap N_{\alpha}^{\alpha-1}$. Let $N_{\alpha}^{\alpha-1}=\left\{n_{i j} ; i\right.$ $=1, \cdots, t, j=1, \cdots, u\}$, where $\left\{n_{i j} ; j=1, \cdots, u\right\}$ is a residue class of $H_{\alpha} \cap N_{\alpha}^{\alpha-1}$ for any i. Set $C_{i j}=\left(\pi_{\alpha-1}^{\alpha} \mid g_{i} L_{\alpha} n_{j 1}\right)^{-1}\left(\sigma_{\alpha-1}\left(K_{\alpha-1}\right) \cap h_{i} L_{\alpha-1}\right), i=1, \cdots, s, j=1, \cdots, t$; then $\left\{C_{i j} ; i=1, \cdots, s, j=1, \cdots, t\right\}$ forms a mutually disjoint collection of compact sets and hence $C=\cup\left\{C_{i j} ; i=1, \cdots, s, j=1, \cdots, t\right\}$ is compact.

To show that $C^{-1} C \cap H_{\alpha}$ consists of only the identity, let c_{1} and c_{2} be arbitrary different points of C. a) When $c_{1} \in C_{i j}, c_{2} \in C_{i^{\prime} j^{\prime}}, i \neq i^{\prime}$, then $\pi_{\alpha-1}^{\alpha}\left(c_{1}\right)$ $\in \sigma_{\alpha-1}\left(K_{\alpha-1}\right) \cap h_{i} L_{\alpha-1}$ and $\pi_{\alpha-1}^{\alpha}\left(c_{2}\right) \in \sigma_{\alpha-1}\left(K_{\alpha-1}\right) \cap h_{i} L_{\alpha-1}$ and hence $\pi_{\alpha-1}^{\alpha}\left(c_{1}^{-1} c_{2}\right) \notin H_{\alpha-1}$. Therefore $c_{1}^{-1} c_{2} \notin H_{\alpha}$. b) When $c_{1} \in C_{i j}, c_{2} \in C_{i j}$, we have $\pi_{\alpha-1}^{\alpha}\left(c_{1}\right) \neq \pi_{\alpha-1}^{\alpha}\left(c_{2}\right)$ and hence $\pi_{\alpha-1}^{\alpha}\left(c_{1}^{-1} c_{2}\right) \notin H_{\alpha-1}$. Therefore $c_{1}^{-1} c_{2} \notin H_{\alpha}$. c) When $c_{1} \in C_{i j}, c_{2} \in C_{i j^{\prime}}, j \neq j^{\prime}$, then there exist elements l_{1}, l_{2} of L_{α} with $c_{1}=g_{i} l_{1} n_{j 1}$ and $c_{2}=g_{i} l_{2} n_{j^{\prime} 1}$. If $l_{1}=l_{2}$, we have $c_{1}^{-1} c_{2}=n_{j_{1}}^{-1} n_{j^{\prime} 1} \notin H_{\alpha}$. If $l_{1} \neq l_{2}$, then $\pi_{\alpha-1}^{\alpha}\left(l_{1}\right) \neq \pi_{\alpha-1}^{\alpha}\left(l_{2}\right)$. Since $\pi_{\alpha-1}^{\alpha}\left(c_{1}\right)$
$=h_{i} \pi_{\alpha-1}^{\alpha}\left(l_{1}\right)$ and $\pi_{\alpha-1}^{\alpha}\left(c_{2}\right)=h_{i} \pi_{\alpha-1}^{\alpha}\left(l_{2}\right)$, we know that $\pi_{\alpha-1}^{\alpha}\left(c_{1}\right)$ and $\pi_{\alpha-1}^{\alpha}\left(c_{2}\right)$ are different points of $\sigma_{\alpha-1}\left(K_{\alpha-1}\right)$. Hence $\pi_{\alpha-1}^{\alpha}\left(c_{1}^{-1} c_{2}\right) \notin H_{\alpha-1}$ and we have $c_{1}^{-1} c_{2} \oplus H_{\alpha}$.

To prove that $\omega_{\alpha}(C)=K_{\alpha}$, let g be an arbitrary element of G_{α} and consider the residue class $g H_{\alpha}$. There exists an element h of $\sigma_{\alpha-1}\left(K_{\alpha-1}\right)$ with $\pi_{\alpha-1}^{\alpha}\left(g H_{\alpha}\right)=h H_{\alpha-1}$. Let g^{\prime} be an element of $g H_{\alpha}$ with $\pi_{\alpha-1}^{\alpha}\left(g^{\prime}\right)=h$. Choose i with $h \in h_{i} L_{\alpha-1}, l_{\alpha-1} \in L_{\alpha-1}$ with $h=h_{i} l_{\alpha-1}$ and $l_{\alpha} \in L_{\alpha}$ with $\pi_{\alpha-1}^{\alpha}\left(l_{\alpha}\right)=l_{\alpha-1}$. Since $\left(\pi_{\alpha-1}^{\alpha}\right)^{-1}(h)=g^{\prime} N_{\alpha}^{\alpha-1}=\bigcup\left\{g_{i} l_{\alpha} n_{j k} ; j=1, \cdots, t, k=1, \cdots, u\right\}$, there exist j and k with $g^{\prime}=g_{i} l_{\alpha} n_{j k}$. Set $g^{\prime \prime}=g_{i} l_{\alpha} n_{j 1}$, then $\mathrm{g}^{\prime \prime}$ is an element of C. Since $\left(g^{\prime}\right)^{-1} g^{\prime \prime}$ $=n_{j \hbar}^{-1} n_{j 1} \in H_{\alpha}$, we have $g^{\prime} H_{\alpha}=g^{\prime \prime} H_{\alpha}$ and hence $g H_{\alpha}=g^{\prime \prime} H_{\alpha}$. Thus $\omega_{\alpha}(C)=K_{\alpha}$ is proved

Since $\omega_{\alpha} \mid C$ is a homeomorphism of a compact set C onto $K_{\alpha}, \sigma_{\alpha}=\left(\omega_{\alpha} \mid C\right)^{-1}$ is a homeomorphism of K_{α} onto C. Consider the system $\left\{\sigma_{\beta} ; \beta \leqq \alpha\right\}$, then we know that $\mathrm{P}(\alpha)$ is true. Thus the induction is completed and we have the desired cross section σ_{τ} of H in $G=G_{\tau}$.

By Lemmas 1 and 2 we have at once the following:
Theorem. Any closed subgroup of a locally compact, finite dimensional group has a local cross section.

Ehime University

References

[1] A. M. Gleason, Spaces with a compact Lie group of transformations, Proc. Amer. Math. Soc., 1 (1950), 35-43.
[2] T. Karube, On the local cross sections in locally compact groups, J. Math. Soc. Japan, 10 (1958), 343-347.
[3] P.S. Mostert, Local cross sections in locally compact groups, Proc. Amer. Math. Soc., 4 (1953), 645-649.
[4] P.S. Mostert, Sections in principal fibre spaces, Duke Math. J., 23 (1956), 57-71.
[5] K. Nagami, Dimension-theoretical structure of locally compact groups, J. Math. Soc. Japan, 14 (1962), 379-396.
[6] L. Pontrjagin, Continuous groups, Moscow, 1954.
[7] N. Steenrod, The topology of fibre bundles, Princeton University Press, 1951.

[^0]: 1) It is to be noticed that Mostert [4] proved that any closed subgroup H of any locally compact group G has a local cross section if the factor space G / H is of finite dimension which is defined by him and somewhat different from the usual covering dimension. His dimension of a homogeneous space is finite if and only if the covering dimension is so. But his argument contains several gaps and is radically wrong. One of the most essential error is in the last part of the proof of Theorem 7 which cannot be concluded from the condition 4.2. Recall that f_{r} in 4.2 depends upon a triple $f_{\alpha}, f_{\beta}, f_{\delta}$. So it seems that all of the essential part of his paper, which contains the above proposition, has not yet been correctly proved by anyone.

 Let us take this opportunity to insist that Nagami [5, Lemma 1.6 and Theorem 2.1] are at the first sight special cases of the results in Mostert [4] but there is a. good reason that we have given proofs of our propositions.

