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1. Introduction.

Let $ f(z)=a_{q}z^{q}+\cdots$ , $a_{q}\neq 0$ , be regular in the unit circle and have there
exactly $p$ zeros, where multiple zeros are counted in accordance with their
multiplicities and $p\geqq q\geqq 1$ or $p>q\geqq 0$ . Let $\gamma$ be a non-negative real constant.
(1) $f(z)$ is said to be a member of the class $C(\gamma;p, q)$ , if and only if there
exists a positive number $\rho$ such that

$\int_{\theta^{\theta_{1^{2}}}}d\arg f(re^{i\theta})>-\gamma$ , $\theta_{1}<\theta_{2}$ , $\rho<r<1$ .

(2) $f(z)$ is said to be a member of the class $C^{*}(\gamma;p, q)$ , if and only if for an
arbitrary positive number $\epsilon$ there exists another positive number $\rho(\epsilon)$ such
that

$\int_{\theta^{\theta_{1^{2}}}}d\arg f(re^{i\theta})>-\gamma-\epsilon$, $\theta_{1}<\theta_{2}$ , $\rho<r<1$ .
It is evident that $C(\gamma;p, q)\subset C^{*}(\gamma;p, q)$ .

The purpose of this paper is to establish a representation theorem for
functions belonging to the class $C^{*}(\gamma;p, q)$ and to show some examples of its
applications.

$C(O;,p, p)$ and $C(O;p, q)$ are familiar classes of p-valent functions whose
members are p-valently starlike with respect to the origin for $|z|<1$ . Re-
cently Bender [1] studied the class of functions given by the representation

(1.1) $f(z)=\Phi(z)z^{q-p}\prod_{j--1}^{p-q}(1-\alpha_{j}^{-1}z)(1-\overline{\alpha}_{j}z)$ ,

where $\Phi(z)\in C(O;p,p),$ $0<|\alpha_{j}|<1,j=1,2$, $\cdot$ .. $p-q$, and he proved that it pro-
perly contains $C(O;p, q)$ if $p>q$ , and its members are also p-valent in $|z|<1$ .
We shall show that this class of functions studied by Bender is equivalent
to $C^{*}(0;p, q)$ .

On the other hand, Umezawa [2] proved that a function $f(z)$ satisfying
the condition $zf^{\prime}(z)\in C(\pi;p, q)$ is at most p-valent in $|z|<1$ . Such a function
is said to be multivalently close-to-convex of order $(p, q)$ for $|z|<1[3]$ . We
shall show that a function $f(z)$ satisfying the condition $zf^{\prime}(z)\in C^{*}(\pi;p, q)$ is
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also at most $p$-valent in $|z|<1$ . Moreover we shall extend at the same time
a theorem of Kaplan [4] concerning close-to-convex univalent functions to the
case of multivalence.

2. The main theorem.

We owe the following lemma to an idea of Kaplan [4].

LEMMA. Let $ f(z)=a_{p}z^{p}+\cdots$ , $a_{p}\neq 0,p\geqq 1$ , be regular for $|z|\leqq 1$ and have
no zeros in $0<|z|\leqq 1$ . If for a positive constant $\beta,$ $f(z)$ satisfies the condition

$\int_{\theta_{1}}^{\theta_{2}}d\arg f(e^{i\theta})>-\beta$ , $\theta_{1}<\theta_{2}$ ,

then there exists a function $\Phi(z)$ belonging to the class $C(O;p, p)$ such that

(2.1) $|\arg\frac{f(z)}{\Phi(z)}|<-2\underline{\beta}$ $|z|<1$ .

PROOF. The function $ g(z)=f(z)^{1/p}=a_{p}^{1/p}z+\cdots$ is regular for $|z|\leqq 1$ and
satisfies the conditions

$\frac{g(z)}{z}\neq 0$ , $|z|\leqq 1$ , and $\int_{\theta^{\theta_{1^{2}}}}d\arg g(e^{i\theta})>-\frac{\beta}{p}$ , $\theta_{1}<\theta_{2}$ .

We now choose $P_{0}(r, \theta)=\arg[g(z)/z],$ $z=re^{i\theta}$, to be single-valued and con-
tinuous for $|z|\leqq 1$ , and introduce a harmonic function $Q_{0}(r, \theta)$ by the definitions

$ P(r, \theta)=P_{0}(r, \theta)+\theta$ , $s(\alpha)=1.u.b$ .$ P(1, \theta)-\frac{\beta}{2p}\theta\leqq\alpha$

$ Q_{0}(r, \theta)=\frac{1}{2\pi}\int_{0}^{2\pi}\frac{(1-r^{2})(s(\alpha)-\alpha)}{1+r^{2}-2r\cos(\alpha-\theta)}d\alpha$ , $r<1$ .

We next take a regular function $h(z)$ whose imaginary part is $Q_{0}(r, \theta)$, and
set $\phi(z)=ze^{h(z)}$ . Then it can easily be verified in the same way as used by
Kaplan [4] that $\phi(z)\in C(0_{j}1,1)$ and $|\arg[g(z)/\phi(z)]|\leqq\beta/2p$ for $|z|<1$ , where
the equality sign may appear only when $g(z)/\phi(z)\equiv c$ (constant). Accordingly
(2.1) holds for $\Phi(z)=\phi(z)^{p}\in C(0;p,p)$ or $\Phi(z)=[c\phi(z)]^{p}\in C(0;p,p)$ .

Our main theorem is stated as follows.
THEOREM 1. A necessary and sufficient condition that $f(z)$ be a member of

the class $C^{*}(\gamma;p, q)$ is that $f(z)$ has a representation of the form

(2.2) $f(z)=\Phi(z)A_{\gamma}(z)z^{q-p}\prod_{-,j-- 1}^{p-q}(1-\alpha_{j}^{-1}z)(1-\overline{\alpha}_{j}z)$ ,

where $\Phi(z)\in C(O;p,p),$ $0<|\alpha_{j}|<1,j=1,2,$ $\cdots$ , $p-q$, and $A_{\gamma}(z)$ is a non-vanishing
regular function in $|z|<1$ such that $|\arg A_{\gamma}(z)|<\gamma/2$ for $|z|<1$ if $\gamma>0$, and
$A_{\gamma}(z)\equiv 1$ if $\gamma=0$ .

PROOF. Every function $f(z)$ given by (2.2) is evidently a member of
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$C^{*}(\gamma;p, q)$, since

(2.3) $1.u.b_{2}\theta_{1}<\theta|\int_{\theta}^{\theta_{1^{2}}}\arg[-p^{p-q}|\rightarrow 0$ as $r\rightarrow 1$ .
We suppose conversely that $f(z)\in C^{*}(\gamma;p, q)$ and the zeros of $f(z)$ in

$0<|z|<1$ are $\alpha_{j},j=1,2,$ $\cdots,p-q$ .
Set

$g(z)=f(z)z^{p-q}\prod_{j=1}^{p-q}[(1-\alpha_{j}^{-1}z)(1-\overline{\alpha}_{\grave{j}}z)]^{-1}$ ,

then $g(z)$ is a member of the class $C^{*}(\gamma;p,p)$ because of (2.3). Therefore, for
a sequence of positive numbers $\{\epsilon_{n}\}$ converging to zero, there exists another
sequence $\{\gamma_{n}\}$ such that $0<r_{n}<1,\lim_{n\rightarrow\infty}r_{n}=1$ and

$\int_{\theta_{1}^{\theta_{2}}}d\arg g(r_{n}e^{x\theta})>-\gamma-\epsilon_{n}$ , $\theta_{1}<\theta_{2}$ .

Since $g(r_{n}z)$ satisfies the assumption of the lemma with $\beta=\gamma+\epsilon_{n}$ , we can find
a function $\Phi_{n}(z)$ belonging to the class $C(O;p,p)$ for which

(2.4) $|\arg\frac{g(r_{n}z)}{\Phi_{n}(z)}|<-\frac{\gamma+\epsilon_{n}}{2}$ , $|z|<1$ ,

holds and such that $|\Phi_{n}(z)/z^{p}|=1$ for $z=0$ .
The functions $\Phi_{n}(z),$ $n=1,2$ , , form a normal family in $|z|<1$ , so that

there exists a subsequence $\{\Phi_{n_{m}}(z)\}$ which converges uniformly in every closed
disc $|z|\leqq\rho<1$ . Denoting by $\Phi_{0}(z)$ the limit of this subsequence, $\Phi_{0}(z)$ is also
a member of $C(O;p,p)$ . Let $n$ in (2.4) take values of the sequence $\{n_{m}\}$ , and
let $ m\rightarrow\infty$ , then we have

(2.5) $|\arg\frac{g(z)}{\Phi_{0}(z)}|\leqq-2\underline{\gamma}$ $|z|<1$ .
When $\gamma>0$ and $g(z)/\Phi_{0}(z)$ is not a constant, (2.5) deduces that $|\arg[g(z)/\Phi_{0}(z)]|$

$<\gamma/2$ for $|z|<1$ , whence (2.2) holds for $\Phi(z)=\Phi_{0}(z)$ and $A_{\gamma}(z)=g(z)/\Phi_{0}(z)$.
When $\gamma>0$ and $g(z)/\Phi_{0}(z)\equiv c$ (constant), (2.2) holds for $\Phi(z)=c\Phi_{0}(z)$ and
$A_{7}(z)\equiv 1$ . When $\gamma=0,$ $(2.5)$ deduces $g(z)/\Phi_{0}(z)\equiv c$ (positive constant), whence
(2.2) holds for $\Phi(z)=c\Phi_{0}(z)$ and $A_{\gamma}(z)\equiv 1$ . Thus the theorem is proved.

3. The relation between the classes $C^{*}(\gamma;p, q)$ and $C(\gamma;p, q)$ .
THEOREM 2. The classes $C^{*}(\gamma;p,p)$ and $C(\gamma;p,p)$ are equivalent. If $p>q$,

then the class $C^{*}(\gamma;p, q)$ properly contains the class $C(\gamma;p, q)$ , and moreover
every function of $C^{*}(\gamma;p, q)$ is the limit of a sequence of functions belonging to
$C(\gamma;p, q)$ .

PROOF. Let $f(z)\in C^{*}(\gamma;p,p)$ , then $f(z)$ has a representation of the form
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$f(z)=\Phi(z)A_{\gamma}(z)$, where $\Phi(z)$ and $A_{\gamma}(z)$ are subject to the conditions in Theorem
1. From this we see that $f(z)$ belongs to the class $C(\gamma;p,p)$ , whence
$C^{*}(\gamma;p,p)\subset C(\gamma;p,p)$ . On the other hand, from the definitions, evidently
$C^{*}(\gamma;p,p)\supset C(\gamma jp,p)$ . Hence $C^{*}(\gamma;p,p)=C(\gamma;p,p)$ .

We next consider the case $p>q$ . Take a positive number $ j\psi$ such that
$M>(p\pi+2\gamma/\pi)/(p-q)$, and set

$F(z)=\frac{z^{q}}{(1-z)^{2p}}(\frac{1+z}{1-z})^{\gamma/\pi}[(1-\alpha^{-1}z)(1-\overline{\alpha}z)]^{p-q}$ , $\alpha=\frac{1}{1\psi}+i(1-\frac{1}{1\psi})$ .

Since $0<|$ a $|<1,$ $F(z)$ is a member of $C^{*}(\gamma;p, q)$ from Theorem 1. Now,
setting

$\Phi(z)=z^{p}/(1-z)^{2p}$, $A_{\gamma}(z)=[(1+z)/(1-z)]^{\gamma/\pi}$ ,

$G(z)=z^{q-p}[(1-\alpha^{-1}z)(1-\overline{\alpha}z)]^{p-q}$ ,

we have the following for $r(<1)$ sufficiently near and tending to 1 by brief
calculations.

$\int_{\pi^{3}/^{\pi_{2}/2}}d\arg\Phi(re^{i\theta})=p\int_{\pi^{3}/^{\pi_{2}/2}}\frac{1-r^{2}}{1-2r\cos\theta+r^{2}}d\theta$

$<p\pi(1-r^{2})/(1+r^{2})=p\pi[1-r+o(1-r)]$ ,

$\int_{\pi^{S}/^{\pi_{2}/2}}d\arg A_{\gamma}(re^{i\theta})=s^{\alpha}[\log A_{\gamma}(-ir)-\log A_{\gamma}(ir)]$

$=(\gamma/\pi)[-\pi+2(1-r)+o(1-r)]$ ,

$\int_{\pi^{3}/^{\pi_{2}/2}}d\arg G(re^{i\theta})=s^{\infty}[\log G(-ir)-\log G(ir)]$

$=-(p-q)[(j\psi+M/(21\psi^{2}-2M+1))(1-r)+o(1-r)]$ .
Hence

$\int_{\pi^{3}/^{\pi_{2^{\prime}}2}}d\arg F(re^{i\theta})<-\gamma-[(p-q)M-p\pi-2\gamma/\pi](1-r)+o(1-r)$

$<-\gamma$ ,

because of $1\psi>(p\pi+2\gamma/\pi)/(p-q),p>q$ . Therefore $F(z)$ is not a member of
$C(\gamma;p, q)$ . In other words, $C^{*}(\gamma;p, q)$ properly contains $C(\gamma;p, q)$ .

We finally suppose that $f(z)$ is a member of $C^{*}(\gamma;p, q)$ given by (2.2).

Consider the function

$f_{n}(z)=\Phi(t_{n}z)A_{\gamma}(t_{n}z)z^{q-p}\prod_{j=1}^{p-q}(1-\alpha_{j}^{-1}z)(1-\overline{\alpha}_{j}z)$ , $t_{n}=1-\frac{1}{n+1}$ ,

where $n$ is a positive integer. (1) When $\gamma>0$ , for a suitable positive number
$\delta_{n}$ we have

$\int_{\theta_{1}^{\theta_{2}}}d\arg A_{\gamma}(t_{n}re^{i\theta})>-\gamma+\delta_{n}$ , $\theta_{1}<\theta_{2}$ , $0\leqq r<1$ ,
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which together with (2.3) deduces that there exists a positive number $\rho_{n}$ such
that

$\int_{\theta_{1}^{\theta_{2}}}d\arg f_{n}(re^{i\theta})>-\gamma$ , $\theta_{1}<\theta_{2}$ , $\rho_{n}<r<1$ ,

and so $f_{n}(z)$ is a member of $C(\gamma;p, q)$ . (2) When $\gamma=0$ , we have
$\mathfrak{R}[zf_{n}^{\prime}(z)/f_{n}(z)]=\mathfrak{R}[t_{n}z\Phi^{\prime}(t_{n}z)/\Phi(t_{n}z)]>0$, $|z|=1$ ,

which with aid of the continuity of $\mathfrak{R}[zf_{n}^{\prime}(z)/f_{n}(z)]$ deduces that there exists
a positive number $\rho_{n}$ such that

$\mathfrak{R}[zf_{n}^{\prime}(z)/f_{n}(z)]>0$ , $\rho_{n}<|z|<1$ ,

and so $f_{n}(z)$ is a member of $C(O;p, q)$ . Since $f(z)=\lim_{n\rightarrow\infty}f_{n}(z),$ $f(z)$ is thus

the limit of the sequence $\{f_{n}(z)\}$ which consists of functions belonging to the
class $C(\gamma;p, q)$ . This completes the proof of the theorem.

4. Two kinds of multivalent functions.

If $f(z)\in C^{*}(O;p, q)$ , then $f(z)$ is said to be multivalently starlike in a wide
sense of order $(p, q)$ with respect to the origin for $|z|<1$ . Theorem 1 certifies
that $C^{*}(O;p, q)$ is equivalent to the class of functions given by the representa-
tion (1.1). Therefore by Bender’s theorem stated in \S 1, every function of
$C^{*}(O;p, q)$ is p-valent in $|z|<1$ . We thus have

THEOREM 3. Let $f(z)$ be multivalently starhke in a wide sense of order
$(p, q)$ with respect to the origin for $|z|<1$ , then $f(z)$ is p-valent in $|z|<1$ .

Next, if $f(z)$ is a function such that $zf^{\prime}(z)\in C^{*}(\pi;p, q)$ , then $f(z)$ is said to
be multivalently close-to-convex in a wide sense of order $(p, q)$ for $|z|<1$ .
From Theorem 2, the class of such functions properly contains the class of
functions multivalently close-to-convex of order $(p, q)$ for $|z|<1$ , if $p>q$.
Now we have

THEOREM 4. A necessary and sufficient condition that $f(z)$ be multivalently

close-to-convex in a wide sense of order $(p, q)$ for $|z|<1$ is that $f(z)$ has a
representation of the form
(4.1) $f(z)=a_{0}+\int_{0^{z}}\frac{\Phi^{*}(z)}{z}A_{\pi}(z)dz$ ,

where $\Phi^{*}(z)\in C^{*}(O;p, q),p\geqq q\geqq 1$ , and $|\arg A_{\pi}(z)|<\pi/2$ for $|z|<1$ . Moreover,
every function $f(z)$ given by (4.1) is at most p-valent in $|z|<1$ .

PROOF. Since the former half of the theorem is an immediate consequence
of Theorem 1, it suffices to prove only the latter half. Suppose that $f(z)$ has
the representation (4.1) with

$\Phi^{*}(z)=\Phi(z)z^{q-p}\prod_{j=1}^{p-q}(1-\alpha_{j}^{-1}z)(1-\overline{\alpha}_{j}z)$ ,



A representation theorem for a certain class of regular functions 207

and set

$f_{n}(z)=a_{0}+\int_{0^{z}}\frac{\Phi_{n}^{*}(z)}{z}A_{\pi}(t_{n}z)dz$ , $t_{n}=1-\frac{1}{n+1}$ ,

where $n$ is a positive integer and

$\Phi_{n}^{*}(z)=\Phi(t_{n}z)z^{q-p}\prod_{j=1}^{p-q}(1-\alpha_{j}^{-1}z)(1-\overline{\alpha}_{j}z)$ .
Then, as shown in the proof of Theorem 2, $zf_{n}^{\prime}(z)$ is a member of the class
$C(\pi;p, q)$ . Therefore by Umezawa’s lemma [2], [3] $f_{n}(z)$ is at most $p$-valent
in $|z|<1$ .

We shall next show that $f_{n}(z)$ converges to $f(z)$ uniformly in every closed
disc $|z|\leqq\rho<1$ as $ n\rightarrow\infty$ . Let $\rho$ be an arbitrary positive number less than 1.
Evidently, $\Phi_{n}^{*}(z)z^{-1}A_{\pi}(t_{n}z)$ converges to $\Phi^{*}(z)z^{-1}A_{\pi}(z)$ uniformly in $|z|\leqq\rho$ as
$n\rightarrow\infty,$ $i.e$ . for an arbitrary positive number $\epsilon$, there exists a positive integer
$n_{0}(\epsilon)$ such that

$|\Phi_{n}^{*}\cdot(z)z^{-1}A_{\pi}(t_{n}z)-\Phi^{*}(z)z^{-1}A_{\pi}(z)|<\epsilon$, $|z|\leqq\rho$ , $n>n_{0}$ .
Hence

$|f_{n}(z)-f(z)|=|\int_{0^{\gamma}}[\frac{\Phi_{n}^{*}(z)}{z}A_{\pi}(t_{n}z)-\frac{\Phi^{*}(z)}{z}A_{\pi}(z)]e^{i\theta}dr|$ , $z=re^{i\theta}$ ,

$|f_{n}(z)-f(z)|<\rho\epsilon$, $|z|\leqq\rho$ , $n>n_{0}$ ,

so that $f_{n}(z)$ converges to $f(z)$ uniformly in $|z|\leqq\rho$ as $ n\rightarrow\infty$ . Consequently
$f(z)$ is also at most $p$-valent in $|z|<1$ . We thus complete the proof.

If we put $p=q=1$ in this theorem, we obtain the theorem of Kaplan [4]

mentioned in \S 1.

5. Properties of functions belonging to the class $C^{*}(\gamma;p,q)$ .
The representation (2.2) permits us to obtain some extremal formulae for

functions belonging to the class $C^{*}(\gamma;p, q)$ . For instance, we have
THEOREM 5. Let $ f(z)=a_{q}z^{q}+a_{q+1}z^{q+1}+\cdots$ be a member of the class $C^{*}(\gamma;p, q)$,

and let $\alpha_{j},j=1,2,$
$\cdots,$ $p-q$, be the zeros of f$(z)$ in $0<|z|<1$ . If we set

$F(z)=|a_{q}|\frac{z^{q}}{(1-z)^{2p}}(\frac{1+z}{1-z})^{\lambda}\prod_{j=1}^{p-q}(1+|\alpha_{j}|^{-1}z)(1+|\alpha_{j}|z)$ ,

$G(z)=q+z[\frac{2p}{1-z}+\frac{2\lambda}{1-z^{2}}+_{\Delta}^{p_{j}-q}\nabla_{=1}(\frac{1}{z+|\alpha_{j}|}+\frac{|\alpha_{j}|}{1+|\alpha_{j}|z})]$ ,

where $\lambda=\gamma/\pi$, then we have
$|F(-r)|\leqq|f(z)|\leqq F(r)$, $|f^{\prime}(z)|\leqq F^{\prime}(r)$ , $|z|=r<1$ ,

$\mathfrak{R}[zf^{\prime}(z)/f(z)]\geqq G(-r)$, $|z|=r\leqq\min|\alpha_{j}|$ ,

$|a_{q+1}|\leqq|a_{q}|\{2p+2\lambda+\sum_{j=1}^{p-q}(|\alpha_{j}|^{-1}+|\alpha_{j}|)\}$ .
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Moreover, if $\lambda$ is an integer, then

$f(z)\ll F(z)$ .
The bounds of these estimates are all attained by the function $F(z)\in C^{*}(\gamma;p, q)$ .

PROOF. When $\lambda>0$ , the function $ A_{\gamma}(z)=c_{0}+c_{1}z+\cdots$ satisfies
$\mathfrak{R}A_{\gamma}(z)^{1/\lambda}>0$ , $|z|<1$ ,

from which we have

$|c_{0}|(\frac{1-r}{1+r})^{\lambda}\leqq|A_{\gamma}(z)|\leqq|c_{0}|(\frac{1+r}{1-r})^{\lambda}$ , $|z|=r<1$ ,

$|z\frac{A_{\gamma}^{\prime}(z)}{A_{\gamma}(z)}|\leqq-\frac{\gamma}{r^{2}}1-2\underline{\lambda}$ $|A_{r\backslash }^{\gamma(}z$) $|\leqq\frac{2\lambda|c_{0}|}{1-r^{2}}(\frac{1+r}{1-r})^{\lambda}$ , $|z|=r<1$ ,

and $|c_{1}|\leqq 2\lambda|c_{0}|$ . Moreover, if $\lambda$ is an integer, we have

$A_{\gamma}(z)\ll|c_{0}|(\frac{1+z}{1-z})^{\lambda}$ .

Evidently, these estimates are valid also when $\gamma=0$ .
With aid of the above properties of $A_{\gamma}(z)$ and some known properties of

$\Phi(z)$, the representation (2.2) yields easily all the estimates of the theorem.
The details of calculations will be omitted.

The extremal formulae of this theorem are generalizations of some results
given by Bender [1], Goodman [5], Robertson [6], and the author [7].

REMARK. Let $ f(z)=a_{q}z^{q}+\cdots$ , $a_{q}\neq 0$ , be regular for $|z|<1$ and have
exactly $p-q$ zeros in $0<|z|<1$ , where $p\geqq q\geqq 1$ or $p>q\geqq 0$ . It is easy to
see that (1) if for every $\rho$ less than and sufficiently near to 1, the image
curve of $|z|=\rho$ under $f(z)$ cuts a straight line through the origin in $2s$

points, then $f(z)$ is a member of the class $C^{*}((s-p+1)\pi;p, q),$ (2) if for such
every $\rho$ , the image curve of $|z|=\rho$ under $f(z)$ cuts a ray starting from the
origin in $s$ points, then $f(z)$ is a member of the class $C^{*}((s-p+2)\pi;p, q)$ , and
(3) if for an arbitrary positive number $\epsilon$, there exists another positive number
$\rho(\epsilon)$ such that the total variation of $\arg f(re^{i\theta}),$ $\rho<\gamma<1$ , in $ 0\leqq\theta\leqq 2\pi$ is smaller
than $\beta+\epsilon$, where $\beta$ is a positive constant, then $f(z)$ is a member of the class
$C^{*}(\beta/2-p\pi;p, q)$ . Accordingly we can obtain properties of functions of these
kinds by putting $\lambda=s-p+1,$ $s-p+2$ , and $\beta/2\pi-p$ in this theorem.

$CoLLORARY$ . Let $f(z)\in C(\gamma;p, p)$ , then $f(z)$ is p-valent and starlike of order
$p$ with respect to the origin for

$|z|<\{p+\lambda-\frac{\lambda 2\lambda}{(p+)}\}/p$ . $\lambda=\gamma/\pi$ ,

and this bound is sharp.

Nara Gakugei University



A representation theorem for a certain class of regular functions 209

References

[1] J. Bender, Some extremal theorems for multivalently star-like functions, Duke
Math. J., 29 (1962), 101-106.

[2] T. Umezawa, On the theory of univalent functions, T\^ohoku Math. J., 7 (1955),
212-228.

[3] T. Umezawa, Multivalently close-to-convex functions, Proc. Amer. Math. Soc., 8
(1957), 869-874.

[4] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., 1 (1952), 169-
185.

[5] A. W. Goodman, On the Schwarz-Christoffel transformation and $p$-valent func-
tions, Trans. Amer. Math. Soc., 68 (1950), 204-223.

[6] M. S. Robertson, A representation of all analytic functions in terms of functions
with positive real part, Ann. of Math., 38 (1937), 770-783.

[7] K. Sakaguchi, Some classes of multivalent functions, Sci. Rep. Tokyo Kyoiku
Daigaku A, 6 (1959), 205-222.


	A representation theorem ...
	1. Introduction.
	2. The main theorem.
	THEOREM 1. ...
	THEOREM 2. ...

	4. Two kinds of multivalent ...
	THEOREM 3. ...
	THEOREM 4. ...

	5. Properties of functions ...
	THEOREM 5. ...

	References


