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The problem of classifying Lie algebras over a field of characteristic zero
is considered by Landherr, Jacobson and others. Their method is to reduce
the problem to the classification of associative algebras with involution or
some other kinds of algebras. Using the Galois cohomology theory, A. Weil
[6] gave a general proof of such results for classical groups over a field of
characteristic zero. In this paper, we make a slight modification of his method
so as to make it applicable to some exceptional groups ( $i.e$ . to the groups of
type $G_{2}$ and $F_{4}$).

Any group of type $G_{2}$ defined over a perfect field $k$ of characteristic $>3$

is obtained as the automorphism group of an octanion algebra over $k$ , and
the automorphism groups are isomorphic over $k$ if and only if the correspond-
ing octanions are. There is a similar relation between the groups of type $F_{4}$

and exceptional simple Jordan algebras.
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\S 1. Let $k$ be a field in the universal domain $\Omega$ , and let $I$ be a finite set

of indices. Let $V$ and $U_{i}(i\in I)$ be affine varieties and let $\alpha_{i}(i\in I)$ be rational
maps from $V\times U_{i}$ to $V$. We consider the system $V=(V_{i}U_{i}, \alpha_{i})$ . For sim-
plicity we call sucha systemV an AG-variety”. An AG-variety V $=(V;U_{i}, \alpha_{i})$

is called to be defined over $k$ if $V,$ $U_{i}’ s$ and $\alpha_{i}’ s$ are all defined over $k$ .
Let $K$ be a field containing $h$ . Two AG-varieties defined over $kV=(V;U_{i}, \alpha_{i})$

and V’ $=$ $(V^{\prime} ; U_{i^{\prime}}, \alpha t)$ with the same index set $I$ are called to be isomorphic
over $K$, if there exists a system of rational isomorphisms $F=(f;f_{i})$ defined
over $K$ such that

$f:V\rightarrow V^{\prime}$ , $f_{i}$ : $U_{i}\rightarrow U_{i}^{\prime}(i\in I)$,

$J(\alpha_{i}(v, u_{i}))=\alpha_{i}^{\prime}(f(v),f_{i}(u_{i}))$ $(i\in I)\cdots\cdots\cdots\cdots\cdots\cdot(1)$

where $v,$ $u_{i}(i\in I)$ are respectively generic points of $V,$ $U_{i}(i\in I)$ over $K$. An
isomorphism from V onto V itself is called an automorphism of V. Aut (V)

denotes the group of all automorphisms of V. Aut $(V)_{K}$ denotes the group of
all automorphisms defined over $K$ of V.

DEFINITION. Let V be an AG-variety defined over $K$ and V’ an AG-variety
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defined over $k$ . If $V^{\prime}$ is isomorphic to V over $K$, then we say that “ V’ is a
k-form of V”.

Now let $K$ be a finite Galois extension of $k$ with Galois group $\mathfrak{G}=\mathfrak{G}(K/k)$

and V an AG-variety defined over $k$ . A mapping $\Phi_{\lambda}$ : $\lambda\rightarrow\Phi_{\grave{4}}\lambda\in \mathfrak{G},$ $\Phi_{\lambda}\in Aut(V)_{K}$

is called a l-cocycle if it satisfies $\Phi_{\lambda}\cdot\Phi_{\mu}^{\lambda}=\Phi_{\lambda\mu}$ for any $(\lambda, \mu)$ in $\mathfrak{G}\times \mathfrak{G}$ .
$C^{1}(\mathfrak{G}, Aut(V)_{K})$ denotes the set of all l-cocycle of $\mathfrak{G}$ in $Aut(V)_{K}$ . Two
l-cocycles $\Phi_{\lambda}$ and $\Phi_{\lambda}^{\prime}$ are said to be cohomologous if there exists an element $\Psi$

of Aut $(V)_{K}$ satisfying $\Psi\cdot\Phi_{\lambda}\cdot\Psi^{-\lambda}=\Phi_{\lambda}^{\prime}$ . $H^{1}$( $\mathfrak{G}$ , Aut $(V)_{K}$) denotes the quotient
set of $C^{1}$( $\mathfrak{G}$ , Aut $(V)_{K}$) by the cohomologous relation, called the l-cohomology
set of $\mathfrak{G}$ in Aut $(V)_{K}$ . The following proposition is a direct consequence of
the definition.

PROPOSITION 1. Let $V_{0}$ be an AG-variety defined over $k$ , and V be a k-form
over $K$ of $V_{0}$ , and $F=[f;f_{i}]$ an isomorphism $\cdot$ from $Y_{0}$ to V over K Then
$\Phi_{\lambda}=F^{-1}F^{\lambda}$ is a l-cocycle of $\mathfrak{G}(K/k)$ in Aut $(V_{0})_{K}$ .

Let V‘ be another k-form over $KofV_{0}$ with $F^{\prime}$ : $V_{0}\rightarrow V^{\gamma},$ $\Phi_{\lambda}^{\prime}=F^{\prime-1}F^{\prime\lambda}$ . Then
$V$ is isomorphic to V’ over $k$ if and only if $\Phi_{\lambda}$ is cohomologous of $\Phi_{\lambda}^{\prime}$ .

PROPOSITION 2. Let $\Phi_{\lambda}$ be a l-cocycle of $\mathfrak{G}(K/k)$ in Aut $(V)_{K}$ . Then there
exists a k-form $V^{\prime}$ over $K$ of $V$, and an isomorphism $F$ from V to V’ defined
over $K$ such that $\Phi_{\lambda}=F^{-1}F^{\lambda}$ .

PROOF. Let $\Phi_{\lambda}=[\varphi_{\lambda} ; \varphi_{i\lambda}]$ with $\varphi_{\lambda}$ : $V\rightarrow V,$
$\varphi_{i\lambda}$ : $U_{i}\rightarrow U_{i}$ . Then $\varphi_{\lambda}$ and $\varphi_{i\lambda}$

satisfy the relations

$\varphi_{\lambda}\varphi_{\mu}^{\lambda}=\varphi_{\lambda\mu}$ $\varphi_{i\lambda}\varphi_{i}^{\lambda_{\mu}}=\varphi_{i\lambda_{J}z}$ $(\lambda, \mu)\in \mathfrak{G}\times \mathfrak{G},$ $(i\in I)$ .
So by Theorem 1 of Weil [5], there exist varieties $V^{\prime},$ $U_{i^{\prime}}$ all defined over $k$ ,
and there exist isomorphisms $f,f_{i}$ all defined over $K$ such that

$\varphi_{\lambda}=f^{-1}f^{\lambda}$ $\varphi_{i\lambda}=f_{i}^{-1}f_{i}^{\lambda}\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots(2)$

On the system [V’ ; $U_{i^{\prime}}$ ], we define a structure of an AG-variety by

$\alpha_{i}^{\prime}(v^{\prime}, u_{i^{\prime}})=f(\alpha_{i}(f^{-1}(v^{\prime}),f_{i}^{-1}(u_{i}^{\prime})))\cdots\cdots\cdots\cdots\cdots\cdots(3)$

where $(v^{\prime}\times(u_{i^{\prime}}))$ is a generic point of $V^{\prime}\times\prod_{i}U_{i^{\prime}}$ over $K$.
Applying $\lambda\in \mathfrak{G}(K/k)$ to both sides of (3) we get

$\alpha_{i}^{\prime\lambda}(v^{\prime\lambda}, u_{i}^{r\lambda})=f(\alpha_{i}^{\lambda}(f^{-\lambda}(v^{\gamma\lambda}),f_{i}^{-\lambda}(u_{\iota^{\lambda}}^{\prime})))\cdots\cdots\cdots\cdots\cdots\cdots(4)$

As V is defined over $k$ , by (2), the right-hand side of (4) is equal to
$\alpha_{i}(\varphi_{\overline{\lambda}^{1}}(f^{-1}(v^{\prime\lambda})), \varphi_{i\lambda}^{-1}(f_{i^{-1}}(u_{i}^{\prime\lambda})))$ . Then (1) shows $\alpha_{i}^{r\lambda}(v^{\prime\lambda}, u_{i}^{\prime\lambda})=\alpha_{i}(f^{-1}\backslash v^{\prime}),f_{i}^{-1}(u_{i}^{\prime\lambda}))$.
Thus we have shown that $\alpha_{i}(i\in I)$ are defined over $k$ . V’ $=[V^{\prime} ; U_{i^{\prime}}, \alpha_{i^{\prime}}]$ is
an AG-variety defined over $k$ , and $F=[f;f_{i}]$ has the desired property, $q$ . $e$ . $d$ .

By Propositions 1 and 2, we may say that “ there is a canonical one to one
correspondence between $H^{1}$($\mathfrak{G}(K/k)$, Aut $(V)_{K}$) and tolality of the isomorphism
classes of k-forms over $K$ of V.” Next we extend this result to the case of
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infinite extensions.
Let $K$ be a finite or infinite Galois extension of $k(i.e$ . any element $x$ of

$K$ is separablly algebraic over $k$ , and any conjugate over $k$ of $x$ is contained
is $K$) with the Galois group $\mathfrak{G}=\mathfrak{G}(K/k)$ .

Let V be an AG-variety defined over $k$ . We introduce the usual Galois
group topology on $\mathfrak{G}$ and the discrete topology on Aut $(V)_{K}$, and consider only
continuous l-cocycles of $\mathfrak{G}$ in Aut $(V)_{K}$, then we get the continuous l-cohomology
set $H^{1}$( $\mathfrak{G}$, Aut $(V)_{K}$). By the definition and by Propositions 1 and 2, we get:

THEOREM 1. Let $K$ be a finite or infinite Golois extension of $k$ with the
Galois group $\mathfrak{G}$ . Let V be an AG-variety defined over $k$ , and let $H^{1}$( $\mathfrak{G}$ , Aut $(V)_{K}$)
be the continuous l-cohomology set of $\mathfrak{G}$ in Aut $(V)_{K}$. Then there is a canonical
one-to-one correspondence between $H^{1}$( $\mathfrak{G}$, Aut $(V)_{K}$) and totality of the isomorphism
$claS_{c}^{r}$ es of k-forms over $K$ of V.

Now we apply theorem 1 to the classification of semi-simple algebraic
groups over a perfect field. C. Chevalley [1] determined all simple groups
over J2. And we can choose, as a representative of each isomorphism class,
a simple group which is defined over the prime field. So if we can determine
all k-forms of each representative group, then the problem of classifying
semi-simple groups over $k$ will be solved.

Let $k$ be a perfect field and le the algebraic closure of $k$ in S2. Let $G$ be
a semi-simple algebraic group defined over $k$ . $G$ is clearly an AG-variety
$(G=(G;G, \alpha),$ $\alpha:(x,y)\rightarrow xy)$ . Aut $(G)$ has a natural structure of an algebraic
group, such that the connected component $Aut_{0}(G)$ of Aut $(G)$ is isomorphic
to $G/center$ . Theorem 1 is applicable to $G$ , so there is a one to one corres-
pondence between $H^{1}$($\mathfrak{G}(\overline{k}/k)$ , Aut $(G)_{\overline{k}}$) and the totality of k-forms of $G$ . If
we can find an AG-variety V with the property that Aut (V) has a structure
of an algebraic group defined over $k$ , and that Aut (V) is isomorphic (as an
algebraic group) to Aut $(G)$ over $k$ . Then there is a one to one correspondence
between the totality of k-forms of $G$ and that of k-forms of V. In particular,
we get:

THEOREM 2. Let $k$ be a perfect field, V an AG-variety defined over $k$ and
$G$ a connected semi-simple algebraic group without center defined over $k$ . Suppose
that Aut(V) is isomorphic to $Aut(G)$ as an algebraic group over $k$ . Then any k-form
of $G$ can be obtained as the connected component of the automorphism group of
some k-form of V. Moreover two k-forms of G, $Aut_{0}(V_{1})andAut_{0}(V_{2})areisomor-$

phic over $k$ if and only if $V_{1}$ is isomorphic to $V_{\vec{2}}$ over $k$ .
\S 2. (I) For a classical group $G$ other than a few exceptional ones, we

can find an involutive algebra which has the property of V in the theorem 2
(Weil [6]).

For example, let $G=PSO(n)=SO(n)/center$ . Let $V=(V;U_{i}, \alpha_{i})(i\in I)$ :
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$I=\{+, \times, s, t\}$ . $V=U_{+}=U_{\times}=1\psi_{n}(\Omega),$ $U_{s}=\Omega,$ $U_{t}=\{0\}=$ a variety reduced to
the one point $0$ rational over $k,$ $\alpha_{+}:$ $(x,y)\rightarrow x+y,$ $\alpha_{\times}:$ $(x,y)\rightarrow xy,$ $\alpha_{s}$ : $(x, a)\rightarrow xa$,
$\alpha_{t}$ : $x\rightarrow {}^{t}x,$ $i$ . $e$ . $V$ is the involutive algebra $M_{n}(\Omega)$ with involution $\alpha_{t}$ : $x\rightarrow {}^{t}x$ in
usual sense. If $n=3$ or $\geqq 5,$ $G$ is simple and semi-simple. If $n=3$ or $\geqq 5$

and $\neq 8$ , and moreover the characteristic of $k$ is not 2, then $G=Aut_{0}(V)$ and
$G$ and V satisfy all the conditions of the theorem 2. So we can get every
k-form of $G$ as the connected component of the automorphism group of some
k-form of V.

If $n=8$ , Aut $(G)$ has an isogeny to Aut (V) with the kernel of order 3,
but is not isomorphic to Aut (V), so our method fails. If $k$ has an extension
of degree 3, then PO(8) has actually some exceptional k-forms which can not
be obtained from involutive algebras.

(II) The exceptional group of type $G_{2}$ . In this case we may choose as
V an “ octanion algebra”.

First we sum up the definition and the fundamental properties of octanion
algebras after Jacobson [2].

Let $k$ be an arbitrary field of characteristic not two, and $D$ a quaternion
(not necessarily division) abgebra over $k$ , and $\alpha$ a non-zero element of $k$ .
Consider the vector space over $k$ :

$C=(D, \alpha)=De_{0}+De$ . Define a multiplication in $C$ by: $e_{0}=1$ (unit of
muliplication) and write $ae_{0}=a$ for $a\in D$ and $(a+be)(c+de)=(ac+\alpha b\overline{d})+(ad+b\overline{c})e$

where $a\rightarrow\overline{a}$ is the canonical involution of $D$ . Then $C$ is a non-associative
alternative central simple algebra of rank 8 over $k$ . We consider $C$ as an
algebraic variety defined over $k$ . $C=(D, \alpha)$ with a non-division $D_{k}$ is called a
splitting octanion over $k$ . It can be shown that any two splitting octanions
over $k$ are mutually isomorphic (as an algebraic variety over $h$). An algebra
over $k$ which is isomorphic over the algebraic closure of $k$ to the splitting
octanion over $k$ , is called an octanion algebra over $k$ . Then the following
facts are known: 1) Any octanion algebra over $k$ is isomorphic over $k$ to
$(D, \alpha)$ for some quaternion $D$ over $k$ and $\alpha\in k$ . 2) An octanion algebra
$C=(D, \alpha)$ has the canonical involution $x\rightarrow\overline{x}$ defined by $\overline{x}=\overline{a}-\overline{b}e$ for
$x=a+be\in C$ , having the property that $\overline{x}=x$ means $x\in center$ of C. We use
the notations:

$N(x)=x\overline{x}$ , $Tr(x)=x+\overline{x}$, $c-=\{x\in C;Tr(x)=0\}$ .
3) If $D$ and $D^{\prime}$ are quaternion subalgebras of the octanion $C$ , and if $f:D\rightarrow D^{\prime}$

is an isomorphism then $f$ may be extended to an automorphism in C.
LEMMA. Let $C$ be an octanion over a field $k$ of characteristic not 2. Then

$Aut(C)$ is a connected simple and semi-simple algebraic group defined over $k$ of
dimension 14.
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PROOF. Let $G=Aut(C)$ . $G$ is clearly an algebraic group defined over $k$

(with a representation space C). By (2), any element of $G$ commutes with the
canonical involution of $C$ , so any element of $G$ preserves $N(x)$ and $Tr(x)$ . We
can choose a basis of $C$ (over $\Omega$ ), $e_{i}(i=0,1, \cdots , 7)$ such that: $e_{0}=1,$ $e_{i}^{2}=1$ ,
$Tr(e_{i}e_{j})=0(0\neq i\neq j\neq 0)$, that $e_{i}(i=0,1,2,3)$ generate a quaternion subalgebra
$D$ of $C$ , and that $C=D+De_{4}=(D, 1)$ over 2. Now we will show:

i) $G$ is connected and of dimension 14. Let $U=\{(x,y)\in c-\times C^{-};$ $N(x)=1$ ,
$N(y)=1,$ $Tr(xy)=0$ }. Then $U$ is isomorphic (as a variety) to the image of the
projection $\pi$ , from $SO(7)=\{x=(x_{ij})\in GL(7)|^{t}xx=1\det x=1\}$ to the first and
second rows $\pi;x\rightarrow(x_{1j}, x_{2j})$ , so $U$ is an irreducible variety of dimension 11.
As $e_{0},$ $x,y((x,y)\in U)$ generate a quaternion subalgebra isomorphic to $D$ , by
(3) $G$ operates transitively on $U$. Let $H$ be the stability group of $(e_{1}, e_{2})$,
$H=\{\sigma\in G;\sigma(e_{1})=e_{1}, \sigma(e_{2})=e_{2}\}$ and $W=\{x\in\langle e_{4}, e_{5}, e_{6}, e_{7}\rangle_{P_{-j}}N(x)=1\}$ . $W$ is
isomorphic (as a variety) to a 3-dimensional sphere. As the operation of $\sigma(\in H)$

is completely determined by $\sigma(e_{4}),$ $\sigma\rightarrow\sigma(e_{4})\in W$ gives a birational mapping
from $H$ onto $W$, so $H$ is connected and of dimension 3. Therefore $G$ is con-
nected and of dimension 14.

ii) $G$ is simple and seme-simple. As the representation $G\rightarrow GL(C^{-})$ is
faithful, it is sufficient to show that the representation is semi-simple and $G$

has no center (Lemma 1, expos\’e 20 of Chevalley [1]).

Let $V$ be an invariant subspace of $c-$. If $V$ contains a vector, say
$ae_{1}(a\in\Omega)$, then $V$ contains $e_{1}$ , hence all $e_{i}(i\geqq 1)$ and $V=C^{-}$.

Let $Z$ be a center of $G,$ $e$ a vector of $c-$, and $G(e)=\{\sigma\in G;\sigma(e)=e\}$ , By
(3), $G(e)$ fixes only vectors in $\langle e\rangle_{\Omega}$ . If $\tau\in Z$, and $\sigma\in G(e)$ , then $\sigma(\tau(e))=\tau(\sigma(e))$

$=\tau(e)$, so $\tau(e)\in\langle e\rangle_{J?}$ and $N(\tau(e))=N(e),$ $i$ . $e$ . $\tau(e)=\pm e$ . This means $\tau=1$ , in
$c-or\tau=-1$ in $c-$ , but in the latter case $\tau$ induces an anti-automorphism of
$C$ and not an isomorphism so $\tau=1onC^{-},$ $i$ . $e$ . $\tau$ is the identity, $q$ . $e$ . $d$ .

There is only one (up to isomorphism) simple group of dimension 14 $i$ . $e$ .
the group of type $G_{2}$ (Theorem 1, expos\’e 21 of Chevalley [1]). By the above
lemma, $G=Aut(C)=Aut_{0}(C)$ is the group of type $G_{2}$ , and if the characteristic
of J2 is $\neq 3$ , we have by Corollary 4 of Chevalley [1] expos\’e 24, Aut $(G)\cong G$ .
$G$ and $C$ satisfy the condition of theorem 2, and we get:

PROPOSITION. Any simple group of type $G_{2}$ defined over a perfect field $k$ of
characteristic $>3$ is obtained as Aut (C) by some octanion $C$ defined over $k$ . Let
$C$ and $C^{\prime}$ be octanions defined over $k$, then Aut (C) and Aut (C) are isomorphic
over $k$ if and only if $C$ and $C^{\prime}$ are isomorphic over $k$ .

For the field of characteristic $0$ , this is the result of Jacobson [2]. He
also showed that the classification of octanions over a field of characteristic
not 2 can be reduced to the classification of quadratic forms of rather special
type (norm-form, $N(x)$ of C), and determined all non-isomorphic octanions over
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some fields (local fields, algebraic number fields).
(III) The exceptional group of type $F_{4}$ . We may choose as $V$ a Jordan

algebra. Let $C$ be an octanion over $k,$ $J=\{x\in M_{8}(C);^{t}\overline{x}=x\}$ . Define a multi-

plication in $J$ by $x\circ y=\frac{1}{2}(x\dot{y}+yx)$ where $xy$ denotes the usual matrix multipli-

cation. With this multiplication, $J$ is a commutative non-associative algebra
defined over $k$ . An algebra over $k$ which is isomorphic to the above $J$ over
$\Omega$ , is called an (exceptional simple) Jordan algebra over $k$ . $G=Aut(J)$ is
clearly an algebraic group defined over $k$ . For the field of characteristic $>3$ ,
it was shown by T. A. Springer that $G$ is the connected simple algebraic
group of type $F_{4}$ (Springer [4] p. 467, Theorem 3.) As there is only one group
of type $F_{4}$ (up to isomorphism over 2) and Aut $(G)\cong G$ for the group of type
$F_{4}$ , the conditions of theorem 2 are satisfied by $G=Aut(J)=Aut_{0}(J)$ and $V=J$ .
We get thus the following result:

“ Any exceptional simple algebraic group of type $F_{4}$ defined over a perfect
field of characteristic $>3$ is obtained as Aut (J) for some Jordan algebra over $k$ .
Aut (J) and Aut $(J^{\prime})$ is isomorphic over $k$ if and only if $J$ and $J^{\prime}$ are isomor-
phic over $k$ .

(IV) The exceptional group of type $E_{n}(n=6,7,8)$ . In these cases, we
have no convenient V at hand. But when $h$ is a finite field, we can apply
Theorem 1 directly to $E_{7}$ and $E_{8}$ . Using the fact that Aut $(G)\cong G$ for these
groups, and the results of Lang [3] that any cocycle into the connected alge-
braic group over a finite field splits, we can conclude that each of $E_{7}$ and $E_{8}$

has only one k-form over a finite field $k$ ( $i$ . $e$ . that of the Chevalley type).
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