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\S 1. Let $D$ be a domain in the n-dimensional complex Euclidean space
$C^{n}$ , and $M$ be a k-dimensinal analytic set1) in $D(1\leqq k\leqq n-1)$ . It is well-
known that the set of all irreducible points of $M$ is not always an open sub-
set of $M$. For example, the analytic set $\{z_{1}^{2}-z_{2}^{2}z_{8}=0\}$ in $C^{3}$ is irreducible at
the origin, but there exist reducible points of the analytic set converging to
the origin (Osgood [2]). We shall say that a point $p$ is a singular irreducible
point of $1\psi$, if $ j\psi$ is irreducible at $p$ and there exist reducible points of $M$

converging to $p$ . Let $S$ be the set of all singular irreducible points of $M$. Re-
cently S. Hitotumatu [1] has shown that $S$ must be empty if $M$ is an analytic
set of l-dimension in $C^{2}$ . In this note, we show the following:

THEOREM. The closure $\overline{S}$ of $S$ in $D$ is an analytic set in D. For each point
$p\in\overline{S}$, a relation $\dim_{p}\overline{S}\leqq\dim_{p}1\psi-2$ holds.

REMARK. For the set $S$ itself, Theorem is not true. For example, the
analytic set $\{z_{4}(z_{1}^{2}-z_{2}^{2}z_{3})=0\}$ in $C^{4}$ has the set $\{z_{1}=z_{2}=z_{3}=0, z_{4}\neq 0\}$ as S.
For another example, the analytic set $\{z_{4}^{4}-2z_{3}^{2}z_{4}^{2}+z_{3}^{4}(1-z_{1}^{2}z_{2})=0\}$ in $C^{4}$ is ir-
reducible in $C^{4}$ . Outside the set $\{z_{2}=0\}U\{z_{3}=0\}U\{1-z_{1}^{2}z_{2}=0\}$ , the analytic
set is decomposed into the following four sets:

$\{z_{4}=z_{s^{\sqrt{}\overline{\sqrt{z_{2}}}^{-}}}1+z_{1}\}$ , $\{z_{4}=-z_{8}^{\sqrt{1+z_{1}^{\sqrt{z_{2}}}}\}}$ ,

$\{z_{4}=z_{3}\sqrt{1-z_{1}\sqrt{z_{2}}}\}$ and $\{z_{4}=-z_{3}\sqrt{1-z_{1}\sqrt{z_{2}}}\}$ .
We have easily

$S=\{z_{1}=z_{2}=0, z_{3}=z_{4}\}U\{z_{1}=z_{2}=0, z_{3}=-z_{4}\}-\{(0,0,0,0)\}$ .

But we can generally show that the set $S$ itself has an analytic property,

that is, $S$ is locally the finite union of locally analytic sets. (cf. \S 4.)
First applying the Remmert-Stein’s ’Einbettungssatz’ ([3]) and the

method of Osgood [2, Chap. II, \S 15], we shall define the number of components
of $M$ at a point $p\in M$. (cf. \S 2). In \S 3, we shall derive a property of roots
of a polynomial. In \S 4, we shall consider Theorem for the case that $M$ is

1) About the definition and related notions of an analytic set, see Remmert-Stein
[4].
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purely dimensional, and in \S 5 we shall conclude the proof of Theorem.
The author wishes to express his sincere thanks to Prof. S. Hitotumatu

and Prof. E. Sakai for their valuable advices during the preparation of this
note.

\S 2. If the set $S$ is empty, Theorem is trivial. We assume that $S$ is not
empty. In this section and \S 4, we assume that the analytic set $M$ is purely
k-dimensional in $D$ . An ordinary point of $M$ can not belong to S. Let $p$ be a
singular point of $M$ and $U$ be an arbitrary neighborhood of $p$ contained in $D$ .
By the Remmert-Stein’s ‘ Einbettungssatz ‘, after suitable non-singular an-
alytic transformations of coordinates, the analytic set $M$ has the following
type of local representations in a neighborhood of $p$ . We may assume the
point $p$ to be the origin of $C^{n}$ . We denote by $w_{1}$ , $\cdot$ .. , $w_{n-k},$ $z_{1}$ , $\cdot$ .. , $z_{k}$ the coordi-
nates in a neighborhood of $p$ . There exist neighborhoods $W$ and $Z_{\nu}$ of the
origin in the spaces $C^{n-k}(w_{1}, \cdots , w_{n-k})$ and $C^{1}(z_{\nu})$ respectively ($\nu=1,2,$ $\cdots$ , k)

satisfying the following:
$W\times Z_{1}\times\cdots\times Z_{k}$ is contained in $U$. There exist distinguished polynomials2)

$P_{\alpha}(w_{\alpha} ; z_{1}, \cdots , z_{k})$ in $w_{\alpha}$ of degree $q_{\alpha}(\alpha=1,2, \cdots , n-k)$ with coefficients holomor-
phic in $Z_{1}\times\cdots\times Z_{k}$ . For each $\alpha,$ $P_{\alpha}$ has no multiple factors and every system
$|(w_{1}, , w_{n-k})$ of the solutions of $P_{\alpha}(u;_{\alpha}$ ; $z_{1}$ , $\cdot$ .. , $z_{k})=0$ for any point $(z_{1}$ , $\cdot$ .. , $z_{k})$

$\in Z_{1}\times\cdots\times Z_{k}$ is surely a point in $W$.
The discriminant $\omega_{\alpha}$ of $P_{a}$ is not identically zero for each $\alpha$ . There exists

a distinguished polynomial $\Delta_{1}(z_{1} ; z_{2}, \cdots , z_{k})$ in $z_{1}$ with coefficients holomorphic
in $Z_{2}\times\cdots\times Z_{k}$ such that

$\{(z_{1}, \cdots, z_{k})\in Z_{1}\times\cdots\times Z_{k}|\prod_{a=1}^{n-k}\omega_{\alpha}(z_{1}, \cdots, z_{k})=0\}$

$=\{(z_{1}, \cdots, z_{k})\in Z_{1}\times\cdots\times Z_{k}|\Delta_{1}(z_{1} ; z_{2}, \cdots, z_{k})=0\}$ .
For the sake of brevity, we put often $(w_{1}$ , $\cdot$ .. $w_{n-k})=w,$ $z_{1}=v,$ $(z_{2}$ , $\cdot$ .. $z_{k})=z$ ,
$Z_{1}=V$ and $Z_{2}\times\cdots\times Z_{k}=Z$. We may $assume\Delta_{1}(v;z)$ has no multiple factors
and every solution of $\Delta_{1}(v;z)=0$ belongs to $V$ for any $z\in Z$.

Let $\delta_{1}(z)$ be the discriminant of $\Delta_{1}(v;z)$ . $\delta_{1}(z)$ is holomorphic in $Z$ and not
identically zero.

The set $M^{\prime}=\{(w, v, z)\in W\times V\times Z|P_{\alpha}(w_{\alpha} ; v, z)=0, (\alpha=1,2, \cdots , n-k)\}$ is an
analytic set in $W\times V\times Z$ having two properties as follows:

i) The set $M_{\cap}(W\times V\times Z)$ is the union of some irreducible components
of $M^{\prime}$ in $W\times V\times Z$. Each irreducible components of $M^{\prime}$ in $W\times V\times Z$ is the

closure of a connected component of the set $M^{\prime}\cap\{\prod_{a\Leftrightarrow 1}^{n-k}\omega_{a}(v, z)\neq 0\}$ , and con-
versely. Moreover each irreducible component of $M^{\prime}$ in $W\times V\times Z$ is ir-
reducible at the origin.

2) In this note, a distinguished polynomial has generally its center at the origin.
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ii) Over any point $(v^{0}, z^{0})^{3)}$ in $V\times Z$, there exists at least one point $(w^{0}, v^{0}, z^{0})$

of $M$. If $\prod_{\iota\iota=1}^{n-k}\omega_{\alpha}(v^{0}, z^{0})\neq 0,$ $M$ has the same germ as $M^{\prime}$ at each point $(w^{o}, v^{0}, z^{0})$

’of $M$ over $(v^{0}, z^{0})$ .
A point $(w^{0}, v^{0}, z^{0})$ is often called a point $w^{0}$ over $(v^{0}, z^{0})$ . Since each point

of $M$ over $(v^{0}, z^{0})$ satisfying $\prod_{a\Leftarrow 1}^{n-k}\omega_{a}(v^{0}, z^{0})\neq 0$ is an ordinary point of $M$, the set

$\{\prod_{\alpha=}^{nk}\omega_{\alpha}=0\}$ contains the origin and we can construct $\Delta_{1}$ as above.

Take a point $(w^{0}, v^{0}, z^{0})$ in $M$ satisfying $\Delta_{1}(v^{0};z^{0})=0$ . Let $V^{0}$ and $\tilde{V}^{0}$ be
two bounded simply-connected neighborhoods of $v^{0}$ , and $W^{0},$ $Z^{0}$ be those of
$w^{0},$ $z^{0}$ . We shall say that a collection $(W^{0}, V^{0},\tilde{V}^{0}, Z^{0})$ is a distinguished system

of neighborhoods of $(w^{0}, v^{0}, z^{0})$ for $M$ if it satisfies the following four conditions:
(1) $W^{0}\subset W,\tilde{V}^{0}\subset\subset^{4)}V^{0}\subset V,$ $Z^{0}\subset Z$ ,

(2) $M^{\prime}\cap(W^{0}\times\{v^{0}\}\times\{z^{0}\})=\{(w^{0}, v^{0}, z^{0})\}$ ,
(3) $M^{\prime}\cap(\partial W^{0}\times V^{0}\times Z^{0})=\phi,$ ( $\partial W^{0}$ means the boundary of $W^{0}.$)

(4) $\{v\in V^{0}|\Delta_{1}(v;z^{0})=0\}=\{v^{0}\}$ and $\{(v, z)\in(V^{0}-\tilde{V}^{0})\times Z^{0}|\Delta_{1}(v;z)=0\}=\emptyset$ .
First we remark that for any given neighborhood $W^{\prime}$ of $w^{0}$ we can construct
a distinguished system of neighborhoods $(W^{0}, V^{0},\tilde{V}^{0}, Z^{0})$ such that $W^{0}\subset W^{\prime}$ .

Let $(W^{0}, V^{0},\tilde{V}^{0}, Z^{0})$ be a distinguished system of neighborhoods of ($w^{0},$ $ v^{0},z^{0}\rangle$

for $M$. By the condition (3), over any $(v, z)\in V^{0}\times Z^{0}$ we can find at least
one point of $M$ in $W^{0}$ . Let $b$ be a point in $V^{0}-\tilde{V}^{0}-$ and $B$ be a simply-
connected neighborhood of $b$ contained in $V^{0}-\tilde{V}^{0}$ . Let $z^{1}$ be a point in $Z^{0}$

satisfying $\delta_{1}(z^{1})\neq 0$ and $v_{1}^{1}$ , $\cdot$ .. , $v_{t}^{1}$ be roots of the equation $\Delta_{1}(v, z^{1})=0$ in $V^{0}$ .
We take simply-connected neighborhoods $V_{\lambda}^{1}$ and $Z^{1}$ of $v_{\lambda}^{1}$ and $z^{1}$ ($\lambda=1,2,$ $\cdots$ , t)

as follows:
(a) $Z^{1}\subset Z^{0}\cap\{\delta_{1}\neq 0\},$ $V_{\lambda}^{J}\tau\subseteq\tilde{V}^{0}$ ($\lambda=1,2,$ $\cdots$ , t) ,

$(c)(b)$
$\Delta_{1}(v;z)\neq 0forany(v,z)\in(V^{(\lambda_{0}}’-\bigcup_{\lambda=1}^{t}V_{\lambda})\times Z^{1}\overline{V}_{\lambda}^{1}\cap\overline{V}_{\rho\ell}^{1}=\phi forany\lambda\neq\mu\mu=1,$

$2_{l},\cdots,t$

)
$,$

.
Let $w^{1},$ $\cdots$ , $w^{\iota}$ be points of $M$ in $W^{0}$ over $(v, z)\in B\times Z^{0}$ . We denote $w^{\mu}$

by $w^{\mu}(v, z)$ or $(w_{1}^{\mu}(v, z),$ $\cdots$ , $w_{n-k}^{\alpha}(v, z))(\mu=1,2, \cdots , 1)$ . Since for any $(v, z)\in B\times Z^{0}$

the equation $P_{a}(w_{\alpha};v, z)=0$ has distinct $q_{a}$ roots which are one-valued
holomorphic functions in $B\times Z^{0}$ , the branch $w_{\alpha}^{\mu}(v, z)$ is so ($\mu=1,2,$ $\cdots$ , $l$ ;
$\alpha=1,2,$ $\cdots$ , $n-k$). Each $w_{\alpha}^{\mu}(v, z)$ can be analytically continued along any curve
in $(V^{0}-\bigcup_{\lambda=1}^{t}\overline{V}_{\lambda}^{1})\times Z^{1}$ . We may assume that $w^{1}$ , $\cdot$ .. , $w^{\iota_{1}}$ are all of the simul-

taneous continuations of $w^{1}$ along some curves in (V $-\bigcup_{\lambda\Leftrightarrow J}^{t}\overline{V}_{\lambda}^{1}$ ) $\times Z^{1}$ and
$w^{\iota_{1}+\cdots+\iota_{\nu-1^{\perp 1}}},$ $\cdots$ , $w^{\iota_{1}+\cdots+\iota_{\nu-1}+\iota_{\nu}}$ are those of $w^{l_{1}+\cdots+\iota_{\nu-\iota^{+1}}}(\nu=1,2,$ $\cdots$ , $m;l_{1}+l_{2}+\cdots+l_{m}$

3) In this note, $x^{y}$ does not mean the y-th power of $x$ unless otherwise stated.
4) $A\Subset B$ means that the closure of $A$ is compact and is contained in $B$.
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$=l)$ . We shall call $m$ the number of components of Mat $(w^{0}, v^{0}, z^{0})$ . It is trivial
that this number $m$ does not depend upon a particular choice of the neigh-
borhoods $V_{\lambda}^{1}$ and $Z^{1}$ $(\lambda=1,2, \cdots , t)$ . Under these assumptions and notations
we have

LEMMA 1. The number of components of Mat $(w^{0}, v^{0}, z^{0})$ coincides with the
number of irreducible components of $M$ at $(w^{0}, v^{0}, z^{0})$ . As the result of this fact,
it is determined only by $M$ and $(w^{0}, v^{0}, z^{0})$ , and does not depend upon a particular
choice of a point $z^{1}$ and a distinguished system of neighborhoods $(W^{0}, V^{0},\tilde{V}^{0}, Z^{0})$

of $(w^{0}, v^{0}, z^{0})$ for $M$.
PROOF. It is sufficient to show that one of the systems, for example

$w^{1},$
$\cdots,$

$w^{\iota_{1}}$ , makes an irreducible component of $M$ at $(w^{0}, v^{0}, z^{0})$, and another
system, for example $w^{\iota_{1}+1},$ $\cdots$ , $w^{\iota_{1}+\iota_{2}}$ , makes distinct one.

Let $l_{\nu}^{\alpha}$ be the number of distinct branches among $w_{\alpha}^{\iota_{1+}\cdots+\iota_{\nu-1^{+1}}},$ $\cdots$ , $w_{a}^{l1+\cdots\vdash\iota_{\nu-1}+\iota_{\nu}}$

and we make elementary symmetric functions of such $l_{\nu}^{\alpha}$ ones $(\nu=1,2,$ $\cdots$ , $m^{-}$

$a=1,2$ , , $n-k$). We denote by $\Phi(v, z)$ one of them. $\Phi(v, z)$ is one-valued

and holomorphic in $\{(V^{0}-\bigcup_{\lambda=1}^{t}\overline{V}_{\lambda}^{1})\times Z^{1}\}U\{B\times Z^{0}\}$ . Let $c$ be an arbitrary

closed curve passing through $(b, z^{1})$ contained in $\{V^{0}\times Z^{0}\}\cap\{\Delta_{1}\neq 0\}$ . We
continue simultaneously $w^{1}$ over $(b, z^{1})$ along $c$ . When we come back to the
point $(b, z^{1})$ again, such a continuation of $w^{1}$ must be contained in $\{w^{1}, \cdots , w^{\iota_{1}}\}$ .
We show first this fact. We may assume $\delta_{1}\neq 0$ on $c$ . Let $(v^{\prime}, z^{\prime})$ be an arbi-
trary point on $c$ and $v_{1^{\prime}}$ , $\cdot$ .. , $v_{t^{\prime}}$ , be roots of the equation $\Delta_{1}(v;z^{\prime})=0$ in $V^{0}$ .
Since $\delta_{1}\neq 0$ on $c$ , we have $t^{\prime}=t$ . Take simply-connected neighborhoods $V_{\lambda}^{\prime}$,

and $Z^{\prime}$ of $v_{\lambda}^{\prime}$ and $z^{\prime}$ ($\lambda=1,2$ , $\cdot$ .. , t) satisfying the similar conditions (a), (b), ( $c\rangle$

as $V_{\lambda}^{1}$ and $Z^{1}$ . We may assume $\bigcup_{\lambda=1}^{t}\overline{V}_{\lambda}^{f}\exists\ni v^{\prime}$ . The point $v^{\prime}$ can be joined to the

point $b$ by a curve $c^{\prime}$ contained in $V^{0}-\bigcup_{\lambda=1}^{t}\overline{V}_{\lambda}^{\prime}$ . We continue simultaneously
$w^{1}$ along $c$ from $(b, z^{1})$ to $(v^{\prime}, z^{\prime})$ , along $c^{\prime}$ from $(v^{f}, z^{\prime})$ to $(b, z^{\prime})$ when $z$ is in $Z^{r}$

and next along any closed curve in $(V^{0}-|\bigcup_{\lambda=1}^{t}|\overline{V}_{\lambda}^{\prime})\times Z^{\prime}$ . The set of all $w^{\mu}$ over
$(b, z^{\prime})$ obtained by such continuations is locally invariant when $(v^{\prime}, z^{\prime})$ moves
on $c$ . So it is also $\{w^{1}, \cdots , w^{\iota_{1}}\}$ . From this fact $\Phi(v, z)$ becomes holomorphic
and one-valued in $\{V^{0}\times Z^{0}\}\cap\{\Delta_{1}\neq 0\}$ . By the removable singularity theorem
of Riemann, $\Phi(v, z)$ is a holomorphic and one-valued function in $V^{0}\times Z^{0}$ .

Now, we have an irreducible polynomial $Q_{\alpha}^{\nu}$ $(w_{\alpha} ; v, z)$ in $w_{\alpha}$ of degree $l_{\nu}^{a}$

with coefficients holomorphic in $V^{0}\times Z^{0}$ such that the roots of the equation
Qtt $(w_{\alpha} ; v, z)=0$ are precisely those $t_{\nu}^{\alpha}$ distinct branches among $w_{\alpha}^{\iota_{1}+\cdots+\iota_{\nu-1}+1},$ $\cdots$ ,
$w_{\alpha}^{\iota_{1}+\cdots+\iota_{\nu-1}+\iota_{\nu}}$ . By the Remmert-Stein’s ’ Einbettungssatz ’, the closure of the
set which we obtain by the simultaneous continuations of $w^{1}$ along any curve
contained in $\{V^{0}\times Z^{0}\}\cap\{\Delta_{1}\neq 0\}$ is an irreducible components of $M$ at
$(w^{0}, v^{0}, z^{0})$ . Since $w^{\iota_{1}+1}$ is not the simultaneous continuation of $w^{1}$ in



Irreducibility of an analytic set 5

$\{V^{0}\times Z^{0}\}\cap\{\Delta_{1}\neq 0\}$ , the irreducible component of $M$ at $(w^{0}, v^{0}, z^{0})$ containing
$w^{1}$ is different to that containing $w^{\iota_{1}+1}$ . We conclude the proof.

We put $Q_{\alpha}(u_{\alpha} ; v, z)=\nu 1I_{1}Q_{\alpha}^{\nu}m_{=}(w_{\alpha} ; v, z)$ and call it the $\alpha$ -th polynomial attached

$JoM$ at $(w^{0}, v^{0}, z^{0})(\alpha=1,2, \cdot n-k)$ . It is a distinguished polynomial in $w_{\alpha}$

of degree $l_{1}^{a}+\cdots+l_{m}^{a}$ having its center at $(w^{0}, v^{0}, z^{0})$ .
By Lemma 1, we have
LEMMA 2. Let $(W^{0}, V^{0},\tilde{V}^{0}, Z^{0})$ be a distinguished system of neighborhoods

of $(w^{0}, v^{0}, z^{0})$ for $M$ and $(v^{1}, z^{1})$ be a point in $\tilde{V}^{0}\times Z^{0}$ . Suppose that the equation
$\Delta_{1}(v;z^{1})=0$ has one and only one root $v^{1}$ in $V^{0}$ and over $(v^{1}, z^{1})$ there is one and
only one point $w^{1}$ of $M^{\prime}$ in $W^{0}$ . Then the number of components of $M$ at
$\langle w^{0},$ $v^{0},$ $z^{0}$) is equal to that at $(w^{1}, v^{1}, z^{1})$ .

PROOF. First we remark $(w‘, v^{1}, z^{1})\in M$. We can construct a distinguished
system of neighborhoods $(W^{1}, V^{1},\tilde{V}^{1}, Z^{1})$ of $(w^{1}, v^{1}, z^{1})$ for $M$ such that $W^{1}\subset W^{0}$ ,
$V^{1}=V^{0},\tilde{V}^{1}\subset\tilde{V}^{0}$ and $Z^{1}\subset Z^{0}$ . By Lemma 1 and the definition of the number
of components, we can easily arrive at the conclusion.

\S 3. Let $\Delta_{0}$ be a distinguished polynomial in $z_{0}$ of degree $d$ with coeffi-
.cients holomorphic in a neighborhood $V$ of the origin in $C^{n}(d>1, n\geqq 1)$ . Sup-
pose that $\Delta_{0}$ has no multiple factors. Taking suitable coordinates $z_{1},$

$\cdots$ , $z_{n}$

in a neighborhood of the origin and a sufficiently small neighborhood Z. of
the origin in the $z_{\nu}$ -plane $(\nu=1,2, \cdots, n)$ , by the Weierstrass’ preparation
theorem we can easily show the existence of distinguished polynomials
$\Delta_{fJ}(z_{\mu};z_{\mu\{1}, \cdot. , z_{n})(\mu=1,2, \cdot.. , r;1\leqq\gamma\leqq n)$ satisfying the following:

1) $Z_{1}\times\cdots\times Z_{n}\subset V$ .
2) Each $\Delta_{\mu}$ is a distinguished polynomial in $z_{\mu}$ whose coefficients are

holomorphic functions of $Zu+1$ ’... , $z_{n}$ in $Z_{\mu+1}\times\cdots\times Z_{n}$ . $\Delta_{\mu}$ has no multiple
factors and every solution of the equation $\Delta_{\mu}(z_{\mu} ; z_{\mu+1}, \cdots , z_{n})=0$ belongs to $Z_{u}$

for any $(z_{\mu+1}, \cdots , z_{n})\in Z_{\mu+1}\times\cdots\chi Z_{n}(\mu=1,2, \cdots , r)$ .
3) We denote by $\delta_{\mu}$ the discriminant of $\Delta_{\mu}$ . Then the set $\{\delta_{U}=0\}$ con-

tains the origin of $ Z_{\mu+1}\times$ $\times Z_{n}$ and is contained in the set $\{\Delta_{\mu+1}=0\}(\mu=0$ ,
1, $\cdot$ , $r-1$). The analytic set $\{\Delta_{r}=0\}$ in $Z_{r}\times\cdots\times Z_{n}$ is ordinary at the origin.
We may assume $\{\Delta_{r}=0\}=\{z_{r}=0\}$ in $ Z_{r}\times$ $\times Z_{n}$ .

Under these assumptions, we have
LEMMA 3. There exists a neighborhood $/Z_{\nu}$ of the origin contained in $Z_{\nu}$

$6\nu=r+1$ , n) such that for an arbitrary point $(z_{r+1}$ , $\cdot$ .. $z_{n})\in\prime z_{r+1}\times\cdots\times\prime z_{n}$

the simultaneous equations

$\Delta_{\alpha,\prime}(z_{\mu};z_{\mu+1}, \cdots, z_{r-1},0, z_{r+1}, \cdots, z_{n})=0$ $(\mu=0,1, \cdots, r-1)$

have one and only one system of solutions $z_{\mu}(z_{r+1}, \cdots , z_{n})(\mu=0,1, \cdots , r-1)$ . And
each $z_{\mu}(z_{r+1}$ , $\cdot$ . , $z_{n})$ is a holomorphic function in $\prime z_{r+1}\times\cdots\times\prime z_{n}$ .

PROOF. First we consider the case $r=1$ . $\Delta_{0}$ is uniquely decomposed into
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the product $\prod_{\nu=1}^{a}\Delta_{0}^{\nu}$ of irreducible polynomials $\Delta_{0}^{\nu}$ . Let $d_{\nu}$ be the degree of $\Delta_{0}^{\nu}$ ,

and $d_{0}$ be the least common multiple of $d_{1},$ $\cdots$ , $d_{a}$ . We put $z_{0}=u,$ $z_{1}=v$ ,

\langle $z_{2}$ , $\cdot$
., , $z_{n}$) $=z$ and $v=t^{d_{0}}$ (here $t^{d_{0}}$ means the $d_{0}$-th power of $t$). Let $(W^{0},$ $V_{r}^{0}$

$\tilde{V}^{0},$ $Z^{0}$) be a distinguished system of neighborhoods of the origin (0,0,0) for
the analytic set $\{\Delta_{0}=0\}$ such that $V^{0}=\{|v|<\epsilon\},\tilde{V}^{0}=\{|v|<\tilde{\epsilon}\}$ and $V^{0}\times Z^{0}$

$\subset Z_{1}\times\cdots\times Z_{n}$ . By the assumptions $d>1$ and $r=1$ , we have $\{\delta_{0}=0\}=\{v=0\}$ .
We put $T=\{|t|<^{a}\backslash ^{0}/\overline{\epsilon}\},\tilde{T}=\{|t|<^{d}\sqrt[0]{}\tilde{\epsilon}\}$ and $\Delta_{0}^{\star}(w;t, z)-\rightarrow\Delta_{0}(w;l^{d_{0}}, z)$ . Denot-
ing by $\delta_{0}^{\star}$ the discriminant of $\Delta_{0}^{\star}$ , we have $\{\delta_{0}^{\star}=0\}=\{t=0\}$ in $T\times Z^{0}$ . We
put it $A$ . The number of components of the analytic set $\{\Delta_{0}^{*}=0\}$ at the

origin is equal to the degree $d$ of $\Delta_{0}^{\star}$ . So we have $\Delta_{0}^{\star}=\prod_{\nu=1}^{d}(w-w_{\nu}(t, z))$ where

$w_{\nu}$ is holomorphic and one-valued in $T\times Z^{0}$ . Denoting by $A_{\mu\nu}$ the set $\{(t, z)$

$\in T\times Z^{0}|w_{\mu}(t, z)=w_{\nu}(t, z)\}$ for any $\mu\neq\nu(\mu, \nu=1,2, \cdots , d)$ . Since $A_{\mu\nu}$ is not
empty, it is a purely l-codimensional analytic set in $T\times Z^{0}$ . As $A$ is an ir-
reducible l-codimensional analytic set in $T\times Z^{0}$ and contains $A_{z\nu}$ , we have
$A_{\mu}.=A$ $(\mu, \nu=1,2, \cdot.. , d;\mu\neq\nu)$ . The roots of $\Delta_{0}(w;0, z)=0$ are those of
$\Delta_{0}^{\star}(w;0, z)=0$ , and they must be $w_{1}(0, z)$ . This concludes the proof in the
case $r=1$ .

In the general case, the proof is inductive. If $n=1$ , the lemma is trivial.
Let us assume the lemma true for $n-1$ .

We put $\Delta_{\mu}^{\star}(z_{\ell} ; z_{\mu+1}, \cdots , z_{r-1}, z_{r+1}, \cdots , z_{n})=\Delta_{\mu}(z_{\mu}$ ; $z_{\mu+1},$
$\cdots$ , $z_{7-1},0,$ $z_{7+1},$ $\cdots$ , $ z_{n}\rangle$

$(\mu=0,1, \cdots , r-1)$ . $\mu$ is a distinguished polynomial in $z_{\mu}$ and not identically
zero. Since $\{z_{r}=0\}c[\{\Delta_{\rho+1}=0\},$ $\Delta_{\mu}^{\star}$ has no multiple factors $(\mu=0,1, \cdot.. r-2)$ .
Denoting by $\delta_{u}^{\star}$ the discriminant of $\Delta_{\mu}^{\star}$ , we have $\{\delta_{l}^{\star_{l}}=0\}\subset\{\Delta_{\mu}^{\star_{+1}}=0\}$ . By the
lemma of the case $r=1,$ $\Delta_{r-1}(z_{r-1};0, z_{r+1}, z_{n})=0$ is equivalent to $z_{r-1}$

$=\zeta(z_{r+1}, \cdots , z_{n})$ in a neighborhood $\prime\prime z_{r+1}\times\cdots\times Z_{n}\subset Z_{r+1}\times\cdots\times Z_{n}$ where $\zeta$ is a
holomorphic function in $\prime\prime z_{r+1}\times\cdots\times\prime\prime z_{n}$ . By the transformations of coordi-
nates $\prime z_{\nu}=z_{\nu}$ $(\nu=1,2, \cdots , n;\nu\neq r-1)$ and $\prime z_{r-1}=z_{-1}-\zeta(z_{r+1}, \cdots , z_{n}),$ $Z_{1}\times\cdots\times Z_{r}$

$\times\prime\prime z_{r+1}\times\cdots\times\prime\prime z_{n}$ can be regarded as a neighborhood in $(^{\prime}z_{1}$ , $\cdot$ .. , $\prime z_{n})$-space.
From the hypothesis of the induction, there exists a neighborhood $\prime z_{r+1}\times\cdots$

$\times\prime z_{n}$ such that for any $(^{\prime}z_{r+1}, , \prime z_{n})\in\prime Z_{r+1}\times\cdots\times\prime z_{n}$ the simultaneous equa-
tions $\Delta_{\mu}^{\star}(z_{\mu};z_{\mu+1}, \prime z_{r-2},0,z_{r+1}, \cdots, z_{n})=0(\mu=0,1, r-2)$ have one and only
one system of solutions $\prime z_{1}=\prime\prime\prime z_{\mu}(z_{r+1}, \cdots, z_{n})$ . $/Z_{r+1}\times\cdots\times\prime z_{n}$ can be regarded
as a neighborhood of the origin in $(z_{r+1}, \cdots , z_{n})$-space. This yields the lemma.

\S 4. In this section we use the same assumptions and notations as in \S 2.
Taking suitable coordinates $w_{1},$ $\cdots,$ $w_{n-k},$ $z_{1},$ $\cdots,$ $z_{k}$ in a neighborhood of the
origin and making neighborhoods $W,$ $Z_{1},$ $\cdots$ , $Z_{k}$ small, we may assume that
all of the hypothesis in \S 2 hold and furthermore the following:

If $\delta_{1}(0)\neq 0$ , we have $\{\Delta_{1}(v;z)=0\}=\{v=0\}$ in $V\times Z$ ; we put then $r=1$ .
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($v=z_{1},$ $z=(z_{2},$ $\cdots$ , $z_{k}$), $V=Z_{1}$ and $Z=Z_{2}\times\cdots\times Z_{k}$). If $\delta_{1}(0)=0$ , there exist
distinguished polynomials $\Delta_{l}(z_{\mu} ; z_{\mu+1}, \cdots, z_{k})(l\ell=2, \cdots, r)$ satisfying the similar
conditions 2), 3) as in \S 3.

Let $L_{\nu}^{\lambda}$ be connected components of the set
$ L^{\lambda}=M_{\cap}(W\times V\times Z)\cap\{\Delta_{1}=0\}\cap$ $\cap\{\Delta_{\lambda}=0\}\cap\{\Delta_{\lambda+1}\neq 0\}$

such that $L^{\lambda}=\nu^{t}\Rightarrow 1U^{\lambda}L_{\nu}^{\lambda}$ ($\lambda=1,2,$ $\cdot$ . , $r$ ; we put $\Delta_{r+1}\equiv 1$ ).

LEMMA 4. If $M$ is irreducible (reducible) at a point in $L_{\nu}^{\lambda}$ , then $M$ is also
irreducible (reducible) at any point in $L_{\nu}^{\lambda}$ .

PROOF. Let $(w^{0}, v^{0}, z^{0})$ be a point in $L_{\nu}^{\lambda}$ . We can take a distinguished
system of neighborhoods $(W^{0}, V^{0},\tilde{V}^{0}, Z^{0})$ of $(w^{0}, v^{0}, z^{0})$ for $M$ such that
$\{z_{\mu}\in Z_{\mu}^{0}|\Delta_{\mu}(z_{\mu} ; z_{\mu+1}^{0}, \cdots , z_{k}^{0})=0\}=\{z_{\mu}^{0}\}$ and $(\partial Z_{\mu}^{0}\times Z_{\mu^{0_{+1}}}\times\cdots\times Z_{k}^{0})\cap\{\Delta_{\mu}=0\}=\phi$

for $\mu=1,2,$ $\cdots$ , $\lambda$ , where $v^{0}=z_{1}^{0}$ , $’’=$ $(z_{2}^{0}, \cdots , z_{k}^{0})$ and $Z^{0}=Z_{2}^{0}\times\cdots\times Z_{k}^{0}$ . We may
assume $\Delta_{\lambda+1}\neq 0$ in $Z_{\lambda^{0}+1}\times\cdots\times Z_{k}^{0}$ and furthermore in $Z_{\mu}^{0}\times\cdots\times Z_{k}^{0}\Delta_{\mu}$ is equi-
valent to a distinguished polynomial $’\Delta_{4}$ in $z_{1}$ having its center at $(z_{l}^{0},, \cdots , z_{k}^{0})$

$(\mu=1,2, \cdots, \lambda)$ . Let $Q_{\alpha}(w_{\alpha};v, z)$ be the $\alpha$ -th polynomial attached to $M$ at
$(w^{0}, v^{0}, z^{0})(\alpha=1,2, \cdots , n-k)$ . $Q_{a}$ and $’\Delta_{\mu}(\mu=1,2, \cdots , \lambda)$ satisfy all assumptions
of Lemma 3. Making the neighborhood $Z_{\lambda^{0}+1}\times\cdots\times Z_{k}^{0}$ small as in Lemma 3,
by Lemma 1 and Lemma 2 our assertion is proved.

LEMMA 5. If $\overline{L}_{\nu}^{\lambda}\cap L_{\nu^{\prime}}^{\lambda,}\neq\phi$ , then we have $\lambda\leqq\lambda^{\prime}$ and $\overline{L}_{\nu}^{\lambda}\supset L_{\nu}^{\lambda^{l}},$ .
PROOF. By the definition of $L_{\nu}^{\lambda}$, the fact $\lambda\leqq\lambda^{\prime}$ is trivial. If $\lambda=\lambda^{\prime}$ , we

have $\nu=\nu^{\prime}$ . Suppose $\lambda<\lambda^{\prime}$ . Let $N_{\sigma}$ be irreducible components of an analytic
set $N=M_{\cap}\{\Delta_{1}=0\}\cap\cdots\cap\{\Delta_{\lambda}=0\}\cap\{\Delta_{\lambda+1}=0\}$ in $W\times V\times Z$ such that $N$

$=$ $\bigcup_{-,\sigma 1}^{t^{\prime}}N_{\sigma}$ . By the Remmert-Stein’s continuation theorem ([3]), $\overline{L}_{\nu}^{\lambda}$ is a purely
$ k-\lambda$ dimensional analytic set in $W\times V\times Z$ and we have either $\overline{L}_{\nu}^{\lambda}\supset N_{\sigma}$

or $\overline{L}_{\nu}^{\lambda}\cap N_{\sigma}=\emptyset$ for each $\sigma$ $(\sigma=1,2, \cdots , t^{\prime})$ . Since $N\supset L_{\nu}^{\lambda^{\prime}},$ , the $re$ lation
$L_{\nu^{\prime}}^{\lambda,}=\bigcup_{\sigma=1}^{t^{\prime}}(N_{\sigma\cap}L_{\nu^{\prime}}^{\lambda,})$ holds. Suppose that $N_{\sigma}$ ]$\supset L_{\nu^{\prime}}^{\lambda}$, for each $\sigma$ . Then for each $\sigma$

$\dim L_{\nu}^{\lambda}‘>\dim(N_{\sigma\cap}L_{\nu}^{\lambda^{\prime}},)$ at each point of $L_{\nu}^{\lambda^{\prime},}$ , because $L_{\nu}^{\lambda^{\prime}}$, is a connected locally
analytic set without singularities in $W\times V\times Z$ by Lemma 3. This is a
contradiction. Hence $N_{\sigma}\supset L_{\nu}^{\lambda^{\prime},}$ for some $\sigma$ . Since $\overline{L}_{\nu}^{\lambda}\cap L_{\nu}^{\lambda^{\prime}},$ $\neq\phi$ , we have
$ N_{\sigma\cap}\overline{L}_{\nu}^{I}\neq\phi$ and $\overline{L}_{\nu}^{l}\supset N_{\sigma}$ for this $\sigma$ . This concludes the proof.

Now, we can prove our Theorem when $M$ is purely dimensional. Let $p^{\prime}$

be an arbitrary point of $S$ in $W\times V\times Z$. Since $p^{\prime}$ is not an ordinary point
of $M$, there exists one and only one $L_{\nu}^{\lambda^{J}},$ , such that $p^{\gamma}\in L_{\nu}^{\lambda^{\prime}},$ . By Lemma 4, $M$

is irreducible at each point of $L_{\nu}^{\lambda^{\prime},}$ . By the definition of the set $S$, there must
exist $L_{\nu}^{\lambda}$ such that $\overline{L}_{\nu}^{\lambda}\ni p^{r}$ and every point of $L_{\nu}^{\lambda}$ is a reducible point of $M$.
By Lemma 5, we have $\overline{L}_{\nu}^{\lambda}\supset L_{\nu^{\prime}}^{\lambda,}$ and $\lambda<\lambda^{\prime}$ . From this fact we have $\lambda^{\prime}\geqq 2$

and $S\supset L_{\nu}^{\lambda}$ ‘. Thus we obtain the relation $\overline{S}_{\cap}(W\times V\times Z)=\bigcup_{L_{\nu}^{\lambda}\subset S}\overline{L}_{\nu}^{\lambda}$
. Since $\overline{L}_{\nu}^{\lambda}$
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is a purely $ k-\lambda$ dimensional analytic set in $W\times V\times Z$, our assertion is proved.
We remark that the set $S$ must be empty when $M$ is l-dimensional.
\S 5. Suppose $M$ is not purely dimensional. $M$ is decomposed uniquely

into the union of purely dimensional analytic set in $D$ . We denote it by
$M=M_{0}UM_{1}U\cdots UM_{k}$ , where $M_{\nu}$ is either empty or purely v-dimensional
analytic set in $D$ and no irreducible components of $M_{\nu}$ in $D$ is contained in
$M_{\nu}$ , for $\nu\neq\nu^{\prime}$ . Let $S_{\nu}$ be the set of all singular irreducible points of $M_{\nu}$ . S.
is an at most $(\nu-2)$-dimensional analytic set in $D$ . We have easily Sc $S_{2}$

$U\cdot\cdot U\overline{S}_{k}$ .
Take a point $p$ in $\overline{S}_{\nu}\cap\overline{S}^{c}$ . We take a small neighborhood $G$ of $p$ such

that $G\subset D$ and $ G\cap\overline{S}=\phi$ . Then every point of $S_{\nu}\cap G$ must be a reducible

point of $M$ and must be contained in some $M_{\nu},$ $(\nu^{\prime}\neq\nu)$ . Hence $\overline{S}_{\nu}\cap G$

$\subset_{\nu,\nu}(\bigcup_{--1,\neq\nu}^{k}M_{\nu}\cap M_{\nu},)\cap G$
. From this fact, we can conclude that any irreducible

component of $\overline{S}_{\nu}$ in $D$ passing through a point $p\in\overline{S}_{\nu}\cap\overline{S}^{c}$ must be contained

in $\nu^{\prime}\neq\nu\bigcup_{\nu=1}^{k}(M_{\nu\cap}M_{\nu},)$ .

Let $S_{\nu}^{\prime}$ be the union of all irreducible components of $S_{\nu}$ in $D$ not contained

in $\nu=1\bigcup_{\nu\neq\nu}^{k}(M.\cap M_{\nu},)$ . $S_{\nu}^{\prime}$ is an at most $(\nu-2)$-dimensional analytic set in $D$ . We

have easily $\bigcup_{\nu=2}^{k}S_{\nu}^{\prime}\subset\overline{S}$. Take a point $p^{\prime}$ in S. Let $\nu_{1}$ , , $\nu_{t}$ be all indices such

that $p^{\prime}\in\overline{S}_{\nu_{\rho}}$ $(\rho=1,2, \cdot.. , t)$ . We take a point $p^{\prime\prime}$ of $S$ in a sufficiently small

neighborhood of $p^{\prime}$ . $p^{\prime\prime}$ must belong to $\bigcup_{\rho=1}^{t}S_{\nu_{\rho}}$ . Since $M$ is irreducible at $p^{\prime\prime}$ ,

$p^{\prime}$ must belong to $\bigcup_{\rho=1}^{t}S_{\nu\rho}^{\prime}$ . We have $\overline{S}=\bigcup_{\nu=2}^{k}S_{\nu}^{\prime}$ , and this concludes the proof.

Chuo University
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