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Let $V$ be a complete, non-singular variety and let $G(V)$ be the group
consisting of all the automorphisms of $V$. Then we can define two matrix
representations $1\psi^{(V)}$ and $S^{(V)}$ of $G(V)$ . The representation $M^{(V)}$ is defined by
means of the l-adic representation of the ring of endomorphisms of an Al-
banese variety attached to $V$ (with a fixed rational prime 1 different from the
characteristic of the universal domain) (cf. [1] and [4]). On the other hand,

the representation $S^{(V)}$ is defined also by means of the matrix representation
of linear transformations of the space of the linear differential forms of the
first kind on $V$ (with respect to a fixed basis of it) (cf. [1] and [3]). While
the field of coefficients of $M^{(V)}$ is always of characteristic zero, the feld of
coefficients of $S^{(V)}$ is contained in the universal domain under consideration
and so some difficulties occur for the study of $S^{(\gamma)}$ in the case of positive
characteristics.

The purpose of this paper is to give some informations about these two
representations $M^{(V)}$ and $S^{(V)}$ (or, rather, the restrictions of them to a finite
subgroup of $G(V))$ . Since our results are well-known when the characteristic
of the universal domain is equal to zero (cf. the remark in the section 2), we
shall restrict ourselves to the case of positive characteristics. First we con-
sider the case where $V=A$ is an abelian variety, which is the case of im-
portance as seen later. In particular, it is shown that $S^{(A)}$ gives a faithful
representation of a finite multiplicative group consisting of endomorphisms of
$A$ , provided its order is prime to the characteristic of the universal domain.
Secondly, we show a relation between two representations $M^{(A)}$ and $S^{(A)}$ , which
is suggested by a classical result. In the last section, we apply these results
to the study of the representations $M^{(V)}$ and $S^{(V)}$ for an arbitrary (complete,
non-singular) variety $V$. When $V$ is a curve of genus greater than one, our
results are already known in a more explicit form, by the theory of algebraic
functions of one variable.

1. Preliminaries.

First we explain the notations, which are used throughout this paper,
and give the definitions of the representations $\wedge l\psi^{(\gamma)}$ and $S^{(\gamma)}$ . Let $V$ be an
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algebraic variety, defined over a field of positive characteristic $p$ . Let $G(V)$

be the group consisting of all the automorphisms of $V$, i. e. the everywhere
biholomorphic, birational transformations of $V$ onto itself. Let $A$ be an
Albanese variety attached to $V$ and a a canonical mapping of $V$ into $A$ .
Let $d(A)$ be the ring of endomorphisms of $A$ . Moreover, when $V$ is complete
and non-singular, we denote by $\mathfrak{D}_{0}(V)$ the space consisting of all the linear
differential forms of the first kind on $V$.

For any element $T$ of $G(V)$ , there exists, by the universal mapping
property of $\alpha$ , an element $\tau$ of $\mathcal{A}(A)$ such that we have $\alpha\circ T(v)=\tau\circ\alpha(v)+t$ ,

where $v$ is a generic point of $V$ and $t$ is a constant point on $A$ . Then it is
easily verified that the mapping $\varphi$ : $ T\rightarrow\varphi(T)=\tau$ is a (multiplicative group)

homomorphism of $G(V)$ into the unit group $d(A)\cap G(A)$ of $d(A)$ . Let $M_{l}$ be
the l-adic representation of $A(A)$ with a rational prime $l\neq p$ . Then, with a
fixed $l$, associating $T$ with the matrix $M_{l}(\tau)=l\psi_{\iota}(\varphi(T))$ , we get the representa-
tion $j\psi^{(V)}=$ ]$\psi_{l}\circ\varphi^{1)}$ of $G(V)$ . The representation $M^{(V)}$ is of degree $=2\dim A$

and has coefficients in the l-adic number field $Q_{\iota}$ , which is of characteristic $0$ .
It is to be noted that, if we consider the restriction of $M^{(V)}$ to a finite sub-
group $G$ of $G(V)$ , then we get a representation of $G$ which is independent of
the choice of the prime $t\neq p$ up to equivalence, because the trace of the
representation $M(l\neq p)$ is independent of $l$ (cf. Weil [4]).

On the other hand, when $V$ is complete and non-singular, any element $T$

of $G(V)$ defines a linear transformation $\delta T$ of the linear space $\mathfrak{D}_{0}(V)$ into itself
in a well-known manner. Then each linear transformation $\delta T$ is represented
by a matrix $S^{\prime}(\delta T)$ with respect to a fixed basis of $\mathfrak{D}_{0}(V)$ . Since we have,

clearly, $\delta(T_{1}\circ T_{2})=\delta T_{2}\circ\delta T_{1}$ for all $T_{1},$ $T_{2}$ in $G(V)$ , we get the representation $S^{(V)}$

of $G(V)$ by associating $T$ with the transposed matrix of $S^{\prime}(\delta T)$ . The repre-
sentation $S^{(\gamma)}$ is of degree $=\dim \mathfrak{D}_{0}(V)$ and has coefficients in the universal
domain, which is of characteristic $p$ .

In the following, we shall mainly consider a finite subgroup $G$ of $G(V)$ .
Restricting $M^{(V)}$ and $S^{(\gamma)}$ to $G$ , we get two representations of $G$ . We denote
these two representations also by the same symbols $M^{(V)}$ and $S^{(V)}$ respectively.
While $M^{(V)}$ is always an ordinary representation of $G,$ $S^{(V)}$ is a so-called modu-
lar representation of $G$ .

Next we list some results of the previous papers [1] and [2], which we
shall need in the following sections. We consider the case where the quotient
algebraic variety $V_{0}$ of $V$ with respect to $G$ (a finite subgroup of $G(V)$) is
defined and we have a Galois covering $f:V\rightarrow V_{0}$ . Denoting by $A_{0}$ an Albanese

1) In general, let $H$ and $H^{\prime}$ be groups and $\varphi$ a homomorphism of $H$ into $H^{\gamma}$ . If
$F^{\prime}$ is a representation of $H^{\prime}$ , then $H\ni^{\sim}\rightarrow F^{\prime}(\varphi(\tau))$ is a representation of $H$ We denote
it by $ F^{\prime}\circ\varphi$
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variety attached to $V_{0}$ , we have, by [1],

(1) $\dim A_{0}=-2^{-}1$ . rank $\sum_{G}M^{(V)}(T)$ ,

where $\sum_{G}$ means the sum ranged over all the elements $T$ in $G$ . On the other

hand, when $V$ and $V_{0}$ are complete and non-singular2) and the degree $n$ of
the covering ( $=the$ order of $G$) is prime to $p$ , we have, by [2],

(2) $\dim \mathfrak{D}_{0}(V)-\dim A\geqq\dim \mathfrak{D}_{0}(V_{0})-\dim A_{0}\geqq 0$ .
Moreover, if the adjoint mapping $\delta\alpha$ of $\mathfrak{D}_{0}(A)$ into $\mathfrak{D}_{0}(V)$ is surjective, we
have, by [1],

(3) $\dim \mathfrak{D}_{0}(V_{0})=ranky,$
$S^{(\gamma)}(T)G$

We prove, under the above assumptions on $n$ and $\delta\alpha$ , the following lemma,

whose special case was used in [1] in proving (3).

LEMMA. Let $\omega$ be an element of $\mathfrak{D}_{0}(V)$ . Then $\omega$ belongs to the subspace
$\delta f(\mathfrak{D}_{0}(V_{0}))$ if and only if we have $\delta T(0))=\omega$ for all $T$ in the Galois group $G$ .

PROOF. The ’ only if ’ part is trivial, because we have $f\circ T=f$ for all $T$

in $G$ . Conversely, suppose that $\delta T(\omega)=\omega$ for all $T$ in $G$ . Then we have
$(\sum_{G}\delta T)(\omega)=n\omega$ . Denoting $\omega=\delta\alpha(\theta)$ with some $\theta$ in $\mathfrak{D}_{0}(A)$ , we have $\delta T(\omega)$

$=\delta\alpha\circ\delta(\varphi(T))(\theta)$ and so, by the injectiveness of $\delta\alpha$ and the assumption on $n$ ,

we have $\theta=\delta(\sum_{G}\varphi(T))(\frac{1}{n}$ . $\theta)$ . We may take $A_{0}$ to be a quotient abelian

variety of $A$ and then, denoting by $\mu$ the canonical homomorphism of $A$ onto
$A_{0}$ , a canonical mapping $\alpha_{0}$ of $V_{0}$ into $A_{0}$ may also be taken to satisfy the
relation $\alpha_{0}\circ f=\mu\circ$ a (cf. [1]). Then, by (13) of [2], the above expression of
$\theta$ implies that there exists an element $\theta_{0}$ of $\mathfrak{D}_{0}(A_{0})$ such that $\theta=\delta\mu(\theta_{0})$ . Hence
we have $\omega=\delta\alpha(\theta)=\delta\alpha\circ\delta_{l^{l}}(\theta_{0})=\delta f\circ\delta\alpha_{0}(\theta_{0})$ and so the ‘ if ‘ part is proved.

2. The representation $S^{(A)}$ .
First we consider the case where $V=A,$ $i$ . $e$ . $V$ is an abelian variety. Let

$\tau\neq\epsilon_{A}^{3)}$ be an element of $G(A)\cap d(A)$ ( $i$ . $e$ . a unit of $\llcorner A(A)$) of finite order $n$ .
We assume that $n$ is prime to $p$ . Then we can easily find a point $t$ on $A$ such
that the order of $t$ (as an element of the additive group $A$) is exactly equal
to $n$ . Putting $A^{*}=A\times A$ , we define an automorphism $T^{*}$ of the abelian
variety $A^{*}$ by

$T^{*}(x,y)=(\tau(x),y+t)=(\tau, \epsilon_{A})(x,y)+(0, t)$ ,

2) It is known that the completeness of $V_{0}$ always follows from that of $V$ and,
if the covering is unramified, the non-singularity of $V_{0}$ also follows from that of $V$

3) For an abelian variety $B,$
$\epsilon_{B}$ denotes the identity element of $cA(B)$ .
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where $(\tau, \epsilon_{A})$ is an endomorphism of $A^{*}$ obtained as the product of $\tau$ and $\epsilon_{A}$ .
Let $G$ be a cyclic subgroup of $G(A^{*})$ generated by $\tau*$ . Then it is easily
verified that $T^{*}$ is of order $n$ and has no fixed point on $A^{*}$ . Now we apply
the results listed in 1 to the complete, non-singular variety $A^{*}$ and the finite
subgroup $G$ of $G(A^{*})$ of order prime to $p$ . Since $A^{*}$ may be regarded as em-
bedded in some projective space, we can define the quotient algebraic variety
$V_{0}$ of $A^{*}$ with respect to $G$ and so we get a Galois covering $f:A^{*}\rightarrow V_{0}$ , which
is unramified over every point on $V_{0}$ and has the degree prime to $p$ . Then
$V_{0}$ is complete and non-singular (cf. the footnote 2)). Clearly $A^{*}$ is an Albanese
variety attached to itself and, as $\tau\neq\epsilon_{A}$ , we have $\varphi(T^{Y\backslash })=(\tau, \epsilon_{A})\neq\epsilon_{A*}$ . Since
the l-adic representation of $d(A^{*})$ is faithful (cf. Weil [4]), the matrix $M^{(A*)}(T^{*})$

$=M_{\iota}((\tau, \epsilon_{A}))$ is different from the unit matrix. Therefore the representation
$M^{(A*)}$ of $G$ contains at least one representation different from the identity;
so we have, by (1) and the orthogonality relation of group-characters (cf.

Lemma 3 of [1]), the strict inequality

$\dim A_{0}<\frac{1}{2}$ . $\deg M^{(A*)}=\dim A^{*},$

where $A_{0}$ is an Albanese variety attached to $V_{0}$ . On the other hand, as
$\dim \mathfrak{D}_{0}(A^{*})=\dim A^{*}$ , we have, by (2),

$\dim \mathfrak{D}_{0}(V_{0})=\dim A_{0}=\dim \mathfrak{D}_{0}(A_{0})$

and so the strict inequality

$\dim \mathfrak{D}_{0}(V_{0})<\dim A^{*}=\dim \mathfrak{D}_{0}(A^{*})$ .
Therefore $\delta f(\mathfrak{D}_{0}(V_{0}))$ is a proper subspace of $\mathfrak{D}_{0}(A^{*})$ and so, by Lemma in 1,
we can find an element $\theta^{*}$ in $\mathfrak{D}_{0}(A^{*})$ such that $\delta T^{*i}(\theta^{*})\neq\theta^{*}$ for some exponent
$i$ and we have consequently $\delta T^{*}(\theta^{*})\neq\theta^{*}$ . By Koizumi [3], $\theta^{*}$ is expressed as
$\delta p_{1}(\theta_{1})+\delta p_{2}(\theta_{2})$ with some $\theta_{1},$ $\theta_{2}$ in $\mathfrak{D}_{0}(A)$ , where $p_{1}$ (resp. $p_{2}$) is the projection
of $A^{*}$ onto the first (resp. second) factor. Then we have, from the definition
of $T^{*}$ ,

(4) $\delta T^{*}(\theta^{*})=\delta T^{*}\circ\delta p_{1}(\theta_{1})+\delta T^{*}\circ\delta p_{2}(\theta_{2})=\delta p_{1}\circ\delta_{T}(\theta_{1})+\delta p_{2}(\theta_{2})$ .
Since we have $\delta T^{*}(\theta^{*})\neq\theta^{*},$ $\delta\tau(\theta_{1})$ must not be equal to $\theta_{1}$ and so $\delta\tau$ is not the
identity transformation on $\mathfrak{D}_{0}(A)$ .

In the preceding arguments, we have assumed that the order $n$ of $\tau$ is
prime to $p$ . But we can show, more generally, that if $n$ is not equal to a
power of $p$ , then $\delta\tau$ is also not the identity transformation on $\mathfrak{D}_{0}(A)$ . In fact,
then, with a suitable exponent $m,$ $\tau^{m}$ has the order greater than 1 and prime
to $p$ and so, from the above arguments, it follows that $(\delta\tau)^{m}=\delta\tau^{m}$ is not the
identity transformation on $\mathfrak{D}_{0}(A)$ ; consequently $\delta\tau$ is not the identity on $\mathfrak{D}_{0}(A)$.
Now we shall compute the order of $\delta\tau$ considered as a linear transformation
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of the linear space $\mathfrak{D}_{0}(A)$ . Let the order of $\tau$ be equal to $n=n^{\prime}\cdot p^{a}$ with $(n^{\prime},p)$

$=1$ and let the order of $\delta\tau$ on $\mathfrak{D}_{0}(A)$ be equal to $m$ ; then clearly $m$ is a
divisor of $n$ . Since $\delta\tau^{m}=(\delta\tau)^{m}$ is the identity transformation on $\mathfrak{D}_{0}(A)$ , it fol-
lows also from the above arguments that the order of $\tau^{m}$ must be equal to
some power $p^{b}$ of $p$ . ( $b$ may be equal to $0.$) On the other hand, the order of
$\tau^{m}$ is clearly equal to $n/m$ and so we have $n=m\cdot p^{b}$ . Therefore the order $m$

of $\delta\tau$ on $\mathfrak{D}_{0}(A)$ divides $n$ and is divisible by $n^{\prime}$ . In particular, if $n$ is prime to
$p$ , then we have $n^{\prime}=n$ and so $m=n$ , i. e. the order of $\delta\tau$ on $\mathfrak{D}_{0}(A)$ is equal to
the order of $\tau$ . Summarizing the results just obtained, we have the following

THEOREM 1. Let $V=A$ be an abelian variety and let $\tau$ be a unit $of\propto q(A)$

( $i$ . $e$ . an element of $G(A)\cap \mathcal{A}(A)$) of finite order $n$ greater than 1. If $n$ is not
equal to a power of $p$ , then $\delta\tau$ is not the identity transformation on $\mathfrak{D}_{0}(A)$ . More-
over, if $n$ is prime to $p$ , then $\delta\tau$ has the same order $n$ on $\mathfrak{D}_{0}(A)$ as $\tau$ .

$CoROLLARY$ . Let $G$ be a finite subgroup of the unit group of $d(A)$ . If the
order of $G$ is prime to $p$ , then $S^{(A)}$ is a faithful representation of $G$ .

REMARK. In the classical case, we know that $S^{(A)}$ is a faithful representa-
tion of $A(A)$ itself, $i.e$ . the mapping $\lambda\rightarrow\delta\lambda$ is injective $(\lambda\in A(A))$ . This is a
consequence of the two well-known facts that $M_{\iota}$ is a faithful representation
of $d(A)$ and that, for any $\lambda$ in $\llcorner fl(A),$ $M_{l}(\lambda)$ has the same characteristic roots
as the direct sum of $S(\lambda)$ and the complex conjugate of it, where $S$ is the
representation of $A(A)$ defined similarly as $S^{(A)}$ .

As for the statement of Theorem 1, if the order of $\tau$ is a power of $p$ , then
there occur the two possible cases actually, $i$ . $e$ . $1$ ) $\delta\tau$ is the identity trans-
formation on $\mathfrak{D}_{0}(A)$ and 2) $\delta\tau$ is not the identity transformation on $\mathfrak{D}_{0}(A)$ (and,
moreover, has the same order as $\tau$). We give some examples of these two
cases: Let $p=2$ .

1) Let $\tau$ be $-\epsilon_{A}$ . Then $\tau$ has the order 2 and clearly $\delta\tau$ is the identity
on $\mathfrak{D}_{0}(A)$ .

2) Let $A=B\times B$ , where $B$ is an abelian variety, and let $\tau$ be the endo-
morphism of $A$ defined by $\tau(x,y)=(y, x)$ . Then the order of $\tau$ is equal to 2.
Taking an element $\theta_{0}\neq 0$ of $\mathfrak{D}_{0}(B)$ , we put $\theta=\delta p_{1}(\theta_{0})$, where $p_{1}$ is the pro-
jection of $A$ onto the first factor $B$ . Then $\theta$ is an element $\neq 0$ of $\mathfrak{D}_{0}(A)$ and
we can easily prove that $\delta\tau(\theta)\neq\theta$ .

Now let $T(A)$ be the subgroup of $G(A)$ consisting of all the translations
of $A$ by points on $A$ . Then it is easily verified that $T(A)$ is a normal sub-
group of $G(A)$ and is the kernel of the homomorphism $\varphi$ of $G(A)$ into the
unit group of $\mathcal{A}(A)$ . Moreover, since it is known that any element of $T(A)$

induces the identity transformation on $\mathfrak{D}_{0}(A)$, the linear transformation $\delta T$ of
$\mathfrak{D}_{0}(A)$ associated to an element $T$ of $G(A)$ is uniquely determined by the coset
$\tilde{T}$ of $G(A)$ modulo $T(A)$ which contains $T$. Hence the representation $S^{(A)}$ of
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$G(A)$ may be considered as the representation of the factor group $\tilde{G}(A)$

$=G(A)/T(A)$ . Then, by Theorem 1 and its Corollary, we have the following
assertions: Let $T$ be an element of $G(A)$ and $\tilde{T}$ the coset of $G(A)$ modulo
$T(A)$ containing $T$. Suppose that $\tilde{T}$ is of finite order $n$ greater than 1 in the
factor group $\tilde{G}(A)=G(A)/T(A)$ . If $n$ is not equal to a power of $p$ , then $\delta T$ is
not the identity transformation on $\mathfrak{D}_{0}(A)$ . In particular, if $n$ is prime to $p$ ,

then $\delta T$ has the same order $n$ on $\mathfrak{D}_{0}(A)$ as $\tilde{T}$. Moreover, let $G$ be a subgroup
of $G(A)$ and suppose that the order of the factor group $\tilde{G}=G/G\cap T(A)$ is
finite and prime to $p$ . Then $S^{(A)}$ gives a faithful representation of $\tilde{G}$ .

3. A relation between $M^{(A)}$ and $S^{(A)}$ .
THEOREM 2. Let $V=A$ be an abelian variety and let $T$ be an element of

$G(A)$ of finite order prime to $p$ . We denote by $m_{t}$ and $d_{t}$ the numbers of the
primitive t-th roots of $ unit\gamma$ (counting multiplicities) among the characteristic roots
of $M^{(A)}(T)$ and $S^{(A)}(T)$ respectively. Then we have

$m_{t}=2d_{t}.4)$

PROOF. Let $\tau=\varphi(T)$ be the unit of $cA(A)$ associated to $T$. Then, from
the definition and $\delta T=\delta\varphi(T)$ on $\mathfrak{D}_{0}(A)$ , we have

$1\psi^{(A)}(T)=M^{(A)}(\tau)$ and $S^{(A)}(T)=S^{(A)}(\tau)$ ;

moreover, as the order of $\tau$ divides that of $T$, it is also prime to $p$ . Hence
we may assume, without any loss of generality, that $ T=\tau$ is a unit of $\mathcal{A}(A)$ .
If the order $n$ of $\tau$ is equal to 1, our assertion is trivial ; so let $n$ be greater
than 1 and prime to $p$ . We use the same notations $A^{*},$ $T^{*},$ $V_{0}$ and $A_{0}$ as in
the proof of Theorem 1. Then we have the equivalence of two matrices:

$j\psi^{(A*)}(T^{*})=M^{(A*)}((\tau, \epsilon_{A}))\sim(M^{(A)}0(\tau)M^{(A)}0(\epsilon_{A}))$

where $1\psi^{(A)}(\epsilon_{A})$ is the unit matrix of degree $=2\dim A$ ; and so, by (1) and the
orthogonality relation of group-characters, we have

$\dim A_{0}=\frac{1}{2}$ . $m_{1}+\dim A$ .
On the other hand, using the expression (4) of $\delta T^{*}(\theta^{*})$ (which is valid for
any element $\theta^{*}$ in $\mathfrak{D}_{0}(A^{*}))$ , we can easily show that there holds also the
equivalence of two matrices:

$S^{(A*)}(T^{*})\sim\left(\begin{array}{ll}S^{(A)}(\tau) & 0\\0 & S^{(A)}(\epsilon_{A})\end{array}\right)$ ,

4) In the classical case, this is a simple consequence of the remark stated in 2.
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where $S^{(A)}(\epsilon_{A})$ is the unit matrix of degree $=\dim A$ . Since the order of the
cyclic group generated by $\tau$ is prime to $p$ , we can apply the ordinary theory
of group-characters to the representation $S^{(A)}$ of this group and so, by (3), we
have similarly as above

$\dim \mathfrak{D}_{0}(V_{0})=d_{1}+\dim A$ .

Hence we have, by (2), $\frac{1}{2}\cdot m_{1}+\dim A=d_{1}+\dim$ $A$ and so the equality

(5) $m_{1}=2d_{1}$ .
Now let $t$ be a divisor of the order $n$ of $\tau$ . Then the multiplicities of 1 as
the characteristic roots of $M^{(A)}(\tau^{t})$ and $S^{(A)}(\tau^{t})$ are equal to $\Sigma_{t’|t}m_{t}$ , and $\Sigma_{t’ 1t}d_{t}$ ,

respectively, where the sums range over all the divisors $t^{\prime}$ of $t$ . Applying
the relation (5) to $\tau^{t}$ instead of $\tau$, we have

$\Sigma_{t^{\prime}1t}m_{t^{\prime}}=2\Sigma_{t^{\prime}1t}d_{t^{\prime}}$ .
Therefore, from the induction on $t$ with (5), it follows that we have $m_{t}=2d_{t}$ .
If $t$ is not a divisor of $n$ , then clearly we have $m_{t}=2d_{t}=0$ .

REMARK. Let $T$ be an element of $G(A)$ , which is of finite order $n=n^{\prime}\cdot p^{a}$

with $(n^{\prime},p)=1$ . Then it is easily verified that there exist some powers $T_{r}$

and T. of $T$ such that we have $T=T_{r}\circ T_{s}=T_{s}\circ T_{r}$ and the orders of $T_{r},$ $T_{s}$

are equal to $n^{\prime},$ $p^{a}$ respectively. Since we have $S^{(A)}(T)=S^{(A)}(T_{\gamma})\cdot S^{(A)}(T_{S})$ and
the characteristic roots of $S^{(A)}(T_{S})$ are all equal to the $p^{r\iota}$ -th roots of unity,
$i$ . $e$ . all equal to 1, $S^{(A)}(T)$ and $S^{(A)}(T_{r})$ have the same characteristic roots.
Therefore, applying Theorem 2 to $T_{r}$ , we can show that the number of the
primitive t-th roots of unity among the characteristic roots of $S^{(A)}(T)$ is equal
to the half of the corresponding number of $1\psi^{(A\rangle}(T_{r})$ .

4. The representation $S^{(V)}$ .
Now we return to the general case where $V$ is an arbitrary complete,

non-singular variety. From the definition, we have the relation, for the repre-
sentation $M^{(V)}$ of $G(V)$ ,

$ M^{(V)}=1\psi^{(A)}\circ\varphi$ ,

where we use the same prime $l$. First we intend to show an analogous rela-
tion for the representation $S^{(\gamma)}$ of $G(V)$ . For any element $T$ of $G(V)$ , we
have, from the definition of $\varphi$ ,

(6) $\delta T\circ\delta\alpha=\delta\alpha\circ\delta(\varphi(T))$ on $\mathfrak{D}_{0}(A)$ .
Hence the subspace $\delta\alpha(\mathfrak{D}_{0}(A))$ of $\mathfrak{D}_{0}(V)$ is invariant by $\delta T$ for all $T$ in $G(V)$ .
Moreover, denoting by $\theta_{1},$ $\theta_{2},$ $\cdots$ , $\theta_{g}$ a basis of $\mathfrak{D}_{0}(A)(g=\dim A)$ , we can show,
by (6) and the injectiveness of $\delta\alpha$ , that the relation
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$\delta T\circ\delta\alpha(\theta_{j})=_{i}\underline{>_{\Rightarrow 1}^{g_{\urcorner}}}a_{ij}\delta\alpha(\theta_{i})$

implies the relation

$\delta(\varphi(T))(\theta_{j})=\sum_{i=1}^{g}a_{ij}\theta_{i}$

with the same coefficients $a_{ij}$ and conversely. Consequently we have the fol-
lowing

THEOREM 3. The representalion $S^{(\gamma)}$ of $G(V)$ can be transformed equivalently
into the following form:

$s^{(V)}\sim(^{S^{(A)}\circ\varphi}*$ $F0)$

where $F$ is a representation of $G(V)$ of degree $=\dim \mathfrak{D}_{0}(V)-\dim \mathfrak{D}_{0}(A)$ . In parti-
cular, if we have $\delta\alpha(\mathfrak{D}_{0}(A))=\mathfrak{D}_{0}(V),$ $i$ . $e$ . $\dim \mathfrak{D}_{0}(V)=\dim A$ , then the representa-
tion $S^{(\gamma)}$ and $S^{(A)}\circ\varphi$ are equivalent.

Then, combining with the results in 2 and 3, we get several results on
the representations $M^{(V)}$ and $S^{(V)}$ of $G(V)$ . We shall state some of them as
theorems.

THEOREM 4. Let $T$ be an element of $G(V)$ of finite order prime to $p$ . If
we have $\varphi(T)\neq\epsilon_{A}$ , then $\delta T$ is not the identily transformation on $\mathfrak{D}_{0}(V)$ . Under
the assumption $\delta\alpha(\mathfrak{D}_{0}(A))=\mathfrak{D}_{0}(V)$ , the converse is also true and $\delta T$ has the same
order on $\mathfrak{D}_{0}(V)$ as $\varphi(T)$ .

THEOREM 5. Let $T$ be an element of $G(V)$ of finite order prime to $p$ . We
denote by $m_{t}$ and $d_{t}$ the numbers of the primitive t-th roots of unity among the
characteristic roots of $M^{(V)}(T)$ and $S^{(V)}(T)$ respectively. Then we have

$m_{t}\leqq 2d_{t}$ .
In particular, if we have $\delta\alpha(\mathfrak{D}_{0}(A))=\mathfrak{D}_{0}(V)$ , then we have $m_{t}=2d_{t}$ .
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