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In this paper we shall investigate some convexity theorems for Fourier
series. This paper consists with three parts, each of which contains two main
theorems (Theorems 1-6). These theorems together with Riesz’s theorem
(Lemma 5 in §6) and Dixon-Ferrar’s theorem (Lemma 2 in §3) will constitute
a complete system of convexity theorems in this direction, while the last two
theorems are independent of Fourier series.

Let ¢(#) be an even function, integrable in (0,7z) in Lebesgue sense, pe-
riodic of period 2z, and let

o)~ v—%—ao—k f} a, Cos nt,
n=1

O 0O=9®),  Pu=py [ C—urean @>0),

and more generally, for any integer =0 and 0< ¢ 7,
0D BO=L9D),  BUD=ply [ Gy (@>0).

The Fourier series of ¢(¢) at t=0 is «@,/2+a,+ -+ +a,+ . The #n-th (C, p)
sum of this series is

=AMy at 3 A0, =3 Af0s, (—w<p<o),
y=1 y=0
where s, =s%, and A£ is defined by the identity
(1—x)F1= io Abyn (x]<1).

In particular, s;,'=a,—0 as n— oco.

We understand that t—0 means >0 and £—0.

These notations will be used throughout this paper, except when it is
stated otherwise.

Part 1.
1. Theorems (1).
THEOREM 1. Let 04, —1=¢, 0<pf—b=7—c and c—b<l. (1) If
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(L.1) j“@gwhm:mwﬂ) as t— 0,
1.2) &= O0(n") as n— oo,
then we have

(13) s=o),  q=btG—0 =,

as n— oo, for

(1.4) c<r<y, 7' =inf (r, ﬁl%?z\;é_ﬁ_j’ﬁ&> _

(D) If (1.1) holds, and st = O (n"), then holds for v with c+1=r<y’,
provided that c+1<7y’.

THEOREM 2. Let 0=0b, —1=¢, 0<f—b=7y—cand c—b<1l. If (1.1) holds,
and
1.5 Oty = 0% as t—0,
then we have (1.3) with (1.4).

(N.B. 1) The range of » in the theorems, i.e. ¢ <v# <y’ is essentially equi-

valent to the common range of ¢ <7<y and »—g < 1. Consequently, ¢ <7r <7’
coincides with

c <r<(+Lr—B+De)/(r—c+b—p) if r—p>1,
c<l<r<r if r—B=<1l.

(N.B. 2) Since a,=o0(l), the condition (1.2) is a fortiori satisfied when
¢c—b=<—1=<¢. Hence, in we may assume that ¢—b > —1 with no
loss of generality. An analogous notice may be made for since as
a matter of fact the same argument as in the proof of in §2 will
verify that is still true when is replaced by

(L5Y fmmnm:awo as t—0,
0

while is actually true when ¢—0<—1=<¢. cf. in §4.

(N.B. 3) On the contrary, if ¢c—b = —1 then, letting ¢=—1 and =0, we.
have the following corollary in place of Theorems 1, 2, the condition (1.1) be-
ing replaced by a slightly less stringent one, as it will be shown later.

COROLLARY 1.1. If 0<B<r+1, and

.y § 105y | du=00T,

then we have
sh= 0(%(r+1)3/(2’+1)) ,

Sfor —1=r<inf(r,(+1+8)/(r+1-4)).
Now, letting »=¢=a in Theorems 1, 2, we have
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(1.6) (r—c+d—pBa=br—pfc,
and the condition »—g <1 is then clearly satisfied. Hence, for the Fourier series
of ¢(¢) to be summable (C, «) at #=0 for a unique value of «, it is necessary
that y—c+b—p+0, i.e.
1.7 0<f—b<r—c.
In these circumstances we have
(r—c+b—pXa—c)=b—c)Xr—o),
(r—c+b—=BRla—(c+D]=0—c—Dr—c)+(B-b),
(r—c+b—B)Xr'—a)=1inf [(r —BXr—c), (r—o)].
Therefore by (1.7) we see that, from the last three relations,
(1.8) if b>cand y > 8 then c<a<y’,
1.9 if (0—c—1)g—c)+(B—b)=0 and r>p then c+1=a<y’,

and conversely.

Taking into account these facts, we may deduce the summability theorems
from the above theorems. Letting thus ¢=—1 and b= —(1—0) in [Theorem 1|,
the condition (1.7) together with those in (1.8) yields 0=/ <7y and 0<o< 1.
And, the first condition in (1.9) then becomes 76 =r—/. Hence, using the ex-
pression of « in we have the following corollary from [Theorem 1l

COROLLARY 1.2. Let 0=8<7y and 0<0<1. If(1.1) holds, and if either of
the two conditions

a,=O0(n~4-9),

4, =0,(r79),  ro=7r—§,

is satisfied, then
ss=on"),  a=Go—(r—mM/r—F+0).

This proves a conjecture of Sunouchi [9]

Similarly, from [Theorem 2 we get the following

COROLLARY 2.1. Let 0< <y and0<d<1l. If(1.1) holds, and ()= O(™9),
then,

sp=o(n"),  a=p5/(r—pF+0).

This is a theorem due to Kanno [10]

By [Corollary 1.1, the last two corollaries can be improved as follows when
=1

COROLLARY 1.3. If 0< B <y and (1.1Y holds, then

sp=onY), a=p/(r—F+1).

This is a theorem of Yano [11].
COROLLARY 2.2. If 05, —1<r<p+1, and
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1.10) Oyt)=o(t") as t— 0,
then we have
11y STHT = o(nf7) as wn—oo,

for every 7> 0.

This is due to Obrechkoff [3] when 0= =<y <pg+1 is satisfied. This
corollary is immediately deduced by applying to (1.10) and @, (®)
=o(t"*), k>0, the latter of which follows from the former.

This corollary has a meaning only when § <741, in the sense that when
B=7r+1>0 the conclusion (1.11) is a result from «, = o(1).

REMARK 1. Hyslop [7] has remarked that the proposition “7 > =0 and
(1.10) imply (1.11) for every > 0” may be proved by the argument used in
Wang [6] This is true when 7—f <1 (see [Corollary 2.7), but generally it is
false when yr—f=1. Indeed, if we put

wO=F g iyry  (H=D,
then it follows that

Sé*j" t 1—cos (1)t

=), g e @sin@y @

B t dt
=] " Tog @D " @sm @y TOD

__f -1t log (275/t) +0(1) = log log n-+0(1),
from which we have
si*7= Al log log n+0(n"), >0,

This gives a negative example for the case y—f =1, since si*?=o(n"), >0,
does not hold while @y#)= o(). |

An example in the case y—f3>1 can be obtained as follows. Let

PO = o t* (tl=m).
Then, we obtain
52 _f tz[ 7 n+3/2 sin(n+3/2)¢t :Idt

sin (¢/2))7 ~ (2sin(t/2))°

= ”fon 2 31;6(5;/2))2 +0(1)=(2x log 2)n+0(1) .

This shows that @,(#)=0(t%7), 0 <7 =1, does not imply s2=o(n").

2. Fundamental lemma (1).

LEMMA 1 (Fundamental lemma). Let 0=p8, —1=Z7r, 0< f—q<r—7 and
r—q<l. If
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Q1) joﬁ Ou)| du= o) as t—0,

and if for any assigned positive number ¢ theve exist an ¢ =¢&'(e) > 0 tending to
zevo with ¢ and an n. so that

(22) Sp+v—Sp > —&'n?, y = 1’ 2, e ,m,
holds for m="{en® 2/ gnd n> n., then one obtains
(2.3) st=o0(n?) as mn—co.

REMARK 2. Arguing similarly as in the proof of Lemma 1 we can easily
prove the following proposition.

If, in Lemma 1, o in (2.1) is replaced by O, and the third assumption by
“if sr.,—sr>—An? A >0 aconstant, holds for 0 <y < [#%¥-2/%-77 and % >1",
then we have s;=0(#% in place of (2.3).

For the proof of this proposition, it is sufficient to take m = [(2k) 15®B-0/7-n7,
k being an integer greater than r—r.

We need some further lemmas. We write

@9 Dit)= S AD),
y=u
where D,(¢) is the #n-th Dirichlet kernel, and

X;(t): *’q:i,'.,;k\ El 2 21D2+v1+uz+~-~+vk(t)

n vi=1lyg=1 yg=
2.5) X0 = o o
Xn_(t) - ‘;Ziqr’l/l;k*mzjl szjl h .VEJDZ‘VI—VZ— —Vk(t) ’

where £ is a fixed positive integer, and = is taken such as m = (2k) 'u.
LEMMA 1.1. Let m=m(n, ) = (2k)n tend to infinity with n in as same order
as or lower order than n, and let v=—1, q be arbitvary. In these circumstances,
if
j P(OX(D)dt = o(1) as n—oo,
0

where X, (t) is defined by (2.5), and if (2.2) holds for n> n., then we have (2.3).
This is in the paper slightly modified. Also cf. the proof
of in §7.

LEMMA 1.2. If r= —1, and q is avbitrary, and m has the same meaning as in
Lemma 1.1, then X, (t) defined by (2.5) has the following properties.

< n(z) — An(t)_’“Rn(t) s
where, for n=20,1, -,

(2.6) xwy=(-2- )"Xn(w:o(nr-w“) O0<t<n),
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O(n"=1/¢7+1) it =1)
@) A= (5) 0=

O(n”=1/mPk+ret) (mt=1),
2.8) ROt = (%)”Rn(t) — (a1 /142 t =1).

PrROOF OF LEMMA 1.2. (2.4) yields for £ =0,1, -
(5 Doy=0Gr=y  for 0=t=x,

which together with (2.5) gives (2.6). Next, Di(#) is written as, as it is well
known,
D&y = Ax)+Ry(@),
where R;(¢) vanishes when r=0 or r= —1, and generally
~(r+1)

2.9 AxH= (2 sin %—z‘) sin <<n+éﬂ)z‘+ - éwr(t—rf)) ,
Rity=3 A9 (2sin 51) * siny (i)
(2.10) !

p being an arbitrary integer greater than ». For details, see e.g. Zygmund
[16, p. 2597, and the paper [14]. The relation (2.10) implies

0 \#
2.11) (57) REO=00r"1/t"),  (mtz=1),
for ©n=0,1,---, u,; #, being as large as we wish with p.
Now, dividing X}(#) into two parts,
X;(t)-i E E Z A'n+V1+V2 +vk(i)

e N Rt
nflhkﬁcﬁylgl yzz—l ukz— R ivyvvgs o aviD) = A+ Rau(t) ,

say. Then R,(¢) satisfies the condition (2.8) by (2.11). Substituting (2.9), =
being replaced by #n+v,+v,+ - +v, into the expression of A,(#) and then
adding them successively with respect to y’s we have

D) = o e srsin((wt—y )it Ko Db+ 1G—)

from which we get (2.7) similarly as in Lemma 2 in loc. cit. [13].
Similar results will be obtained for X;(#), and we get the lemma.
Proor oF LEMMA 1. It is sufficient to show that, by Lemma 1.1,

(2.12) j O"ga(z)X"a)dt = o(1) as n— oo,
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where X,(¢) is defined by Let us take the integer /=[A+1]. Then,
(2.13) I—1=p8<1,

and /=1 since §=0. By[2.7) r—q<1, and taking k> y—7, we have for
©r=0,1,--, [—1, as n—co,

XPH=01) (o<t,=t=n)
and then
LDu (ODXFE) 0 = 0(1) .

Hence, applying integration by parts /-times to the left hand side integral in
(2.12), it is seen that (2.12) is equivalent to

(2.14) [omxpwa=on as n—oo.
On the other hand, the assumption [2.1) together with /> £ implies
[ 10001 du=oerrivs),
from which and from with 2=/, i.e. X)) =O(m ), it follows that
{ On—ld)L(t)X,i“(t)dt Sl Cand] 0”_11 0.0 | dt)

= o(p7 eIy H14-B)
= o(n T = o(1),
because r—g < y—f by the assumption. Next, by with =/, i.e. R¥@)
=0(nr—1/t¥?) for nt =1, we have
[ oorEOa=0(w " |0 | at),

which is, integrating by parts, and taking into account the fact r—g <1,

ol [t F i) = o= TR = o(1) (r—8<1)

o(w = PR = o(m ) = o(1) r—F>1)

1~
o(n"q‘l [log —t]n—1> =onlogn)=01) G-—F=1).
Hence, observing that X,(#) = A, (8)+ R,(?), to get (2.14) it is sufficient to show
2.15) I=(" o@AP@Wdt=01) as n—oco.

(2.15) may be proved by the same argument as in the proof of
in loc. cit. [13], but for the sake of completeness we reproduce it. By the
identity

=0 = t—uy - 0gwan,
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and neglecting the numerical factor 1/I'(/—f), it follows that

1={" 49wat | t—wrt10 00

_ fn_ p fot—n—l ot f:_ldt { :_n_ldu — 1.

Using the number
(2.16) m = [enB-0/a=-n7

which is clearly less than #, and exchanging the order of integration, we have

m=1_p—1 m—1
L={ Ogluydu |~ (t—uy#- APt

+ j'om_l'"_ldu 7| :__:_;l_ldu [N SR AYA

w+n=—
Here, for the sake of convienience we write
UL, w)=(t—u)2149(0),

where —1</—4—1<0 by Then, when n'=u<wu, <wu,=r, by the
second mean value theorem we obtain

§ vt e | = o —upF sup | 471
%1

Uy <t<ug

Thus, (2.7) with z=[—1 gives

@.17) | :" U, wydt = G, —uy 4 - O ”;;Iq ) (L su<mz),
2.18) = (u,—u)F-1. O(%ﬁq) (% Su<u, = 7r> .

m—1
Using (2.17) with u,=u+n™?, i.e. f 1U(z‘, w)dt = O(nP-ty~T+v),

u+nT

R=f" T gt [ U, war

= O(nﬁ-‘l Lm_ll DOg(u) | u‘"“’du) .

On account of y—#»>0, (2.1) and integration by parts shows that the last
expression is

o(nP~Lu™" P )= 0(—"12_—(1) = 0<%) .

m'"

Next, by with u,=m* = u+n™?, i.e. f n_l U(t, wdt = O(nP~4mr+Y), we as

m

above obtain
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=" wytidn ™ UG, wat
= O(%ﬂ—qmrﬂjom—l[ Dy(n) | du)
I o ) o ).

Furthermore, by with #, =u+n"'=m™, i.e. j i 1U(t, %) = O(nP=9/mPsv+r+0),
wu+n—

and since k> r—v, one has

1_

Ji= f:__":_l%(u)du [T uewa
= (ﬁ,%;ifmn_J (Dﬁ(u)lun(kﬂwd”)

= o(ﬁ—ﬁ—i [ur"“‘T]%l) = 0(%) = 0(?1”7’> ’

The above estimation gives I, =o(1) as #— co.
Concerning I, we write

1={" Ap@a|" (=0

= On—ldu | :_J;n—ldt—l— { :_ildu j u“"—ldt+ f :_'ln—ldu f e

u

+f" duj "It = K4+ K, LK, K, ,
r—-n—1 u

say. Using with # =/ we see that all K’s are o(¢~%~") by the same argu-
ment as above. Hence, I, = o(1) which together with I, =0(l) yields and
the lemma is completely established.

3. Proofs of Theorem 1 and Corollary 1.1.

We need a further lemma, which is independent of Fourier series.

LEMmMA 2 (Dixson-Ferrar’s theorem). Let {s,} be any sequence of real terms
and s& (—oo < a < o) be its n-th (C, &) sum, and let —1<7y and 0<y—c= —0b.
D If as n—o

3.1 s8 = o(n")

(3.2) sp=0(x°),

then we have

(3.3) si=on),  g=cHor—b L, (n—0),

for b<r<pB.
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an rr holds and s=0y(n°), then we have [(3.3) for r with b+1=r <,
provided that b+1 < 8.

In the part (I), the case 5=0, ¢=0 and 7 =0 is due to Dixson-Ferrar [2],
and the modified case »=0 and y > —1 is found in Sunouchi [9]. In the part
(IT), the case b= —1 is a corollary of Bosanquet [5, Theorem 6]. The above
general form is derived from these results by translation.

PROOF OF THEOREM 1. We write

(34) p=B—=b)/(r—c).
We clearly have

B—a/r—m=o,
and the integer m used in Lemma 1 is written as

(3.5) m=_[en"].
Also we have, by the assumptions,
3.6) 0<p=1 and c¢—b<1,
3.7 sE=0n"), c= -1, b>-2).
First, we suppose that 4> —1, and let
(3.8) r=c+0, g=b+0p and 0<d<1.
We write
S0 =3 Althsi— STALLss w=[7%].

n’ n-m
= D (AN — AR)si+ B (Al — A25)sd
n’+

y=0

— 3 st 'S Alhsi=S+S,— S+,
say. Then, by and b > —1, one obtains in turn
5= B00m%) - O+ 17 = 0=t
= O(en? 01"y = O(en?) ,
since (o+06—14b)—g=—(1—-0X1—p)=0,

Si= 3 Om(n—vy2) - On")

=00’ S (n—vy),  0<0<1,

= O(mn®m®1) = O(m?n®)

= O(e?n?*n®) = O(en?)
and
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Si= 3 Allss=0m 3 AL

n-m+1 n-m+1
= 0(n’m?) = O(Pn?) .
Similarly, S,=0(&%z%. Hence, replacing ¢+0d by » we have
St em—SE =0(e9n%) .
Clearly, by the same argument as above we obtain, for all » > 1,
39 Shov—sn=0(n?), v=1,2-,m.

Here, it will be easily verified that O depends only on ¢ and O in [(3.2)
On the other hand, we see that by (3.8) and (3.6)

r—q=c—b+o(l—p)<1
for a sufficiently small § >0. From r—g <1, (3.9) and the assumption (1.1), i. e.
jt| Oy(w) | du= o), it follows, by with ¢/ =¢%, that s;=o(n%) holds
0

for every r such that ¢ <r=c¢-0,, d, being small enough.

Thus, when b > —1, starting from » =c¢+3J, and repeating the above argu-

ment, we have ie.
sp=o0(n?), qg=b+@r—co,
for all values of » and ¢ as far as ¢<r<7y and r—¢g<1.

Further, we suppose that »< —1. The condition (1.1) implies @g,,(¥)
=o0(t™1), and then @g.,(¢) = o(##*1**¥) since 7 = f+c—b. Observing that c—b < 1,
we have
(3.10) sErared = o(nf*2),
by a Obrechkoff’s theorem, i.e. [Corollary 2.2 [(3.10) together with sf=0O(#")
yields s5'=o(n**!) by Hence, on account of > —2 we obtain

n’ -1
. _ - _ n
1= n+m—y~ <{in—y /oy n+}m,—'n' n-—n’ ’ft-’)— 3 /= ’
S ZU(A6 2 AS73)se (A9 — A3 )ser n 9
y=

- %’)OO(mn‘?*g) o+ 1Y)+ 0(mnd=2) - o(n+)

= o(mnd~1*%) = g(en?* 9140 = o(en?) .
The rest of the proof is unchanged, and we get the part (I) of the theorem.
Next, from the one-sided condition sf= 0, (#%), it follows that

m
St —sgt = EIS%W = O (mn”) = O, (en’*").
=

Besides, we see that (¢+1)—(0+0) <1 by the assumption ¢c+1 < . Hence, we
have s{''=o(#’*°) by [Lemma 1. The part (I) of the theorem, thus, follows
from the part (I).
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Proor oF COROLLARY 1.1. If we put ¢=—1 and =0, then the conditions
in Theorem 1, i.e.

0=p, —1=Zc¢, 0<p—b=Zy—c and ¢—b<1

are reduced to a single one 0 < =7r+1 where the case #=7pr-+1 is trivial.
Hence, disregarding the trivial case we obtain, by the part (I) of Theorem 1
and Remark 2 following Lemma 1, that the two conditions

[1ogmtau=oe,  o<p<rt,
and «,=s'=0() imply

r— r+DBR/IT+ - H ]:_‘_Ll__ﬁ_
(3.11) §n = O(nTPHaD), 1=7<inf (r, r£1—8 )

On the other hand, ¢, is actually o(1) of course. So, Dixson-Ferrar’s theorem,
by the conditions @, =0(1) and (3.11), will give

st = 0(n<r/+1)3/(r+1)) , —1Zr <y,

which proves the theorem.

4. Proof of Theorem 2.

The kernel X, (£)= X} () in is implicitely defined by the identity

1 m m m 2 (7
e 2 3 B S = | POXIOL

q
B yI=1 yg=1 vE=1

And, a slight modification of the proof shows that Lemma 1 holds for »>= —2
in place of ¥=—1. So, the principal part of Lemma 1l should be expressed as
follows, if % is allowed to be unity, i.e. if r—r<<1L.

Let 0=p8, —2=7,0<f—q=7y—r, r—r<l and r—¢<1. Then

@D { | Oa) | du = ot as  {—0
0
implies
“4.2) syt — st = o(e~""nYm) as n—co,

for m=[en®0/T-17 ¢>0.

Here, examining the proof of Lemma 1, we see that o in (4.2) will depend
only on o in (4.1) and on the value of (y—7), » being considered as a variable
parameter.

Now, letting

r"=r+1 and ¢ =¢+B—/(r—7),
one obtains (¢'—8)/(r'—r)=B—q)/(r—1), ¥—7r >0, and (4.2) then becomes

“.2y S em—SY = 0(e” " Tn?) as un—co
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Thus, the above proposition is expressed again as follows,
Let 043, —1=v,0<q¢—B=v'—y, ¥—r <1 and

—D—(¢— 2= <1.

v —r
Then, (4.1) implies (4.2) for m = [en@B/w-D7 ¢> (.
Replacing 8, 7, ¢/, ¥’ by b, ¢, g, r respectively, and letting

4.3) ’3:—? =p (clearly then 0 < p<1),

and r—c =24, and taking into account the above remark, we have the following
LEMMA 3. Let 0<0b, —1<Zc and c—b< 1. If

(4.4) { 0t| D) | du = O+ as =0,

and if 0<8<1 and 0< p=1, then
(4.5) | s5t3—sgtd | < Aefpbror, y=1,2,,m,

holds for m=1[en"], ¢ >0, and n>1, A being a constant depending only on 0 and
O in (4.4).

When b=c¢+1, (4.4) is trivial since @)= L in (0, n).

We now prove Taking p=(8—b)/(r—c), as we may, the as-

sumptions give for every positive § <1. The condition is with
r=c+8. So, the theorem follows from the part (I) of [Theorem 1l

Part II.
5. Theorems (2).

THEOREM 3. Let —1=8,0=c and 0<r+l1—c=p8+1—-b. () If

G.1) §=0| s8] = o(n™*) as n—oo,

(5.2) D)= O0") as t—0,

then we have

(5.3) D)= o(t?),  q=b+(r—c) 'f ﬂ:’} : =0,

for c<r<r-+1.
AD If 5.1) holds, and DOt)=0.(") as t—0, then we have (5.3) for r with
c+H1=r <yl provided that ¢ <r.

THEOREM 4. Let —1=p8, 0=<c and 0<y+1—c=B-+1—b. If (5.1) holds,
and

(5.4) 21 =0n"" as n— oo.

then we have (5.3) for c<r<r-+1.
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(N.B. 4) In we may suppose that b—¢ > —1 when »=0, as
was noticed in (N.B. 2) in §1. An analogous notice may be made for
3 when ¢=1.

(N.B. 5) On the contrary, if 5—c¢ =< —1, letting ¢=1 and 5 =0 in Theorems
3, 4, then we have the following corollary, the condition (5.1) being replaced
by a less stringent one.

COROLLARY 3.1. If 0<y < fB+1, and

(B.1Y %} I's8 =0 as mn—oo,
y=3J
then we have
(55) o.0=o,  q=0-DITL, (t—0),

Jfor 1=r<r+1.
REMARK 3. In view of Corollary 3.1, we see that if c=1 then Theorems
3, 4 have meanings only when
- el UMY it
b+(r—c) P s >(r—1) —
which is equivalent to
(5.6) B+ A—c)+br >0.

And, if ¢ <1 and we take into account @,(¥)=o0(1) together with either (5.2)
or (5.4), then the truth of the above conclusion can be readily verified.

Now, letting »—=¢ =« and repeating the same discussion as in §1, we have
the following corollaries from the above theorems.

COROLLARY 3.2. Let —1<r<f and 0<d. If B.1) holds, and if either of
the two conditions

() =0@™)

P() =079, B—r=or,
1S satisfied, then
D (t)=0(t"), a=dr+D/(B—r+0).
As was noticed in Remark 3, this corollary has a meaning only when
O0r < B+1 by (5.6) with ¢=0 and = —4§, which proves a conjecture of Suno-
uchi [9].
When 8y = f+1, we have the following
COROLLARY 3.3. If 0<yr < B, and the condition (5.1) in Corollary 3.1 holds,
then

D=0, a=E@+D/(B+1-7).

COROLLARY 4.1. Let —1=Zcand b<c<y<B, If (5.1)holds, and st=O(n°),
then we have
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D= o), a=14H0

COROLLARY 4.1.° Let 0<0<l and —(—=0)<r<p. If B.Y) holds, and

Q= 0P, then
O )=0(t"), a=dB+1)/(B—r-+9).
In the case §=1, we have in place of this corollary.
COROLLARY 4.2. If —1<r and s8=o(n"), then we have
D y144(8) :'0@’/3””7) ’

for every 5 > 0.

This is immediately deduced by applying to s8=o(xn") and s5+*
= o(n"**) where £ >0 and f+% = —1, the latter of which follows from the former.

In this corollary, the case y = #+1 is trivial when = —1. The restricted
case 0 <7 =pF<7r+1is due to Hyslop [7] and the general case due to Jzumi
787

6. Preliminary lemmas.

The following Lemmas 4, 5 are independent of Fourier series.

LEMMA 4. Let o) L in (0,¢,) and Ot) (a =0, k=0) be defined as in
0.2), and let v>0 and q be an avbitrary constant. Then, a necessary and suffi-
cient condition for

(&) = o(t?) as t—0
is that
DX(E) = o(t**+9) as t—0,

Sfor any positive number k.

This is Theorem 1 in the paper [15].

LEMMA 5 (Riesz’s theorem). Let o) = L in (0,4,), and @,(t) (> 0) be de-
fined as in (0.1), and let 0 < f=<yr—c. () If as t—0

(6.1) D) = o)

(6.2) P =0,

then we have

{6.3) O (1) = o(terrT—o/B) | (t—0),
Jor 0 <r<A.

(D) If (6.1) holds, and @) =0yt%), then we have (6.3) for v with 1<r<4p,
provided that 1 <A.

In the part (I), the case ¢ =0 is a modified result from Riesz [1, Theorem
II], and the case y > —1 is found in e. g. Bosanquet [5] and Sunouchi [9].

The part (II) is a result from Theorem 7 which will be proved in the last
article.



134 K. Yano

(N.B. 6) In the above lemma, concerning the numbers 4, y and ¢ one needs
no restriction other than 0 < 8 =<r-—c, as it is easily verified by Lemma 4 If
¢ > —1 then the condition can be derived neither from @,(#) =0(1) nor from
O,()=0(1) and But, if ¢ < —1 then one will have often some better con-
clusion than on account of @,(¥)=o(1). Similarly, if ¢= —1 then the single
condition implies @,(£)=o(t"Y), > 0.

LEMMA 4.° Let —1=5,0=cand 0<y+1—c<p+1—0b. Then, the two con-
ditions in (1) of Theorvem 3, i.e.

(6.4) éuﬂzwwo
(6.5) D)= 0"
imply

(6.6) DY) =0,

where k> 2 is an arbitrary integer.

PrOOF. The case ¢=0 is trivial, and so we may suppose that ¢>0. By
a theorem of Izumi, i.e. Corollary 4.2, the condition s8*!'=o(n"*') which is a
result from (6.4) implies
(6.7) D) = 0(t*) E>2.
O}b’serving that y+%>c¢+1 and applying the part (II) of Lemma 5 to (6.5) and
(6.7), we have
(6.8) Doy (&) = 0(£"*7) for j=1,2,---.
Hence, from the identity

)= poy § =y "Le——w T et

> (BT, 0,

1
=" O+ 5~
( )+ F(C) Frd
we see that (6.5) and (6.8) imply (6.6), which proves the lemma.
LEMMA 6. Let vr>0, a, b, A and B be arbitvary constants independent of

n and t, and let a-+b=[r—0]). Then

1 t a-+b
f (t—u)y u® (2 sin —2—u> cos((n+Ayu+B)du = 0( )
holds uniformly in n=1 and 0 <t<m, and this is the same matter as

j (1—wy - (2sin %m) cos ((n+ Atw+ Bydw =0 L o t),).
The case where 0 <7<1 and ¢ =b =0 are both satisfied is well known.
See Hobson [17. pp. 564-5657.

This lemma is easily derived from the following lemma by induction, the
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proof being omitted.
LEMMA 6.1. If0<r=<1, and g(u) is a real function with g(0)=0, of bounded

t
variation in every interval 0= u<1t, and if GU):L | dg(w)|, then

{ Ot(t—uy—lg(u)emczu =0( @) ), i=v—L

n’l’

holds uniformly in n=1 and t>0.
LEMMA 7. If u, =20 (=), and c>a>b, a >0, then

M=

u, = o(n*) as n-> oo
1

I

14
implies
Uy
Vb

u, 1

= o(Gw),

as n— oo, and conversely. All o’s may be veplaced by O’s.
The proof is easy.

n
2
y=1

=o(n*®) and g

7. Fundamental lemma (2).

LEmMA 8 (Fundamental lemma). Let —1=p, 07 and 0<y+l—r
=p+l—q If

(7.D i: | 8= o(n"") as n—oo,
y=0

and if for any assigned positive number ¢ there exist an ¢ =¢&'(e)>0 tending to
zevo with ¢ and a t. such that

(7.2) Ot +u)—OUL) > —e't*e, O<u=h,

! being an integer greater than y-+1, holds for h=etPB+1-0/a+1-0 qpd 0 <t <1,
then one obtains

(7.3) D,(t) = o(t?) as t—0.

REMARK 4. Arguing similarly as in the proof of Lemma 8, we can easily
obtain the following result.

If, in Lemma 8, o in (7.1) is replaced by O, and the third assumption by
“OUtH-u)—DLUE) > — A, [ > r+1and A >0, holds for 0 < ¢ < tB+1-0/@+1-1) and
0<¢t<1”, then we have @()=0(% in place of (7.3).

To get this result, it is sufficient to take /4 =(2k)"1##+1-0/0+1-n b being an
integer greater than y-41—v.

In order to prove Lemma 8, we need some further lemmas.

LEMMA 8.1. Let r=0, and
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h h h
CrO=h*{ du, [ duy - | OWtut et o Fuddin
a4 = o )
W;(t)zh“’“j dulj du, -+ JO Ot —u,—wy— - —up)duty,
0 0

where [ and k are two fixed positive integers, 0 < h=h(t, &) <(2k)t, and let h
tend to zero with t in as same order as or higher order than t. In these circum-
stances, if for a constant q

(7.5) ()=o) as t—0,

and if (1.2) holds for 0 <t <t., then we have (7.3).
ProOF OF LEMMA 8.1. We first notice that, roughly speaking, (7.2) implies

Ot +u)—DUE) > —ke't+, O<u=zkh,

for any fixed integer k2. Substituting the relations (7.5) and (7.2) into the
identities

h h h
OUO=T O~ [ au, [ “duy - [ TOUEus - - )= OUO ],

h h h
OUO=V; O+ [ du, [ “du, - [ TOUO— O —sts—ea— -+ —w) It

we thus have

12
lim sup D6) <0, lim inf 0:() =0

g~ = I+
0 e t—0 Atk

respectively. Hence, we get @OUf) = o(#"*?), and then @,(f)=0(¢?) by Lemma 4.
This proves the lemma.

Now, we must investigate the property of ¥:(#), and it may be restricted
to consider ¥} (¢¥) only, since it is similar to ¥;(¢). In the case >0, neglect-
ing the numerical factor 1/I'(»),

Oy = w—oy W, (=),

1
=yt “fo A—w)y'we(uw)dw ,

and so substituting this expression with #=i¢+u,+u,+ --- +u; for that of ¥ (¥)
defined by (7.4), we have

h h n
wr(t):k_kj‘ dulj dty -+ jl 4w+ - Fu)  duy
0 0 0
(7.6) 1
XJO (1—w)r——lwl¢((t+ul+ +ulc)W)dw .

And, clearly when r=0,
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h h h
wo(n:h-kjo duljo duty - fo (ot o Lol e 4o)duy .

‘We may consider the case >0 only, since the case »=0 is easier.
Concerning the particular function

o(v) = <2 sin é—v)tlcos (n+byw+c)

we have the following lemma, / being replaced by [7]+2.

LEMMA 8.2. Let v>0 be arbitrary, k be a positive integer, a =0, b and ¢ be
three arvbitvary constants, and let

h h h
— Lk r+lr
B,=nhn jo dulj‘o du, jo Wtk gy,
{1.7)
' mt, tre (9 iy L *
xfo(l—w) w (2 sin — mu) cos((n+byuw+c)dw ,

wheve u=1t+u,~+ - +uy, and h has the same meaning as in Lemma 8.1. Then,
we have

(78) Byy=0(

Y gy meof)

uniformly in n=1 and 0 <t <m.

In order to study the general case where »>0 is arbitrary, we suppose
that

[r1=[r—0],

i.e. that when 7 is integral the notation [#] means r—1 in place of », so far
as it is concerned with the present article.

PrOOF OF LEMMA 82. Applying to the last integral foldw in
{7.7), we see that »
(7.10) f Ol(l—w)"‘lw“”" <2 sin —;uw)acos (n+b)uw-+c)dw = O(T;%T) ,
which yields (7.8) immediately by (7.7) and #~¢.

Next, applying integration by parts [7]-times to the left hand integral in
{7.10), the integral becomes

§ 7,0y SLELIEED g,

‘where
fnwy=(2) o (A —wy-twr(2sin éﬁuw)a) ,

and ¢’ =c+[#Jz/2. By an elaboration, we see that f(%,w) may be written as
an algebraic sum of functions of the type
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a—p+ 2p
(1—w)r—rr1—1wk+p1(uw)p<2 sin %mw) ’ p2(2 sin %uw) " ,

where 0 <#—[7¥]<1 and p,, p, p,, ps are integers such that
0<p,<[r], 0=Zp=[r], 0=p,<p and p,=0,1.
We may take as f(u,w) a term corresponding to p,=p,=p, =10

fiCo, w) =1 —w)y "I yke (uw) ,
where

.1 a=p
gluw) = (uw)f’(2 sin ‘2—uw> ,
since the estimation is similar for the other terms. B, in (7.7) then becomes

(" h o tr ! cos((n+b)uw+c’
h kjo dul‘fo duy - jg utt ]HCd%ch‘ Silu, w) (g(ierf)[);]Zg]*)*dw ,

and, exchanging the order of integration we have
. ,___1__" ! _ r—Lrl—1,,k " "
Bu= by jo(l W)k jo du, jo du,

X j.ohu”’“g(uu)) cos (n+b)uw-+c")duy ,

where #=t+u,+ -+ +u,. Now, observing that the function »"**g(uw), w >0
being considered to be a parameter, is monotonously increasing with respect
to each small #; >0, and applying the second mean value theorem to the re-
peated integral, we obtain

(t+Eh)

1
Bu= g gy §, (L—0y ™ g (ko)

X @{2 sin -Gt bXh—w ) cos [ (n+0) (14— el -+ -+ -t Jduw,

where 0 </%; <h. Expanding the product (IT%.,)cos into a linear sum of co-

sines, and applying with ¢ =p and b=a—p to each of the integrals
we have

_— Ja-p
.;lo dw = (t+kh) - O<W[FJ‘> ’
and then

. _(ti]ihyf’: ) g;l,‘a B o t[r]+k+a,
Bn - hk(n+b)[r3+k O( (’nlﬁ)r:[r] > - ( > ’
which is (7.9), and the lemma is proved.
PrOOF OF LEMMA 8. By Lemma 8.1 it is sufficient to show that the con-
dition implies [7.5), while [7.5) is, in the case »> 0, by (7.6) with /=[7r]+k%,
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h h h
— 5,k r+[7r]
v.H=h fo dulfo du, jo wr ey
(7.11)
1
X fo A—w) W o(uw)dw = o(ttr+*+9),

where w=¢+u,-+ --- +u,. Replacing ¢(uw), as we may, by its Fourier series
the last integral in (7.11) is

1 o 1
j A —w)y Wt o(uw)dw = >’ a,,j. (I —w) I cos vuwdw ,
0 y=0 0

where 3’ means that ¢, is replaced by «,/2.
Applying Abel’s transformation [f41]-times we have

%—aﬁ— :a,, cosvuw = — P+,
(7.12) g ;
+1n
-} <2 sin %ﬂuv) y§s€ cos [<V +~%~ ([H—l)) uw——%f-(ﬂ—{—l)n] ,
where

[B+1] n -
P, = (2 sin % uw> S8 S ARPLE
1

y=0 p=n+

xcos ((u-+- [A+17) mo— - [8+11x),
Q.= % (2 sin %—uw)js{ cos ((nJrl—l-%*j) %w—%“f”) ,

j=v
in particular, P, vanishes when g is integral, and @, does when —1=8<0.

Cf. the cited paper [121 Now, in view of u =1¢+u,+ --- +u;, and
with

a=[8+1], b= [8+1] and c=— 5 [F+1lr,
we have

h h h 1
Py =1+ “dus [ das - §wrt R | (L—wy et Pdw

=X 3 AP,

y=0 pu=n+l

and by (7.9) B,=0(z"*) holds for fixed t>0 and %2>0. Thus, taking
k> r+1—r, (7.1) yields

(Py=3s8 3 APBB-1 . O(uF)

y=v pemn+l
=0k i_ol SBD=0n""* ") =0o(1).

Similarly, when £=0,
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h
@Q)=n"* fohdulfohduz L u”[”“‘dukfo (1—w) ' +*Q, dw

8] . [B] .
=25k O )= Zo(n™") - On™""")=0o(1),
Jj=0 j=0

since si=0( s8*1 )=o) for j=0,1,.--,[8]. This is also true when
—1=4<0, for @, then vanishes.
Hence, following (7.12) we may replace the Fourier series of ¢(uw) by

(2 sin %—uw)ﬁﬁés@ cos [(H—%M(ﬂ—{- 1)) uw——é—(ﬁ—i—l)n] )

concerning the estimation of ¥ ,(¥). Replacing ¢luw) in the integral of (7.11)
by the last series, and using Lemma 8.2 with

a=p+1, b:%(ﬁﬂ) and c:—%ﬁ(ﬂ—kl)n:,

we have

(7.13) V(=8B =3+ 3 =S,+R.,
y=0 y=y

y=mri
where, uniformly in v =1 and 0 <¢< 7,
Lrl+k+5+1
B=0("J ).
We can easily verify that the succeeding argument remains unchanged also
when [#]=7=0. Noting now that
h=et’, p=@+1—@/G+1-0),
—1=4, 05y and O0<y+1—r=8+1l—¢q,

. t[r]+k+ﬁ+1
By = O( VF‘_) ’

taking
n=[h"1], i.e. nh~1,

we then have by (7.1} and 2> 7+4-1—7, in turn
Su= 2 $8B, = O +++8+13 | 58 | (v+1)")
y=0 y=0

[rl+k+
— 0(¢Er]+k+ﬁ+1nr+1—r) — 0( ¢ tl_>
PEESErIN

oo

R,= X BB, =O(ttr+k+B+1p=k i | 8| p=rF)

y=n+1 n+1
[r]1+k+q
— Lrl+k+A+17,—k ,T+1—r—k\ _Zv,ﬁﬂ,_
= o(LrAtk+Bri kT +1-r )—0< T >

These relations together with give (7.11), and the lemma is completely
proved.
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8. Proofs of Theorem 3 and Corollary 3.1.

PrROOF OF THEOREM 3. Letting

p=B+1=b)/(r+1—7),
we see that
e=1 and ¢g=0b+@—c)o.
For such 7 and ¢, (8+1—¢q)/(y +1—7r)=p holds, and the number % used in
Lemma 8 is written as

8.1 h=¢t’.
We now put
8.2) r=c+o0<r+1l, g=0b+0p and 0<o<]1,

and use the letter &£ 'in place of / in Lemma 8.
Under these circumstances, we first prove that the condition

@3 DL = 0", c=0,
which is by Lemma 4 equivalent to (5.2), implies
84 O, E+h)— D, oF) = O(ed¢* 0730 ,

where % is an integer greater than y+1 and —b. Using the identity
t
TOPkA)= | (t—up- i,
and neglecting the numerical factor 1/I(d), we have

O O M e O L O

— f t h(t-u)s’@’é(u)dwr f t;h(tJrh—u)‘*“@’é(u)du =I—L+1;,
t~ t-
say. Then, by (8.3),

I,= o(tmjot—"x (+h—a 1=yt | du)

t—-h
— k+b — )02 1
o(t jo It —1) du), 0<d<1,
— O(tk+bh5) — O(ealqc+b+50) .
Similarly,
L=0(r{ tt_h(t——u)‘s‘ldu) — O(edr+orany |

and 7; =O(ef*+%+9¢), These prove (8.4).
Clearly, the same argument as above gives for all ¢, 0 <¢ <,

(8.5) OF, (t+u)— Ok, 5() = O(edt¥+0+0°) , O<u=sh.
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Here, it will be easily verified that O depends only on § and O in So,
applying with ¢/ =& to (8.5)and (5.1), i.e. I7_,| s |=o(n™1), we get
D1 5(8) = 0(2"%),
for ¢+0<y+1 and 0 <0 <1, and then for every value of § such as ¢ <c+d

<7r-+1. This proves the part (I) of the theorem.

Next, observing that the one-sided condition @ (f)=0.(#*) and imply
O4) = O (t***) by Lemma 4° in §6, and letting §=1 in (8.2), as we may, we
have

+h
OF (t+1)— D5 (D) = Lt Ow)du = O (ht*) = O (et**¥+°),

by (8.1). Hence, Lemma 8 yields @,.,(#) =0(**?), which proves the part (II) of
the theorem by the part (D).

PrOOF OF COROLLARY 3.1. The proof runs analogously as Corollary 1.1
Letting ¢=1 and =0, the conditions —1<4, 0<c and 0<y+1—c=pB+1—-b
in Theorem 3 are reduced to a single one 0 <y < 8-+1, the case y =3-+1 being
trivial. And, the conditions

3181 =00") and @,)=0(1)

imply for 1=r<r+1

(8.6) o,()=0@, q=0@—1B+D/r,

by Remark 4 following Lemma 8 and the part (I) of Theorem 3. Applying
Riesz’s theorem in §6 to (8.6) and @,(¢)=0(1), we get the desired result.

9. Proof of Theorem 4.

We need a lemma.
LEMMA 9. Let ¢ =0, b be arbitrary and p=1 (except the case c=p—1=0).

If

©.1) S=00) or 3| =00n) as n—oo,

and if 0<6<] and k=sup(0,c—b+1), then
©.2) | 0%, ot +u)+ Dyt —1u)— 208 (1) | = Aeltkv*o0 , 0<u=h,
holds for h=c¢t?, €>0, and 0 <t <1, A being a constant depending only on 0
and O in (9.1).

In the exceptional case ¢ =p—1=0, this lemma is still true if, in addition,
S&* = O(n***") holds for some positive 7.

We sketch the proof of this lemma. Write

9.3) = :(t—u)c’“a“lu’“(Z sin %u)bcos(nuan(u—n)/Z)du .
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Then, a similar argument as in the proof of [Lemma 8.2 shows that, for
k=sup(0, c—b+1),

tk+b
©O4) Ci6)=0( ) (c20),
and
24k+b+c—[cl+o—2 k+b
ConE+D+Crs =126, O=0("E ") vo(H) 20
peplrota-t pikre
:O< net >+O< pero-1 ) (C: 11 2» )

hold uniformly in =1 and 0=<¢=<=z. If we replace ¢(u) by its Fourier series
and take into account then we obtain, for £=sup(0,c—b-+1)

I(c+0)P2. ) = f:(t—u)”“u’“so(u)du = é%“Cn(t) ,

where C,(¢) is defined by
Arguing similarly as in the proof of these relations give for
h=¢t’, €¢>0, and for given 6 (0<d6<1)
D%, &+ 1)+ DF, 1 — 1) —20%, () = O(ed1%+0+37)

uniformly in 0 <#< 1. From this follows the lemma.

We now prove Putting p=(8+1-0)/(r+1—c¢), as we may,
and the remark after it conclude that the assumptions imply
for every positive § <1. And, is the left side being slightly modified.
So, the theorem follows from the part (I) of

Part III.
10. Theorems (3).

THEOREM 5. Let 0=b and 0<B—b0=Z7—c. If

(10.1) D) = o(t") as t—0,
(10.2) ST =0(nb™) as n—co,
then we have

(10.3) OD=07),  g=c+r—by L,

as t—0, for b<r<§8.
THEOREM 6. Let —1=0, 0=Z¢, 0<y—c=Zp—b and b—c<1. If

(10.4) s = o(n") as n—oo,

(10.5) (=0 as t—0,
then we have
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(10.6) sT=on®),  q=c+(r— b)—E{% ,

as n—oo, for b<r<p.

(N.B. 7) Observing a,=o(1), one sees that has a meaning in
the sense noticed in Remark 3 in §5, only when ¢(f+1)<(b+1)r is assumed
in addition to the assumptions. does when ¢(8—1) > (®—1r.

Discussing as in §1, we have the following summability theorems from
the above ones.

COROLLARY 5. Let 0<d0<l and 0<p<y. If

Ost)y=0({") and a,=O0mn"9),
then we have
Dy(t) = 0o(t), a=70/(r—B+0).
COROLLARY 6. Let 0<y<fB and 0<o<1. If
sp=o0(n") and @)=0(t7?),
then we have
Sa=0(n"), a=70/(B—7+0).

11. Proof of Theorem 5.

We need two lemmas.
LEMMA 10. Let ¢(t) L in (0, x) and @, (1), a >0, be defined as in (0.1), and
let 0<y<x, 061, Then, we have

iy oot s pax 0o

This is due to Riesz [1]
LEMMA 9. Let b=0, ¢ be arbitrary and p=1 (except the case b=p—1=0).

Ir

(11.D) st =00 as n— oo,

and if 0<06<1 and k=sup(0,b—cH1), then

(11.2) | 0%, st +u)+OF, ot —u) — 208, 51) | = APt*+er3, O<u=h,

holds for h=¢t*, ¢ >0, and 0 <t <1, A being a constant depending only on 6 and
O in (11.1).

This is an alternative form of in §9.
PrOOF OF THEOREM 5. It is sufficient to show that, for every small 6 >0
(11.3) Dy o(t) = o(t°+3°),

where b+0< B and p=(r—c)/(f—b)=1, since the assumptions then imply
for 5+6 <r< f, by Riesz’s theorem in §6.
We now put
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(11.4) B—(+0)=p+d4, 0<4=1,
for non-negative integer p, and
(11.5) h=c¢et?, e>0,

and proceed in a similar way as in Bosanquet as follows. We then have
the following identity

A h I
O o) = U O— e | =)y [y -
(11.6)
h
X [ Okt uortunt - )~ O o)1y

where
4 h n h
W(t): Wfo (}l—uo)d_lduo fo d%l A J‘O @’g+5(t+uo+%1+ b _l_up)dup .

By Lemma ¥, taking 2=sup(0,b—c-1) and excepting the case b=p—1=0,
the assumptions imply Hence, (11.6) is written as
(AL7) D (1) =T (D+O(e 3¢+,
for every positive § < 1.

On the other hand, calculating the repeated integral we have

4 2 . R _ .

W8 YO=er S D) [ ) Ottt
Observing that p+b-+0=F—4, the last integral with j=0 is, on account of
k+7r >0,

n
jo (h_uo)d—l@lzcﬁbw(t'}‘”o)duo ’ ttu,=u),
t+h
— L t+h—uw)? DY [(u)du

= (0K~ | O”(z:+h—-%)4ﬂqy§_d(u)du

— O(tk+7)+ O(tk-ﬂ’) e o(tk+7’> s

by and the fact @K = o(#**") which is equivalent to (10.1) owing
to in §6. Same estimation holds for the other integrals in [(I1.8)

Hence, from [(11.4) and we have
ltk+‘)‘ t"” tk+c+5ﬂ
¥ =o( ) = o(s) = o[ o)
Thus, yields for every small 6 >0
brea(t) = o(tFreror),

which is equivalent to [(11.3) by [Lemma 4
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In the exceptional case b=p—1=0, we see by an elaboration that (10.1)
and (10.2) imply for every >0
G = O(n>1*7) if ¢—b+#an odd integer,
and that the single condition (10.2) implies for every >0
Dy (1) = O@*7) if ¢—b=uan odd integer.

The result thus follows from these relations and (10.1), and the proof is com-
pleted.

12. Proof of Theorem 6.

The proof runs quite analogously as in integration of a func-
tion being replaced by summation of a sequence. But, for the sake of com-
pleteness we reproduce the argument. We need two lemmas, the former of
which is independent of Fourier series.

LEMMA 11. If O<m<n and 0<O8=1, then

m
| 3 Ad-ls, | <max|s?],
y=1 I=p=n

where {s,} is an arvbitrary sequence, and st denotes its n-th (C, &) sum.
This is due to Bosanquet [4]
LEMMA 3. Let —1=Zb,0=<c and b—c<1. If

(12.1) D) =0 as t—0,
and if 0<0<1 and 0< p=1, then
(12.2) | sht3—sbto | < Aelnctol, y=1,2,+,m,

holds for m="[en’], € >0, and n>1, A being a constant depending only on & and
O in (12.1).

This is an alternative form of in §4.

PrOOF OF THEOREM 6. It is sufficient to show, in view of Dixson-Ferrar’s
theorem in § 3, that for every small 6 >0,

(12.3) shH0 = o(ne+or),

where b+6 < B and p=(r—c)/(A—b)<1. We now define two numbers p, 4 as
in (11.4), and put

(12.4) m =[en’], e>0.
We then have the identity
(12.5) S =T—U,

where
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1
— 4-1
T=- MPAL VOZ_ An= v0y§1 sz_ 5n+v0+u1+ Vp s
1
= 3 Ad N
u mP AL, Voz—l " y0u12=1 VPE— (S"+y°+vl+ s2")

By (10.4) and m we have on account of >0

T= S (=17 33 AL (bhotp =54

mpAm 1770 Vool n+v,tjm=v
+(i+Dm 84
- mpAA Z( l)p ] > An+(]+1)m vSY

-1 j=} y=n+jm+

i B o= ol ) = ).

m 1 j=v
On the other hand, the assumptions imply in Cemma &, and so it holds
U=0(ednc+o"),

for 0< o< 1.

Hence, from [(12.5) we obtain for every small § >0, and the theorem
is proved.

13. Supplementary theorems.

Concerning Riesz’s theorem mentioned in § 6, we shall prove the following
theorems. In these theorems and their proofs, we suppose that ¢()e L in
0,¢,) and QL) (« =0, £=0) is defined as in

THEOREM 7. Let 0< B and f+1=Zr—c. If

(13.1) Oy(t) = o(t") as t—0,

and if, for 0 <u <tT/ED gng 0 <t <t,

(13.2) p(t+u)—e(t) > —At°u, A>0,
then we have, as t— 0,

(13.3) O (t) = o(ge+r+v-0/B+D) for 0=r<B.

As in (N.B. 7) in §6, concerning the numbers 8, y and ¢ one needs no
restriction other than 0 < < y—c—1.

¢(¢) being replaced by @.(¢), gives the part (II) of Riesz’s
theorem.

THEOREM 8. If 0< B=Zr—c and (13.1) holds, and if for 0 <u <798 and
0<t<ty,

o(t+u)—o() > —Al°, A>0,
then we have, as t— 0, o) =0, and

O,()= o+ T8y for 0<r<g.
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This is a slight modification of the part (I) of Riesz’s theorem. Concerning
the “ Cesaro sums ”-analogue, see the paper [12, Lemma 2.17.

ProoF oF THEOREM 7. We sketch the proof. It is sufficient to show, in
view of Riesz’s theorem, that the assumptions imply

(13.4) pO=00*"),  p=G—0c)/(B+D).

(I) The case r =0. Arguing similarly as in the proof of
follows from the identity (11.6), @%, ¢) being replaced by ¢(¢#) and from its
analogue. So, we omit the proof of the present case. Indeed, this case is an
illustration of loc. cit. [5, Theorem 17, in (14) of which it is supposed that !
should be taken in place of (A—¢,)°".

(I) The case y < 0. Clearly, (13.1) implies

(13.5) Dyi(t) = 0o(F™")

for every positive integer .. Taking 2> —r, and applying the case (I) to
and we get @(f)=o(**'). From this and one sees that

Ot +u)—0%t) = [t +u)—t* 1 p(t+u)+t* [ p(t+u)— )]
> [(F+u) —i%] - o(t)—¢* - Atu
> —(A+Ditk*ey

holds for 0 <# < ¢ and 0<#¢<+#, Applying again the case (I) to the last in-
equality and ®}#) = o(#**") which is equivalent to (13.1) owing to in
§ 6, we have

5@ = o(Fe**) .

And, this is also equivalent to which proves the theorem.
The proof of runs quite analogously as above. The assumptions
here imply ¢(#)=0() in place of @(¢) = o(¢°).
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