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0. Introduction.

Countable Markov processes with right continuous path functions have
been discussed by many authors under somewhat different formulations. For
example, the process whose transitions arve well ordered in time was studied by
J.L. Doob [1J, the process of “#ype transfini” by P.Lévy [9] and the instan-
taneous return process by W. Feller [5]

Let X be a countable state space with the discrete topology and x,(w)
(¢=0), a Markov process over X having the right continuous path functions.
P, - ) is the Markovian probability measure determining the behavior of the
paths which start at . We can define the jumping times as follows:

o) =inf {£; xw) # (W)} , -, Talw) = Tps(W)+7i(0%, 1), -
Ta)(w) = },,1-.1-2 Tn<w) PR Tam(w) - Tw(n—1)<w)+7w(w—;w(n—1)> » "t

Twz(w) =lim Tam(w) ’
n—»0

where the shifted path w?%,_, is defined by x(w*,_,)= %4, ,(w) as well as
Whom—1 PY %W pn-1) = Xireom-nw). The expectation of z, relative to P, - )
is denoted by ¢3!, and the distribution of x:, relative to P,( - ) is denoted by
o(x, + ).

As is usual in the theory of Markov processes, we shall define the Green
operator G, by

Gavf(x) - Ea:( 50 e_m_]r(JCJ[ZZL) .
Let ©(®) be the range of the set of all bounded functions by G,. The gen-
erator & is defined for » = V) as
Gu=(ax—GzYu.

It is well known that a Markov process is completely determined by speci-
fying the generator & together with its domain ©(®). In our case & can be
expressed in terms of II(x, - ) and ¢, as

Gulx) Zgrqxﬂ (x, y)u( y)—qu(x)
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for = D(@). In order to determine (@) we should introduce the boundary
0X and the jumping-in probability ﬁ(b, - ), and establish the boundary condi-
tion that determines ¥(®).

J.L. Doob [I] and W. Feller discussed this problem in case d.X consists
of a finite number of points and P. Levy [9], the general case in an intuitive
way. The aim of this paper is to discuss it rigorously in full generality,
making use of the theory of Martin boundary introduced by T. Watanabe [11,
127, J.L. Doob [3] and G. A. Hunt [6].

It should be noted that the boundary condition for the reflecting barrier
is not contained in our discussion since any path of our process describes a
right continuous curve iz X by our definition of the Markov process.

The outline of this paper is as follows. In §1 we shall mention preliminary
known results in the theory of Markov processes with countable number of
states. In § 2 we shall introduce superharmonic functions and Martin bound-
aries for Markov processes following [11, 127. §3 is devoted to the classifi-
cation of boundary points. In §4 we discuss the representation of bounded
x3(#)-harmonic functions by means of a-order harmonic measures, while the
Martin representation of a wider class of xj(#)-harmonic functions which are
not necessarily bounded, are obtained in §3. In §5 we shall determine the
boundary condition for the first instantaneous return process, i.e. the process
satisfying the condition P,(r,2=0.)=1, where o¢. is the Kkilling time. To
discuss the higher order instantaneous return process such that P(r, = 0.) <1,
we should introduce the higher order boundaries and corresponding boundary
conditions besides the above boundary conditions. This problem will be dis-
cussed in §6. In §7, we shall construct the paths of the Markov process
corresponding to the given & (including the boundary conditions). In §8, we
shall give an example of a higher order instantaneous return process by modi-
fying the dyadic branching scheme, together with some other examples.
In Appendix, we shall discuss the instantaneous return process satisfying
Pz, men=00)=1 and show that the instantaneous return processes treated in
and satisfy Pty =o0)=1.

Acknowledgement. Professor K. It0 suggested me the problem treated here
and encouraged me throughout my study. The definition of instantaneous
return process is due to Professor T. Watanabe. The full use of the Riesz
decomposition theorem is owing to a discussion with him and Mr. M. Fuku-
shima. The introduction of the operator ,V, in Appendix was suggested by
Professor N. Ikeda. I wish to thank them for their kindness.
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1. Definitions and preliminary results of Markov processes.

Let X be a countable state space with discrete topology and oo an extra
point to be added to X as an isolated point. X\ {oo} is denoted by X* and
the set of all subsets of X* by By.. Let T be a continuous parameter set
[0, +c0]. Any function from 7" into X* is denoted by w and its value at t& T
by x(¢,w) or x(w). The set of all the w’s which satisfy the following conditions
(W.1)~(W.3) is denoted by W and each element of W is called a path-function.

(W.D) X4 () =00,
(W.2) There exists a mapping o-(w) from W into 7 and:
2 (w) =0 for #=o0.(w) and,
x(w)e X for t<o(w).
(W.3) x(w) is right continuous with respect to ¢
We shall denote by By, the Borel field generated by the sets {w;x(w)€ E},
where E runs over By. and ¢ over T. For any w < W and any random time
o(w), i.e. a measurable function from W into 7, we shall define the sfopped
path w;, and the shifted path wi as follows:
(1.1) % (W5) = Xming,w) (¢ <-+o0) and =oo (¢ =400),
2 W5) = X W) -
We can easily show that both w; and w; belong to W and that ¢,(w)=ws
and vV, (w)=w} are measurable mappings from (W, 8B, into itself. Therefore
(9:)By =B, is the Borel field of By. Especially B, for the constant random
time # coincides with the Borel field generated by the sets {w; x(w) < E} for
s<t. Further ﬁ B,.1 is denoted by B,,. Finally a random time o is a Markov
n=1
time if
1.2 {w;olw) <t} =B, for any te7T.

LEMMA 1.1. (1) Let {0,;n=1,2,---} be a sequence of Markov times. If
0,1 (1) 0, 0 is also a Markov time.
@) If ow) and w(w) are Marvkov times, 0(w) = o(w)+r(wd) is a Markov time.
Q) If ow) is a Markov time, o(w) is a B,, measurable function.

The proof will be given in K. It6 and H.P. McKean [8] and omitted here.

The jumping times are defined as follows:

o (w) = inf {¢; x(w) = x,(w)} (the first jumping time),
o) = Tp— ()47, (0%, _,) (the n-th jumping time),
Tw(w) =lim Tn(w> » TaH—n(w) = Tw(w>+7n<w+) PERAA

(13) Ton — Tw(n—l)"‘fw(w?w(n-n) PIRR)
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N -+ — 13
Twn+m — TaJn+ Tm(u} Tan> PR Tw2— lim Twn

M- 00

Twin — Tw7(n—1)+7w2(wfrw2(n-1)) y T

_ . T
Tw2ntamsl = Tont Tomr(Ww rmzn) y "y T3 = lim Twin

n— o0

and so on. The first jumping time is a Markov time, because, using (W.2)
and (W.3) we have

{lw;r, =t} = U {w; xw)=2x for any rational » <¢} € B,.
rEX*

Therefore, applying [Lemma 1.1, all jumping times are Markov times.
A countable Markov process is a system M= (X*, W, By, P,; x € X*) satis-
fying the following conditions.
(P.1) For any fixed x, P - ) is a probability measure over (W, By).
(P.2) Pyw; x(w)=2x)=1 for any xe X*.
(P.3) (MARKOV PROPERTY). For any x= X*, t= T and B < By,

a4 Pw; wi € B/B,)= Py(B) with P,-probability 1.
The Markov process M is also denoted briefly by x(¢).

Let B(X) be the family of all bounded functions on X* such that f{co)=0.
We can consider B(X) as a Banach space by introducing the norm ||f| =
sxél; |f(®)|. Semi-group H, and Green operator G, (a>0) are bounded linear

operators from B(X) into itself defined by
(1.5) H,f(x) = E(f (%)) .

(L6) Gaf ()= Eu(  etr(ayat)= [ e~ HLf (it

H, and G, have the following properties.

(H1) Hf=0  for any f=0.

(H2) H1Z1

(H3) Hof ()= HHf(x) (SEMI-GROUP PROPERTY).

(Gol) Guf=0 for any f=0.

(Go2) aG =1

(Ge3) (@—B)GGpf(X)+Gof (x)—Gaf(x) =0 (RESOLVENT EQUATION).

From (G,.3), we can see that the range of B(X) by the Green operator G, is
independent of a. Its range is denoted by R.

Since the topology of X is discrete, we may regard the Green operator G,
as mapping from any continuous function to another continuous function.
Therefore noting (W.3), we have the following stromng Markov property.

(P.4) For any Markov time o, x< X and B < 8, we have

a.n Pw; wi € B/B,1) = Py(B) with P,-probability 1.
We shall define the quantity ¢, and the kernel II(x, y) (x,y € X*) as follows:
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1.8 ¢z' =EJt),
(1.9) (%, y)= P % =) if g,+0,

=04,y if ¢,=0.
Then from the right continuity of path functions, we have
1.10) 0=qg,<co if xeX, q.=0.
(1.11) Iz, =0, > Ixy=1,

yeEX*
I(x,x)=0 if ¢g,#0.

LEMMA 1.2. x., and ©, are independent with respect to P.-probability.
PrROOF. Let A be a subset of X*. We have

(112)  Pylr, > t, %, € A)= Polz, > ¢, % (w)) € A)
= -/.r(le:(xrl S A), Ty > t) - Px(-xrl = A) 'Px(fl > t) .
The kernel I7,(x,») is defined by

(1.13) O(%,9)=Efe™"1; %, =y).
Using Lemma 1.2 and the well known relation Pz, =¢) =e¢ %', we have
(1.14) 1 (%, 5) = Ee™"™) - Po%c, = 3)

([ = b, e,

By the strong Markov property, the function G.f is changed into

— o —~at —at1 I; « —at
W15 Gaf@=Eo( [ e at) + B B (e tr () )

N

T oatqs
Writing ¢, ZXH(x,y)Gmf(y):qHwa(x) and using (1.14) and (1.15), we have

ye
AGuf—f=qllGaf—qGuf .

Put G,f=0 in (1.15) then we get f=0. Therefore for =R, inverse operator
GZ! can be defined. We shall define the generator & as follows:
(1.16) Cf=af—Gi'f=qllf—qf.
The domain of generator @ is denoted by @), i.e. D(G)=NR. Then a Markov
process is uniquely determined by the generator & (see K. It6 [7]). The

operator gq(II—1I) is called Dynkin generator and denoted by S.
A Markov process x(¢) is called a k-th instantaneous return process if it
satisfies

1.17) Polo(w) = tyueen(@)) =1

for every x= X. Particularly, when k=0, x(¢) is called a minimal process.

f (x)+y§XH NERD EMAC)P
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Let M=(X*, W, %y, P,; x= X*) be a Markov process and let x*(z) be a map-
ping from W into itself defined by
(1.18) 2"t w) = x(t, w) it ¢ <7u,an,

=00 it =7, 000

Then a stochastic process M* = (X*, W, By, P¥; x € X*) (or briefly x*(#)) defined
by
(1.19) PHB)= P, w; x5w)< B), B<By,

becomes a k-th instantaneous return process. It is clear that the pair {q, II} of
the process x(¢) and that of the process x%(#), i.e. the quantities {g,, II(x,);
x,y€ X*} for the processes x(#) and x*(#) defined by and (1.9), coincide
completely. Moreover the Green function GEf for the process x*(£) becomes

(1.20) GEF(x)= E"( { j e (r)dt) = E( { :"’(Hl)e“"‘f(xt)dt) .

So we shall call x%(¢) the k-th instantaneous return process induced by x(¢).

Let x(¢) be a Markov process with the pair {g, 77} and let x3#) be a
minimal process with the pair {a+gq, II,} where I1, is defined by Such
x3(t) is called the a-order minimal process. The Dynkin generator Go of 2D
becomes

Gu=+a) I ,—D =gl —I)—a=C—a.

The first passage time for AC X (relative to the minimal process x°(%)

induced by x(?)) is defined by

(1.21) o w)=1nf {¢; xYw) s A} if x)w)e A for some =0,
=oco otherwise.
Then o,{w) is also a Markov time, because
{oa=t} ={w; x%w) <= A for every rational » <{¢}

:Q[{w; ) E A r<to} Y{r>c,}1eB,.

A state x is called recurrent if it satisfies
1.22) P(w; 0mwi) < foolr(w) <oo0)=1,

and a subset R of X an indecomposable recurrvent set if R contains a recurrent
state x satisfying
(1.23) Plo, <c0)>0 for any y € R and,

Pw; oge < +0)=0.
We know that X is uniquely decomposed into X=\J R;+N, where each R; is

an indecomposable recurrent set and N is the non recurrent part of X.
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2, x°(t)-superharmonic functions and Martin boundaries.

Since our arguments in the sequel are essentially based on the Martin
boundary theory, we shall sketch it following [11, 127.

Let §(X) be the family of finite valued functions on X* taking the value
0 at co. If we F(X) satisfies

~

@.1) Gu=0 (Bu=0),

u is called an x°(#)-superharmonic (x°(t)-subharmonic) function. Especially if #
is both x°(¢¥)-superharmonic and x°(¢)-subharmonic, # is called an x%¢)-harmonic
function. A non-negative x°(¢)-harmonic function » is called minimal if any
nonnegative x°()-harmonic function » which does not exceed # is a constant
multiple of #. A function z = §(X) is called the x°(%)-potential of f, if u can
be written in the form

2.2) u=Gr=Ey | :’ i)

THEOREM 2.1.Y (Analogue of Riesz decomposition theorem). An x°()-super-
harmonic function u is decomposed by means of x°(t)-potential ZNGO(x, y)[——@u(y)]
e
and x°@)-harmownic function lim I[I"w into the form

(2.3) ux) =3 G, WL—Gul»)] +Him IT"u,

if and only if there exists an x°(£)-harmonic function which does not exceed u.
THEOREM 2.2.2 (1) If u < F(X) is the x°(t)-potential of f, the set {x; f(x)# 0}
is contained in the transient part N. (2) If u is the x°(¢)-potential of positive
Sunction f, we have
24 tl%rfn w(x) =0
with Py—19 ’
From now on, we shall consider the Markov process satisfying the following
condition :
(P.5)? There exists at least one state ¢ such that Pyo,, < -+o)>0 for any
ye X. Such state ¢ is called center.
In the sequel we shall fix a center e. Define

_ Pylog) < +0)
@5 K030 = gy < o0)

1) See [12, Theorem 2.87.

2) See [3, Theorem 3.1], or [12, Theorem 2.6].

3) By this notation, we mean P,-probability 1 for every x < X.

4) We assume this condition only for the simplicity. According to [6], we can
establish the Martin boundary theory by introducing a reference measure if the process
does not satisfy this condition.
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then K(c, x,v) becomes an x°¢)-superharmonic function of x for any fixed y,
and K(c, x,v)= K(c, x,y") (for every x) induces that y =y’ or that both y and
y' belong to the same indecomposable recurrent set. Let us denote by X, the
union of N and 7, from R;, We can metrize X by

. IK(Cr x’y)’K(C: X, Z)l
@) o0 D= LK v 9K, 6.2

m(dx) ,

where m is a totally finite measure which is positive on any state x< X.
The completion of X by p-metric is denoted by M, and called the canonical
Martin space. Moreover X = M—N is called the Martin boundary, and espe-
cially {U#} (C0X), the degenerate boundary poinis. The element of 9X is

denoted by b. Let b be a non-degenerate boundary point and {y,} a sequence
converging to b in p-metric, then lim K(c,x,y,) exists and is denoted by

n-roo

K(c, x,b). The set of all b such that K(c, x,b) is minimal harmonic is called
minimal part of 90X and denoted by (0X),. (0X), is a Borel set of X. The
natural mapping from X onto X is denoted by 6.

Let D be a closed subset of M and U(D) be the family of all open sets
containing D. The réduite uy(x) or u(x, D) of a nonnegative x°(¢)-superharmonic
function # is
@) )= Inf B p)) = im B, ),

where [G]zﬁ‘l(Gm)?), and {G,} is any sequence in U(D) such that G,] and
G, 1 D. For any Borel set B of X, we can define the réduite uz(x) or u(x, B),
which is the extension of the réduite defined above.

THEOREM 2.3. (1) Let u be a nonnegative x°(t)-superharmonic function, and
B a Bovel set of 0X, then u(x, B) can be uniquely vepresented by means of a
Radon measure p over 0X whose total mass is concentrated in (0X),, in the form

(2.8) u(x, B)= | K(c, %, b(db).

The measure p is independent of B and is chavacterized by

2.9) wWB)=1ulc, B).

@) If u is an x°(t)-havmonic function satisfying imII™|u|(c) < +oo, then

(2.10) w(x) = j R ACERTCOP

The réduite xx(x, B) of the indicator function of the state space X is
denoted by #Z(x, B) and is called the harmonic measure to the Martin boundary.

5) [12, Lemma 4.8 and Main Theorem].
6) [12, Theorem 4.3].
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THEOREM 2.4. (1)? lim 0(%c,) exists with P,—1, and is « random variable

over 0X\J {co}. Moreover, if we set x.,(w)=1lim 0(x., (w)), we have

(2.11) (%, B) = Py(%.,-(w) = B) .

@) If u is a bounded x°(t)-harmonic function, there exists a bounded measurable
Sunction () over 0X\J {co} such that ti(0)=0 and

(2.12) w(x) = f R CEDLOUCEDR f o, O, db)

== x(a(xrm—)):
where @ is uniquely determined without h(c, - )-measure 0. i is called the boundary
Sunction of u.
REMARK. Since x., (w) is measurable in the smallest Borel field containing
U%B.,,, applying martingale theory to (2.12) we have with P,—1
(2-13) lim ”(xrn(w)) - ﬁ(xrw—(w)) .

L= 0

3. xi(t)harmonic functions and the classification of boundary points.

In this section, we shall establish some relations between x°()-harmonic
functions and x%(#)-harmonic functions, which are applied to classify the bound-
ary points.

First we shall define several families of functions:

O ={u;u is x°¢)-harmonic and satisfies lim II™|#u|{(c) < oo},

*={u;u is nonnegative and x°(#)-harmonic},
Do = {tts; 1, is x3()-harmonic and satisfies lim 72| u|(c) < oo},
n-—>0co
Ot = {us; u, is a nonnegative xJ(¢)-harmonic function of £,} .
If # is an element of %, then

(3.1) Gurt =B —a)u=—an=0

holds, which shows that # is an x%#)-superharmonic function. Hence by
Theorem 2.1, we have

32) )= 3 GAx M —Can(y)1+lim [ za)
= aGu(x)+1im II%u(x) .

Setting e

3.3) u(x) =1im II%u(x),

n-—sco

the above formula can be rewritten as

7y [11].
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B4 w(x) = aGlu(x)+ulx) .

Since any element of § can be expressed by the difference of nonnegative
x%(¢)-harmonic functions,® the formula holds for any # of 9.
Lemma 3.1 (W. Feller). The functions u, and ug defined by (3.3) satisfy

(3.5) wg—tg = (f—a)Gug = (f— )Gty -

PROOF. Since G coincides with the Green function of minimal process
x%(?) induced by x(#), G satisfies the resolvent equation. Hence using (3.4),
we get
(3.6) (B—a)Giug = (B—a)Giu—B(B—a)GAGSu

= (B—a)Giu—B(GIu—G ju)
= BGiu—aGu=u,—ug.
The formula #,—us=(f—a)Gju, can be also derived by the same method.

Conversely if u«, is an element of 9,, we have

3D Gty = sty .

Hence if #, is nonnegative, —u, is x(¢¥)-superharmonic. But generally —lim 1",

n-—e

may be —oco. So we shall restrict §, to 9, such that &, is the family of
functions #, of §, satisfying Eﬁ[]"]uwl < +4oo. If u, is a nonnegative func-

n—roo

tion of &,, —u, is Riesz decomposable and satisfies

3.8) — U X) = %NGO(JC, N —G(—ua»)] +71Li53 " —ux)]
—« ZI}VGO(x, Wi (y)—lim II"ux) .

Writing

3.9 wo(x) = lim IT"u,(x) ,

we get

(3.10) (%) = G u ()t ua%) .

The above formula also holds for any u, € 9,.

REMARK. (i) In the case that » € D B(x) and u, € 9. N\ B(x), the formulas
and have been obtained in by somewhat different
method.

(ii) We can easily show that 9, coincides with the range of lim II%x where
ue 9. "

DEFINITION 3.1. The mapping from 9, into § defined by (3.9) is called
the canonical mapping.

Now, if b €(0X),, K(c,x,b) belongs to $*. We shall denote lim X ITi(x, )

n—o yeX

8) See [12].
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X K(c,y,b) by Ku(c,x,b). Since K,(c,x,b) and Ky(c, x, b) statisfy K c,x,b0)=0
leads to Kz(c,x,0)=0, and vice versa, i.e. the set » such that K¢, ,b0)=0 is
independent of «.

DEFINITION 3.2.2 If p €(6X), and K,(c, x,b)#0, b is called the exit bound-
ary point. If be(0X), and Ku(c, x,b)=0 or be(0X)—(0X), b is called the
passive boundary point. The set of all exist boundary points is denoted by
(0X). and that of passive ones, by (9X),.

LEMMA 3.2. The set (0X), is measurable.

Proor. Since K(c, x,b) is (x, b)-measurable, K.(c,x,b) is also (x,b)-meas-
urable from the definition of K,. Therefore the set

©X), = \J{b; Kule, %, 6)> 0}
re
is measurable.

LEMMA 3.3. If be(8X),, the canonical image of KJc, x,b) coincides with
Kl(c, x, b).

ProOOF. Evidently K(c, x, b) = K,(c, x,b) holds. Operating 7" and letting
n— oo, we get
3.11) lim II"K(c, x, b= lim ?XII “x, K¢, v, b))

7 —00 n— Y

<lim II"K(c, x, b)= K(c, x,b).

N =0

Since K(c, x,b) is minimal, there exists a constant &2 (0 <k2=<1) such that
lim IT*K,(c, x, b) = kK(c, x, b). Therefore K,(c, x,b) =< kK(c, x,b). Operating II%

N—rc0

and letting n—co, we get K.(c, x, b) < kK, (c, x,b), which shows £2=1. There-
fore 2 must be one.

Now, the set of all elements # = $ such that u(x)=u(x,(0X),) is denoted
by $ and the set of all elements =9 such that w(x) = u(x, (0X),), by HO.
Let # be a function of £, and (2.10) be its representation formula. Then
operating I1% to (2.10) and letting #— oo, #,(x) defined by (3.3) becomes

. @ = Ka y Ay b - a\ls Ay .
(3.12) 21(%) j on, (¢, %, B)(db) j o Kok % b)u(db)
By the similar argument, applying Lemma 3.3, #,(x) defined by (3.9) becomes

(3.13) ul@) = | N SCELTCOR

9) Our definition of the exit boundary points is that in the sense of [5] and is
different from the definitions in and [6]. Their exit boundary points in and
[6] are nothing but our Martin boundary points (8X). Our classification is significant
because our Markov process is time-continuous. The probabilistic meaning of exit
and passive boundaries is shown in [Theorem 3.2. There exists a more probabilistic

definition of exit and passive boundaries, which is equivalent to ours. Such definition
will appear some time or other.
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THEOREM 3.1. Let u= D and, u, and u, be the functions defined by (3.3)
and

Q) D coincides with the range of the canonical image of Do

(@) u belongs to O if and only if u=u,.

(B) u belongs to O if and only if u,=0.

@ il_}n;lg Iy =ty

PROOF. Since any function belonging to the range of the canonical image
is given by (3.13), (i) will be clear. If #(x) is a function of 9, it is written in

(314) u@)=ulx (OX)) = K, bu(db).
Hence #=u,, and vice versa. Further, if #(x) belongs to $©, it is written in
(3.15) () = u(x, (0X),) = | R ACERCON

D

Therefore, by (3.13) #, becomes
(3.16) )= | K(c, x, b)u(db) =0
©X) N GX),

Conversely if #,=0, we have u((0X))=0 and « satisfies (3.15). To prove
(4), operate IT% to (3.13) and let n— oo, and we get lim IT7%u, = u, immediately.

THEOREM 3.2. (1) Pty < o0|%e,. €(0X))=1.

(2) Pfro=00|%,- €(0X)p) =1

PrOOF. If we put #(x)=(x, (0X)e) = Pu%c,- € (0X),), it belongs to . If
we operate II% to u(x), we have

3.17) ITu(x) = Ey(e™* " Py, (dicy- € (0X)e)) = Eule™™ ; Xy~ € (0X)e) «

Therefore
(3.18) (%) =1m I %u(x) = E(e77® ; X, () € (0X),).

Conversely operating II™ to the above formula, we have

3.19) IMuy(x) = Eo(Ey, (679795 7o < 00, %pyy € (0X),))
= B¢ 5 (wt,) < 00, Koy (wh,) € (9X),)
=FE (e~ ; 7, < 00, X~ € (0X).) .

Letting n#-— co, the canonical image of #.(x) becomes

(3.20) (%) = P(tp < 00| Xrp- € (0X)e) -

By Theorem 3.1 (2) #=u, holds, which shows (1). Next put u(x)=A(x, (0X),),
and it belongs to £®. Hence by the similar calculation as (3.17),

(3.21) lim I 3u(x) = Ey(e™0 ; 2y € (X)) =0.

n—oo
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Therefore

(3.22) Py <o0lx,,- €(0X),)=0,

that is,

(3.23) Po(%eyy- € (0X)p) = Pt = 00| Hr(p- € (0X)p),

which shows (2).

THEOREM 3.3. The exit boundary (0X). does mnot contain the degenerate
boundary points.

PrROOF. If b is a degenerate boundary point, there exists y=\JR; such
that

_ P.r(aiy) < OO)
K(c,x,b0)= Pl oy

Therefore it is enough to prove lim ) II%(x, 2)P(oy, <c0)=0. We know that
n—ooo & X

if x,(w) once reaches a recurrent point y then it passes through y infinitely
often (with P,—1). Hence we have {w; o, <oo}={w;oy,lwt,) <o} with
P,—1. Moreover, since Py r,=o0)=1 for x= \JR; we get

zZXHZ(x’ Z>Pz<a{y) < OO) = Ex(e‘“TnPZrn(o-{y} < OO)) = Ex(e—a‘rn; G(y} < OO)

. _ et
— E(e77; 0y < 00) = E(e™*we 0oy ; gy, < 00)

=E (e wnE,, (e**)=0.

L3 1y)

4. The representation of bounded x%(¢)-harmonic functions.

Let #, be a bounded x3(#)-harmonic function and #,, the canonical image
of u, and 1, the boundary function of %, Then it follows that

4.1 (%) = j I ACEDOUCED

= B, db),
@x),

where Z.(x, db) = K.(c, x, b)li{c, db). But according to the argument of the pre-
vious section, we have

“4.2) ho(x, B)=1lim EXII (%, VI(y, B)

= FE(e™*; %r,-(w) € B).
Therefore the formula can be rewritten in
4.3) o %) = Eo(e™* 08 (%cy-)) »

which proves the first part of the following
THEOREM 4.1. (1) Any bounded xXt)-harmonic function u, is expressible in
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the form (4.1) or (4.3), using the boundary function t, of the canonical image

of Uy
2) lim #y(xe, (W) = @ (X (W) holds with P,—1.

700

PROOF OF (2). In (3.10), since 1im 2o(., () = t4o(%ey_(w)) and lim G®u(x;,) =0

with P,—1 (Theorem 2.2), we get (2) immediately.
REMARK. Conversely if # is a bounded Borel function on XU {co} such
that #(c0)=0, the function

4.4 #(x) = E,(e™ " 0( %))
becomes a bounded x3(#)-harmonic function. But generally the formula
4.5) 1m 244( e, (w0) = (e, -(0))

does not hold. In fact if #,(x) is the canonical image of #, and ,, its boundary
function,
4.6) A(b)=1(d) if be(0X),,

=0 if »<=(0X),
holds except for the set of %(c, - )-measure 0. Therefore we may call (8X),
the PWB resolutive boundary points for u, defined by (4.4) and (0X),, the PWB

non-resolutive ones.

From and the above Remark, we get
COROLLARY 1. If B is a Borel subset of (0X)., we have with P,—1,

A7 1im Eze fe™™; % € B)=1 if %, W) B,
=0 if  %en-(W)E B
COROLLARY 2. With P,—1, we have
8) M Epepcoe™™) =1 i Xepe(w) € (0,
=0 i Xep-w)E (0X),.

THEOREM 4.2. Every function f such that both f and @f eB(X) can be
expressed by the diffevence of xXt)-superharmonic function (i.e. x¥¥)-Riesz decom-
posable), and both xYt)-potential part and xJ(t)-harmonic part of the x3&)-Riesz
decomposition of f are bounded. Moveover the boundary function of its x3{)-
harmonic part is independent of «.

ProOOF. Writing g:(a——@)f and u#,=5—G3g, u, is an x4#)-harmonic func-
tion. Therefore f=wu,+GJg is nothing but the formula of x(#)-Riesz decom-
position. Since @f is bounded, clearly G2lg is bounded. Hence #, is also
bounded. Since

9) 1GeaI = 181 B ear)=- - 1g 1A= By,
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from [Corollary| of [Theorem 4.1, we get with P,—1

4.10) lim Gig(x.,)=0 if x,-€(0X)..
Therefore
“.11) lim f(x,,) = lim #,(x.,) for x.,- €(@X).

holds with P,—1, which shows the last statement of this theorem.

Now, we shall introduce the several notations. The family of all bounded
Borel functions # on (0X),\V{co} such that #i(c0)=0 is denoted by B{OX).
The norm of # € B(OX) is defined by

4.12) I @] =ess sup |6(b)]

where the essential superior limit is taken with respect to A(c, - )-measure.
If |#,—%,) =0, we shall regard #, and #, as the same element. Then BBX)
becomes a Banach space. The mapping %~ from the Banach space B(0X) to
the Banach space  ~B(X) defined by

(4.13) hii(%) = j o, O, D)

is one to one and onto, because any element of $\B(X) is represented in the
form fa )ﬁ(b)h(x, db) and # is uniquely determined except A(c, - )-measure 0.
X 1

Moreover % is an isometric linear operator. Let B(0X), be the subspace
of B(OX) consisting of elements of BVB(X) which vanish on (8X),. Then
S N B(X) coincides with the image of B((BX),) by the operator 4#. The map-
ping 7, from B(9X),) to D, N\ B(X) defined by

(4.14) Frotd(x) = j o, AOVral, ab)

becomes also an one to one isometric linear operator. In the sequel we shall
consider any bounded function on (0X)\ {co} (taking the value 0 at co) as an
element of Banach space B(0X) or BUOX).).

DEFINITION 4.1. All the functions f of B(X) such that SreBX) are
denoted by B,(X). The boundary function of the xi(#)-harmonic function
obtained by xX(#)-Riesz decomposition of f & B, (X) is called the boundary value
of f.

Finally, we shall give the generator’s domain of the minimal process,
which is the reformulation of [5, Theorem 6.2] from our point of view.

THEOREM 4.3. The generator’s domain () of the minimal process is

(4.15) NG) = {u; (@) u, Gu € BX) and () lim /7% = 0}

or equivalently
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(4.16) NG) = {u; (@) u, Gu = BX) and (8) 1=0, where &
is the boundary value of u} .

PROOF. Denote the right side of (4.15) by ®). In Section 1, we have
already shown that G,f satisfies (a). To prove that G,f satisfies (3), we shall
rewrite G,f as ‘

417) Guf (&)= Eu(( [ "o (x)dt) + Eoe™ "G (o))
= Bo( [ et (o) + TiGur ()

Letting #— oo, Ex< f :ne"“‘f (xz)dt) converges to Gof(x). Hence limIT3G,f(x)=0.

Conversely take any # from 3(®), and put g:(a—@)u and v =u—Gag. Then
v is an x(#)-harmonic function because g:(a——@)ng. Since # and G,g
satisfy (8), v also satisfies (8). Concequently

(4.18) v=0H0v=" - =I"%—0.

n-—co

Therefore v =0, i.e. u=G,f. Thus we have proved (4.15). Since lim %z =0

72— oc

shows that # is an xJ(#)-potential, the equivalence of (8) and (8’) will be clear.

The process being completely characterized by the generator together
with its domain, the minimal process is characterized by the pair {¢,I7}. But,
as is well known, the non minimal processes can not be characterized only by
{g,II}. In Sections 5 and 6, we shall determine all the factors characterizing
the instantaneous return process, using the results obtained hitherto.

5. The boundary conditions for the first instantaneous return processes.

We shall now introduce the new kernels ,/I(x, A) and [ (x, A) as
(GHY) (%, A) = Po(Xey, € A, T < 0),
(5.2) @lla(x, A) = E(e77; %, € A).

If we consider the kernel ,,J1,(x, A) as a function of x, it is a bounded x3(¥)-
harminic function, because

(5.3) (Q)Hw(x, A) e Ex(e"“"—le"arw(w;))
= E, ("1 Ezrl(e—m“’; Koy € AN =1IT (1T o1, A) .
Moreover ,/I(x, A) is the canonical image of «,/1,(x, A), since

(5.4) lim 117, (%, A) = lim E(e=Co~; 5. & A, 7, < o)

n- oo N+

= Po(%c, € A, 70 < 00).
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Therefore o, JI(x, A) and /I, (x, A) are represented by means of ﬁ(b, A e
B(0X).) as follows;

(5) Wl D= 1, Dz, dby= 1Tz A),

G.6) ol A= (b, A, db) = hall(x, A).
0x),

Noting the relation

6.7 = oll(5,9)= Pulz, < o) = I(x,(0X)a),

we get

(5.8) e, =0,

> I, =1 if be(X),,
yeX*
=0 if be®X),.

REMARK. Because of the uniqueness of the Laplace transform, the formula

is equivalent to
(5.9) Pte, € A, T <1)= j o) (b, APy = dby o < 1),

which may be proved by the direct calculation. Probabilistically speaking,
the formulas (5.5) and interprete the following circumstances. Consider
the particle whose motion yields to the given Markov process x(#) with right
continuous paths. Such particle will move in accordance with the minimal
process x°%#) having the same {q, I} as x(¢), until it converges to some bound-
ary point b. If b is a passive boundary point, the particle has to take infinite
time before it reaches b, and if » is an exit boundary point, it reaches b after
some finite time. In the latter case, as soon as the particle reaches b, it
returns to the interior X* with the probability distribution ﬁ(b, - ) not
depending on the past movement and starts from scratch in accordance with
the minimal process.

Let L be the operator of the space B,,(X) into the space B((6.X), defined
for u € B(X) by

(5.10) L) = 20)— 3 10, ),

where # is the boundary value of #. To inquire a boundary condition for
Gof to satisfy, we shall rewrite G,f as follows;

(5.11) Gof (1) = G (%) +Eo(e™0G o f (%ey)
= G () + Il G of ()= G () F hull Gof (%) .

Since G{f(x) and holIGof (x) are an x3(¢)-potential and an x3(¢#)-harmonic function
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respectively, the above formula is nothing but the Riesz decomposition of
Gyuf. Therefore the boundary value G:} of G.f satisfies G:}:ﬁGmf i.e.
LG.f=0.

To get all the conditions which determine the generator’s domain ()
.completely, it is convenient to discuss the first instantaneous return process
and the higher order ones separately. So at the remainder of this section we
shall treat this problem in the case of the first instantaneous return process.

THEOREM 5.1. The generator's domain D(®) of the first instantaneous return
process is given by
(5.12) D)= {u; (@) u and Gu e B(X),(8) Lu=0

and (7’) lim (Z)HZMZO} .

PrROOF. Denote the right side of (5.12) by @D((Sj). We have already shown
that = G,f satisfies («) and (#). Let us rewrite G.f as

G.13) Guf () =Eao( [ [ ems ()
= B [ e u)dt) + Ee™ 00G o (o))

= E,( [ " et (rat) + ll 3G (2),

and letting n— oo, we get lim o[I2G.f(x)=0. Therefore G.f<¥(®). Con-

versely take any element # from 2X(®) and put f:(ac——@)u and v =u—Guf.
Since (oc—@)wa:f, v satisfies (a—@®@)p =0, which shows that v is an x%®)-
harmonic function. Moreover » is in @(@) because both # and G,f are in

@(@). Therefore

v="1Ilv= Il = = pliv—>0

n— 00

which shows #=G,f. Thus we have proved &(®) < ).
COROLLARY. The first instantaneous return process is complelely chavac-
tevized by the following factors;

(5.14) (e (2, 9), (D, ) ; %, € X¥,b & (X)) .

6. The boundary conditions for the k-th instantaneous return processes.

In the previous section, we have obtained the three factors {g, I, I} which
determine the first instantaneous return process completely. To obtain all the
factors determining the &-th instantaneous return process, it is necessary to
define the boundaries of higher order besides the boundary which has been
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already introduced. First we shall discuss the second boundary and the second
instantaneous return process in detail, for our procedure is applicable to the
k-th instantaneous return process by induction.

Let x(#) be a second instantaneous return process and ,/I(x, A) = Px., €
A, 7o < ), llx, A)=E(e7*"*; %, € A) (> 0) as was defined in the previous
section. We now consider a new time discrete Markov process!® ., x(f) having
@Il as the one step transition probability. In the same way, the time discrete
Markov process induced by I, is denoted by ,x.(f). The Dynkin generator
@8 (@8a) of the process r(?) (wra(®) is defined by

(6-1) (2)@ =ll—1 ((2)@05 - (2)Hw_[) .

If # is a nonnegative ,x(¢#)-harmonic function, i.e. ,,&u =20, it is xt)-

superharmonic function, because (2)@wu§(2)@~5u:0. Therefore by the x.(f)-
Riesz decomposition, we get

n—o

(6.2) w=lim o %u ‘{—n%(z)ng(_(z)@w%) .

Noting that u = [ Tu = hilu, it is plain to see that # is x°%(¢)-harmonic. Further

# is the canonical image of [T =h.dlu. Hence recalling the formula |(3.4)
we get

(6.3) —w@xu =u— Il =G .
Therefore becomes
(6.4) U= ].im (2)113%“‘“ 2 (2)H3G(2%

n—oo nz0

=1lim lut+a S E. (j:“"“”e-ﬂ'tu(xt)dt)

n-o0 nz0 on
— lim (Z)HZM_{‘QG,%% )
n-roo

where
(%) = Ex<j‘:wze““‘u(xc)dt> :

Noting that G4f satisfies the resolvent equation and using the relation

we can easily prove the following lemma by the similar argument as Lemma
3.1.

LEMMA 6.1. Suppose u a nonnegative x(&)-harmonic function and put
ol =1im 5[l %u. Then we have
n—ro0

(6.6) U (U = (B—a)Ga g = (ﬂ_a)Gé @ -

10) In the definition of the Markov process in Section 1, if we take the discrete
time parameter T'={0,1,2, -+, +c0} for the continuous one, we get the time discrete
Markov process. For detail, refer to [12].
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Let us denote by (X the union of center ¢ and y such that ,,/I(c,y)>0.
Then ,/1(x,y)=0 for every x= X and y & (,,X, because

6.7 0=M1(c,y) = P, < 0| 2, (w3,) = y)

= P, < ) lI(x, ) .
Therefore we can confine the Markov process ,,x(#) on the state (,X, where
the state ¢ is also a center of the confined process ,x(#). Hence we can
construct the Martin boundary &,X, which is called the second boundary.
The K-function corresponding to b < 9,,X is denoted by »K(c, x,b) and the
minimal part of 0, X by (0 X);. The »x(f)-harmonic measure for a Borel

set BC 9»X is denoted by o 4(x, B) where x € ,,X. Moreover for xe (,, X, we
shall define the (,x(#)-harmonic measure as follows;

(6.8) (%, B)= 3 oII(x,9) /My, B) .

yE@X

Then it is clear that any bounded ,x(¢#)-harmonic function over X can be
represented as

6.9) W= wlB)ahls db)=whwils),
@41

where o is uniquely determined except for )k(c, - )-measure 0. If ,K(c, x, b)
is a minimal ,x(¥)-harmonic function and

(610) (Z)Kw(cy X, b) = hm EX (2)]Iz(x: y)(z)K(C’ Y, b) + O 3

noeo YE(g)
b is called the second exit boundary point. The set (9, X), of all second exit
boundary points is independent of «, according to Lemma 6.d. (8¢yX),=
(O X)—(0X), is called the second passive boundary.
It is easy to show that all the analogous results of Sections 3 and 4 hold
without any essential change. For example, denoting the limit of x,,,(w) in
the topology of the second Martin space by x.,-(w), we get

(6.11) Pyte < 00| Xy € (0 X)) =1,

Px(faﬂ =00 1 xraﬂ—- S (a(z)X)p) - 1 .
And

(612) lim Exram(w)(e_arwz) =1 it xfwz—(w) = (a(Z)X)e ’
=0 i %epe-(0) € (0 X)p

holds with P,—1. Moreover any bounded «,x.(¢#)-harmonic function # can be
represented as

(6.13) w(x) = f P @%o(0) 5l X, AD) = (3l T (%)

@>X)e

where ,fi, is the boundary function of u,=1lim /1" and %, B)=
n-—rco

lim X oI5 x, )/(y, B). The analogue of is the following

nooo yeX
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THEOREM 6.1. Let B,(X) be the family of functions u such that (&) u, S
B(X) and (B) Lu=0. Every uc B (X) is w¥ut)-Riesz decomposable and the
potential parvt of (x.f)-Riesz decomposition of u is written in the form Glg,
where g is an element of B(X). Moreover, the boundary function of Xt)-
havmonic part is independent of «.

Rroor. Take any element z from B,,(X) and put g:(a—@)u and »=
#u—Gig. Then v is a bounded x%(#)-harmonic function because Glg satisfies.
g=(a—®)Glg. Since # and Glg belong to B, (X), v belongs also to B(X).
Therefore if ¢ is the boundary value of », we have

(6.14) 0=hob = holv = w,

which means that » is . (¢#)-harmonic. Hence # =Gig+v is the formula of
@*(t)-Riesz decomposition. Next noting the relation

(6.15) laGig(0)| = gl {1—Eule™* ")}

and (6.12), we can easily prove the second statement of our theorem.

Next we denote the set of all bounded Borel functions vanishing except
on (0 X), by B(8X).). Then such function family constitute a Banach
space with the norm |/ = wh(c, - )-ess sup |f(®)] (b € (0w X)e).

DEFINITION 6.1. The boundary function i € B(0x»X),) of Theorem 6.1
is callad the second boundary value of u.

Now, if we define the kernels ,,/[I(x, A) and (/1 .(x, A) by

(616) (s)H(x’ A) = Px(xrw2 c A, Tz < OO) ’
(6.17) o L2, A) = E (e x. 0 € A),

then they are represented by means of (Z)ﬁ(b, A) € B0 X),) as

(6.18) Wl =] wllb, A)wh(s d)=wholl(x 4),

(2>X e

(6.19) Wl A= b A)whals, @) = whacoll(z, A)
2 e

(2>ﬁ(b, - ) is a probability measure over X* for any fixed b € (9, X).. Let L
be the operator of B,(X) into B0, X),) defined by

(6.20) wlLu= <z>ﬁ“<z)ﬁ% ’

where (i is the boundary value of u € B,(X). Then we have
THEOREM 6.2. The generator’s domain ®&) of the second instantaneous
return process is given by

621) D)= u; (@) u,GuecBX), (B) Lu=0, (8) wLu=0
and () lim 124 =0.

n—+x



Applications of Martin boundaries 87

PrOOF. Denote the right side of (6.21) by ®(®). It has been shown in
the previons section that every G,f satisfies («) and (8,). To prove that G,f
satisfies (4,), we shall rewrite G,f as follows:

(6.22) Gaf (%) = Gaf () + Ee™ *Gof (%:42))
= Gaf () + ol aGaf (%)
= Gg (M)t whaelGaf ().
We may consider that the above formula is (,x.(¢)-Riesz decomposition of G,f

and that <2>kw(2>ﬁ Gof is its a.(f)-harmonic part. Therefore (DG:}":Q)ITGJ,

where <2>G:}” is the second boundary value of G,f. Thus we have proved (4,).
To prove that G,f satisfies (7), we shall rewrite G,f as follows;

Tw2
0

(6:23) Guf ) =Eu( [ * e ()dt) + Bl G uf (3202,

=E({ ;“’Z”e*“y(xgdt) o lT2Gaf ().

Letting #—oco in the above formula, we get lim ,,/13G.f =0, because
N0

T,

(6.24) tim B, e trCade) = B e (addt) = Gaf ()

by virtue of the definition of the second instantaneous return process. Con-
versely for any given # from @), put f =(a—®wu and v =u—G,f, then » is
x%(#)-harmonic and belongs to ®@). Therefore

(6.25) 0 = B = Il = I g0 -
Hence » can be rewritten in

(2-26) V= pNad = s <z>ﬁ V=Ml 0.
Therefore

(6.27) V= (3)]]32) — 0 B

7 —r oo

which shows c35((_85) C ¥(®). Thus we have accomplished the proof of Theorem
6.2.

COROLLARY. The second instantaneous return process is completely charac-
terized by the factors

(228)  {qu, I (x, ), (b, »), (Y, 3); %,y € X*,b € (0X), and b’ € (0 X)e} -

REMARK. In the previous section, although we have given the generetor’s
domain (@) of the first instantaneous return process, we shall here giveJits
another form using the second boundary, i.e.

(6.29) NG) = {u; (@) u, Gu = BX), (8,) Lu=0 and (B,) i =0} .
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For, it is easily shown that the above (8,) is equivalent to the third condition

(r) of

Quite in the same way we can introduce the i-tk boundary (04, X) and the
i-th exit boundary (04;,X).. The kernel ¢uplI(x, A)= Px.,i € A, 741 < o0) and
aendl 2, A)= E(e~“v"; x. i = A) can be represented by means of the i-th exit
boundary as

(6.30) aollln D= ollb, Dehls,db),

@
(6:31) wolluls D= ol Dhdsdb).
@ e

Let Bu(X)={u; (@) u, Gu s B(X), and (8)) wLu=0 (i=1,2,--,k—1)} where
arLu(b) = i (b)— meﬁ(b,y)%(y) (G=1,2,.--,k—1) and ;@ is the {-th boundary
e
value of #.' Then we can define the k-th boundary value 4,4 of # for every
u € B (X) by induction. If 4L is the operator defined for =< By(X) as
o La(b) = fi— Z}X(,c)ﬁ(b, u(y), then the following theorem will hold.
ye

THEOREM 6.3. The generator’s domain S8) of the k-th instantaneous veturn
process is given by

632 D®=| u; (@) GusBX),B)oLu=0 (=1,2,,k |
and (r) li_I:n Il G =0

COROLLARY. The k-th instantaneous veturn process is completely charac-
terized by the following factors

(633) {Qm H(x7 * )! ﬁ(br * )) Tty (i)ﬁ(biy : ): Tty (k)ﬁ<bk,y : );
xe X* and b; = (0 ;,X)e}

7. The construction of instantaneous return processes.

From Section 1 to 6, we have studied the Markov processes with right
continuous paths when they exist, and shown that the generator’s domain of
the k-th instantaneous return process is uniquely determined by (6.33). In
this section we shall solve the construction problem of instantaneous return
processes which is formulated as follows:

THEOREM 7.1.22  Let x™(t) be the k-th instantaneous return process whose
generator's domain is given by (6.32) and (OgsnX)e the set of all the (k-+1)th
exit boundary points and giphdx, B), the a-ovder harmonic wmeasuve fov the
(B+1)-th exit boundary. Take an arbitrary measurable function (kﬂ)ﬁ(b, y) defined

11) Th~e first boundary value (»% is the boundary value # defined in Section 4, and
oL and )/ denote L and 7 respectively.
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o (OganX)e X X* satisfying

@1 wollBNZ0, B anll®n)=1.

Then we can construct the (k-+1)-th instantaneous return process whose generator’s
domain is

72) D®=[ u;@u,GueBX),(B)wlu=0 G=1,2, k), (Bes) }

Lt = G~ =0 and (7)lim gl %u =10
n-—roo

where et is the kB-+1-th boundary value of u and

a2, 9) = _f 1 (k+1)ﬁ(b: ) k%, dB) .

@Ok+1X)e

For simplicity we shall discuss the case £=0; the proof goes with no
essential change for every k.

CONSTRUCTION. Let M°={X*, W, By, P}; x= X*} be the minimal process
with the pair {g,II} and satisfy the condition (P.5), and let (8X), (8X). and
(0X), be the Martin boundary, its exit part and its passive part respectively.
ﬁ(b, ¥) is an arbitrary measurable function on (0X).X X* satisfying Next
we consider an abstruct probability field (W, By, P) over which the following
family of stochastic processes and random variables are defined. (A) ,Y®(@)
(x= X*,t=[0,+o00] and 1=0,1,2,--+) is right continuous with respect to ¢ for
any fixed w,x and 7, and is subject to the following probability measure (not
depending on 7)

(7.3) P@w; ,Y®W) e B)=PYB) for any Be By,

(B) Z9W) (b= (@X)\Y{o},i=1,2,---) are random variables which are meas-
urable with respect to (b, W), and satisfy

(74) Is(iZ O@) e A)= )74 (b, A) if »=0X),,
= 8(00, A) if be@X),\Y{x},

where d(co, -) is the unit measure at co. (C) ,Y{®(@) and ,ZPW) (x <= X*,
b (@X)U {0}, and 1=0,1,---, j=1,2,---) are mutually independent.
We shall define the jumping times for the process ;Y (W) as

12) It is well known (e.g. [1]) that for any pair {g, IT} satisfying (1.10) and
we can construct the minimal process x°(#) whose generator’s domain is given by

D(®) = [u; (a)u, Gu = g(1—I)ucB(X) and (8) lim I7,"% =0},
n -0
where I1,(x, - ) =qz/(a+qz)-II(x,-). Further the condition (P.5) is equivalent to
Zéoﬂﬂ(c, ¥)agy~1>0 for any y. In this theorem, we assume that the given instantaneous

return process x*(¢) satisfies this condition.
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(7.5) aP@) =inf {t; , Y, 2W) = ., YOW)},
Tan(@ =inf {5V 8, (0) # oY (0D} 4475 (0) (n>1),

n—roco
A new stochastic process X®(W) is defined as

76  XP=Yo if 0=<dP =g,

() (}1(:”)) v () ; @)
YA VA where X{® = lim X,
(x)
nIrw

7 @) (x)

Z . Z

—_nYt(_T(g;x)) it o) =< ey = et ar )
n

(@) ~
Z,gﬁ’lzn“Z( n71) where X® = lim X©®

tTr‘(”:r()nH)

=oo if (=B =1limz§.

n— oo

Then XMW0) =(X2@); t = [0, +o0]) is also a right continuous function. Let
W and By be the space of paths and its Borel field defined in Section 1. Put

(7.7) PUB)=PW; X®W) = B) for BBy,

then M= (X, W, %8y, P,; x= X) is the first instantaneous return process whose
generator’s domain is given by

78)  VE)=| u; (@) u,Euc B, (B) i1~ 3 (b, y)u(y)=0 and
(7) 1im T3 =0

b

where # is the boundary value of # and I .(x, y):f(aX) I1(b, )ha(x, db).

It is clear that M satisfies the conditions (P.1), (P.2) and P r,2=0.)=1
for every x= X. Moreover, since ;Y and ;Z® are independent, we have

(7.9 Po(%ey € A, 7o < 00)= P(Z® € A, 2§’ < o0)
:J' Pz® e AP(X® < db) :‘f b, Aix, db)= hil(x, A).
0X), @x),

Therefore if we prove that M satisfies (P.3) i.e. the Markov property, our
process M is the first instantaneous return (Markov) process having @) of
(7.8) as its generator’s domain. To prove that our process M satisfies the
Markov property, it is enough to show for every 0=¢ <f£, < - <tn V1, V2’
LY E X

(7.10) Py(A,) = P, :y1)Py1(xt2-—z1 =92+ Py s(Fty—timy = ) »

where A, ={w; x, =1, -+, X, =y} (see K. [td [7]). We shall prove the above
relation following the technique due to K.L. Chung [0].
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LEMMA 7.1. The following formulae hold.
(711) P4y ot E a1 < Toqes Tom = In < Tom+n)
= P41 Tor = b1 < Toan)
X Py iiptny = In'3 Tom—n = tn—ln-1 < Tom-1+p) <m),
(7.12)  PuAn; Tom = taey <t < Totmen)
= P(Au-1; Tom = taey < Tomsn)
X Pypei(Kitpmtny = Y05 T > tn—ln-1) -

PrOOF. We shall only prove (7.11). The proof of (7.12) is similar and
simpler than that of (7.11). First we shall show the following formula.

(7.13) Px(An—1 3 Tor = tpey < Twarn Xewa+n — Vs Tou+n = %)
= .z‘(An—l Tl = lp-1 < Tw(l+1))Pyn 1(Tw S u—tp_1, Xrp =y).
Put AL = {; X@W@) =y, -, XOW@)=9,} and ;Y = lim , Y, then the left

T . (1‘)
member of (7.13) is equal to

n=3

@ — ;
21 PAR ;5 8, <) St <tney <5 XSE&«) =5, T8y = %)
i=

w(l+1)

n=-3 t144
=3 3 ’P({Am ti <<, X G =275 < ds)

i=1z26X*
(2
N {ZYL(;)—s:yj G+1=7<m) l+1Z(HIY ):y, TS S u—s})

=3 3 f PR 1< o8, Xy = 2,7 € d)

~ > (2)
X P(ZY5<j)“3_yj (+1=i<m) L+1Z(H1Y ):y, T8 Z u—s)

n-3 i+l o~
=3 [P <2, X0 =278 & ds)
i=1z26X* 0

X |  POYE =y, G+1=]<n); 28 Su—s, Y Od)ID,5).

0X),

Using the Markov property of ;Y,®, the above member is

n—3

ti ~
S 3 [P <o, X Gy =278 € d9P( Y =y; (1= <n))

=1 z€X*

X j By < u—t,_,, , Fon-v < d)T b, v) .
0X),
Noting

(7.14) j Pleyn=v < u—t,_,, Vw0 < )b, y)

0x),

Pyn—l(fw é %_tn-—ly X :y)
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and retracing our step, we have the formula

Here we shall define the stochastic process ;X/®(W) having the same
probability law as X/ (@) by

(7.15) X =Y i 0=t <2
T (@) ~
X .
A :iZ(H ) where X = lim X®
(z)
sz,Tw

(2"

— (:257)
. Z
3 () (x) — (x)
@~+nY&j.,&) it rdn =1 <it8trn = Tt naity

1 Wn
T@ ,Z(i};‘?} h _X’(m) = i B as)
ten+1 n+ where i+l — 1m ng
¢l irl(ux&l +1)
=oo if ¢> ;8 =1lim ;&)

w2 — iTon »

Then the left member of (7.11) is equal to

fod
@) o (2 ( (x) — (X) — ( (
2 P(An—l ’ Tafl é 2"n—l < T&)l+l): X.;Z(‘ag:()Hl)—‘y: Xt:) = Yns Tufrfq, é tn < rwx()m-t-l))

ySX*
X g ) ( @ )
= 2] PUAR ;o) Sty <ol X% =9, T8y € du}
yeX*vd gy g Twd+1)
W — ) )
N A X = Yy 1117810 = =10 < 1,78 })
5 (@) (2 @ (@ ()
= 2] f P{AR; w8 =ty <28y X,(’x) =y, T80+0 € du})
ysX*d 4 @A+1)

23 - @) )
X P(L+1iny—u = Vs 1417 Som—t-1 = L= % < 141THon—10) «

Substituting to the last member, it becomes

tn

Px(An—l » Twl § tn—l < Tw(l+1)) * ng* j P(lragyn_n"i"tn—l = d%, L*X—L(g;(}/_nlin:y)

tp—-1
D @ ) W)
X P X = Yy 101T&-1 = b= 2 < 11 Tm-0)
= P Ap1; Tt = tn-1 < Twa+n)

~n

Wn-1 — W — (Yn—1 )

X ZX*P(ZX oty =0, 11X b=y e =D == Yy 1TV 101 Tt
ye ]

_ - ¢
=tp—tpy <"V 4101 T Hon-) -

Wn-1)
Yn—1) — (yn—1) (Lzl ) — (Yn—1)
If we put Zf» = XY0,, lﬂXt SR ,.(yn-n*lenftn—l and
[A) nTin—1"1 g
z2Un—1)

;r&,””—l’ﬁﬂrw(m_,_l,) =tdr-1) hold by definition. Hence the last member is

. D¢ Yn-1 — yn~1) (yn-1)
Px<An—1 y Twl é tn—1 < Tw(l+1))P(l«Xcgfznlzl =Y lfalil(?n—lz) é tn"“tn—l < Twy(?n—llﬂ) .

Thus we have proved the formula (7.11).

We now return to the proof of the Markov property. Using [Lemma 7.1l
we have
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(716) Px<An) - ZE OPx(An y Twl é tn—l < Tot+1) Tam é tn < Z'co(m+1))
MmEZnZ
OPx(An—l 3 Tom = tae1 < Tomen) - Pyn,—l(xtn—tn_l =Yy -1 < Tw)

+ E OPx<An~1 S Tal = bpa1 < Tw(L+1))Pyn—1<xtn—zn_1 =Ynr Tom-0 = fn—tn—1 < z'w(m-—l-x—n)

=2 Px(An—l T =1 < Ta)(l+1))Pyn_1(xtn-—tn-1 =)

= x(An—l)Pyn—1(an—tn_1 =yn).

Repeating our argument, we get
Thus we have proved for the case £=0.

8. Example:

I. Let X=1{0,1,2,3,---} and x%¢) be the minimal process over X satisfying

@.1) I0D=H0,2= 5, [OCn2m+2)=1,
I@n—1,20)=ICn—12n+1)= 5 (=12
8.2) %=1, @G@u.=2" gu=2" (=1L2-).
In this process, 0 is the unique center and K-function K(0,x,y) is given by
8.3 K(0,2m,2n—1)=0 if m=1.
KQ©,2m,2n)=( 0 if n<m,
K(@,2m—1,2n)=( 0 if n<mm=1),
1_2m—(n+1) .
q_9-@in otherwise .
K(O, 2m—1,2n—~1):{ 0 if n<m,
2m if nz=zm.

Obviously {2z} and {2»n—1} are two fundamental sequences which are not
equivalent to each other. Denote the boundary points determined by {2}
and {2»—1} by b, and b,. Then

(8.4) KQ©,x,b,)=1.
K©O,x,0,)=r 0 if x is even,
1 if xis 0,
2m if x=2m—1.

From the definition of réduite, we get Z(x,5,)=1 and #(x,b,)=0. Now, oper-
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ating II? to K(0, x, b,), we get

m m+n—1
(85) HZK(O: 2m, bl): aizm ot ai2m+n—-l = a-1
11 (1+ )

Since E(T?W < oo implies that kﬁo (1+7ﬁ7) < o0, K0, 2m, b,) > 0 and there-
fore b, is an exit boundary point. Next operating I7% to K(0, x, b,), we get
n-1 -k
(8.6) 12K (0, 0, bz):(%~>n 32?2__76 N 1 0,
[(1+a25 "
k=0

so that K,0,0,b,)=0, namely, b, is a passive boundary point. Since A(x,b,)=1,
we get Pyr, < o0)=h(x,b,)=1.
REMARK. A function s,(x) defined by

8.7 sa4(x) = Py(lim (%, € A))

is called a sojourn solution unless it is identically zero (see W. Feller [4)).
the above example, constant 1 is the only one sojourn solution because every
bounded x°(f)-harmonic function is constant. Therefore the Feller boundary
consists of one point. According to the notation of [5], the canonical image
of X,,(x):liﬂrg II?1(x) is denoted by X(x). By the similar calculation as in the
proof of we get X (x)=E (e=**)>0 for some x. Hence the
boundary point b, is exit in the sense of [5].

II. A simple example of the first instantaneous return process is this:
Let x°%¢) be an arbitrary minimal Markov process with {g, II} satisfying (P.5)
and (0X), be its exit boundary points. f](b,y) is a probability measure on X*
which does not depend on any b =(90X),. Then as in the previous section we
can construct the first instantaneous return porcess x°%¢) by giving {gq, H,ﬁ}.
Since this process satisfies P(r,2=o0)=1 (see Appendix), we need not consider
any instantaneous return process of higher than first order. This process was

treated in [1].
III. Let x°) be an arbitrary minimal Markov process with {g, I}

satisfying (P.5), and (8X), be its exit boundary. Assume that II(b, - ) coin-
cides with each another for every b= B, and b=(0X).—B,, and ﬁ(b, o0)=1
for b €(0X),—B,. Moreover we change notations as follows: 17( . ):ﬁ(b, <)

for b By, H(D=p1r, a)=0ntDI), X=hdxB) and A=
Za(y)G z(y,(y)—Z‘,a(y)G (,%). Then from of Appendix the

Green kernel of the first instantaneous return process having the factors
{¢. 1,1} is
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B8 Curi(® =Gt )+ X)) — X 3 [l(b,2 )G )
1- 5 b, 9Xa) 7

s Ady)
= GYx, y)+Xd'(x) w;/n-{-— ZXC((Z)G. —X(2)) °

This process also satisfies the condition P r.e=0o0)=1. The above formula

(8.8) has been obtained in analytically. But the definition of the instanta-

neous return process of [5] is a little wider than ours. The case 3 a(y)=o0
ysX

is not contained in our definition.

Although Examples II and III satisfy the condition Pz, =c0)=1, there
exists surely a process such that Pz, < o0)>0 holds. In fact.

IV. A modification of dyadic branching scheme. Let X={c,0,1,00,01,10,
11,---,9,80,61, --- where 0 =a, --- ax (¢; =0 or 1)}, and x°%) be the minimal pro-

cess satisfying 11(8,00) =11(5,01) = éA , ge=1and ¢ =2 (if §=a,---a;). Accord-

ing to its Martin boundary (6X) is the countable infinite direct product
of the compact Hausdorff space consisting of two points 0 and 1. Every point
of 80X is denoted by b=10,b, - (b;=0o0r 1). We shall make such & coorrespond

to the real value <%+ +fg$ﬁ+ ) But, since y =5, -+ b,1000 --- and »’ =

b, --- b,0111 --- are different points in (0X), we shall in such case make & cor-

respond to (%1——1— +~gﬁ~+72—nlw>+ and b’ to (%—l— —}-%;—-—{—2—721;)—-. If

b=0b, by, K(c,%b) is

(8.10) K(c,x,b)=2* if x=0b,--0bs,

=0  otherwise.

Moreover, by the similar calculation as Example I, we get
1 _ 1

tim T1 (14 55) M1 50)

(8.11) Kc,e,b)= >0.
Therefore (6X)=(0X),. Next, we shall define ﬁ(b,y) as follows;

(8.12) o, a,0)=1 if be E?TZJF,Q’%_]

where a;=1 for 1=<isn.

Let x(¢) denote the first instantaneous return process corresponding to the
above {g,II,II}. We have
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@13) w(e.[Ztt Tt 1) = o

h(al an—-lox 2”2;‘2 +, 2”2—;1 —‘:D =1 if (lizl for 1 = zén—l y

and

@10 (s [ L0t Tt )=
H( 5)
272 2n—1 ¢ .
ha( [ S5t P 1) =0, i s=a a0 @=D).
The kernels /1 and /I, become
(8.15) oll(c,y)=2"" if y=a, - a,-,0 (&;=1),

>0, if x=a, - a,-,0 (&;=1),

=0 otherwise.
(%, y)=1 if x=a,a,..0, y=a,- a0 (a;,=1).
(8.16) Il (x,3)= 1 if x=a, a,-.0 and y=gqa, - 2,0 (&;=1),
1 (13
=0 otherwise.

Therefore the set (,X which is covered with the center ¢ with respect to /I
is {c,ay -+ a,0; n=1,2,---, and @;=1}. The corresponding ,,K-function is
@.17) @K, x,y)=1 it z=y,

=0 if x>y.

Therefore {a; - @,0} (n=1,2,---) is the unique fundamental sequence and the
corresponding second boundary is one point ,b. Moreover,

(8.18) oK, x,b0)=1 for all xe X.
Operating ,[I7 to K, we get
1
®19) 3 wlE10,)KEy b=
X —
k= Ier+1(1+ 2k )
1 1
=- >0
m o k—1 oo o m I 2 k ’
H(+5) I (1g0) T (1+50)

because f)gf~<oo Therefore K,(c, 10, ,»00) >0, that is, (b is the second

k=1
exit boundary point. Further in this case

(8-18) Pz < 00) = (2>/1(x,'_(6(2)X )e) = (%, b)) = 1.

Hence we can construct the second instantaneous return process by giving an
arbitrary measure (b, -) on X*,. But since the second exit boundary is
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one point, all the second instantaneous return processes x2%(¢) satisfy P,(ty:=
c0)=1 for any choice of /f(b, - )*». But if we choose II(b, - ) suitably, the
second exit boundary has infinitely many points and moreover if the (2)17 b, - )s
are suitably chosen, the third exit boundary points will be not void. Thus,
in such case, we shall be able to construct the third instantaneous return
processes actually.

Appendix. On the processes satisfying the condition P,(t r+1=o0)=1.

Let x*(#) be the Z-th instantaneous return process with the factors
{q,II,ﬁ,n-,(k)ﬁ}. In general, since P z.r+1=c0)<1 or equivalently since
arh(c, OuwrpX)e) > 0,1 we can construct infinitely many (k-+1)-th instantaneous
return processes with the same {q, 7, ﬁ,---,(kﬁ}. In other words, {gq, 1,1,
,(k)ﬁ} do not determine the Markov process with right continuous paths,
though these factor determine the k-th instantaneous return process uniquely.
But if the relation P/ze+1=0o0)=1 is satisfied, our process x*(¢) is maximal
in the sense that if x(#) is a Markov process with right continuous paths
having the same {¢, /1, IT, -, wll}, x(?) is nothing but x*¢). In this section
we shall give some useful conditions under which Pz, e+1 = o)=1 holds.

Let B{(8»X),) be the family of all the bounded Borel functions over
OX\J {co} vanishing except for (8 X).. We shall define the operator (Ve
from B0y X),) into itself as

@ &) me(b) :yzx(mﬁ(b’ y)(k)lld/f(y) ) for }75 B(OpX)e) -
Then
) sl 13(x, ) = j' aohalx, db)as Va~tawll(b, y)

(O)X) e

= wlaw VE T uwll(x,y),

where , V2! is the iterated operator of 4, V,. Particularly, (8,,X)., (Dﬁ, Wwha
and «,V, express (0X)., 17, h, and V, respectively.

13) See Appendix.
14) It is easy to show that analogously to or [(6.13), the relations

Pop(tpre1 < oo Xryppi~ € QasnX)e) =1,
Px’<ra)k+l =00 [xka+1— = (a(k+1)X)p) =1
hold for any %, where xr ;,,—(w) is lim Fr,x, (W) With respect to the canonical Martin

space of k-th order. Therefore *

Pyt i1 < 00) = ek (% (0g+pX)e) ’—“f( x+0E (¢, %, b) g+ P (c, db)

0 +1%e
which shows the equivalence of Py(r 441 =c0)=1 (for all x&X) and A(c, (dgrnX),) = 0.
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THEOREM 1. The following conditions are equivalent.

(i) Pflrorri=o0)=1 Jor every x € X.

(i) lim gell5(x, X*)=0,

(iii) lim 4, V21(»)=0.

(iv) (I—wV.)f =4 has at most one solution / for any §< B(BuwX).).
ProoF. When P (ror=00)=1 for all x< X, this theorem is trivial. So

we assume Py (tor < c0) >0 for some x, which is equivalent to 4.,/7.(c, X*)> 0.
Since E (e~ ok =1im . [1%(x, X*), the equivalence of (i) and (ii) is clear.

(ii) & (iii). From (2), we have
3) Hm gy I T3(x, X*) = 7121_'12 ®ha i Ve 1(%) = gohta [71!1_'1'2 a Ve l](x).

M- 0

Therefore lim 4, V2 11(b)=0 'is equivalent to lim ., /I%x, X*)=0. {1i)— (iv).

n—-roe n

If (I—uVa)/ =& has two solutions 7; and 7, for some &< B(BuyX)o), F =Fi—TIe
satisfies (J—aVa)F=0, i.e,

@ 1F1=lawVa/l= = =lwVi/I= ] (k)VZl_n::O,

(iv) — (iii). Since lim 4, V21(d) satisfies (J—, V)lim 4, V21 =0, lim (, V21 =0.

COROLLARY. If the norm of @ Va is smaller than 1, Ptw+1=co)=1 holds
for every x<= X*.

ProoOF. By the general theory of linear operator, we have 4 Vzl(h)=
Vel =lwVal® Letting n—oo, we get lim , V31 =0.

According to the above theorem, we may define the inverse operator
T—w V)™ of I—gV,) for the range of (/—uVa.), if the process satisfies
Pty e+1=c0)=1. Further, if we recall the boundary operator (,L, we have

®) (wL (k)ha&)f = (Ic)L((k)/lwf )=U—w Vw)f .

Therefore the inverse operator (L iwhe)™ of wl wha 1S U—a Vae) ™
THEOREM 2. When Plcy+1=o0)=1 holds, G.f is given by

(6) Guf () = GE Y () ashall — o Vi) L o IGE 1 (%)
oY
) Gof (%) = GE Y ()= ahal vl i) an LGS (1) 12

15) Particularly if P;(ry2 =o)=1 holds, this formula is

Guf (%) = G (%) —hy(Lhy) LGOS .
We have an interest in expressing G,f in this form. The Green function of the other
type of countable Markov processes, e.g. the reflecting barrier process is expected to

be denoted in the above form by introducing a suitable boundary operator L. In
connection with the multidmensional diffusion process, see T. Ueno [10].
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where

® Gitf ()= Eq( |

Tk

e~ f (xt)dt) .

0

Morveover, the generator's domain ) is

€)) VG) = {u; (@) u, Gu = ¥(X) and (B) wLu=0 (i=1,2,,k)} .
Proor. Using the strong Markov property, we have

Twk(n+1)

Twk

ao Cuf =G+ T B[ e (ar)
=G+ 3l IEGE ()
= GG )+ whal Eo(k) Vi IG5 ().

Since 3 4, V2awIIGE Y is one and only one solution of (I—aVad= wllG5Y,
nz0
we have EUOVZI?G’&“V =@ V)™ wlIGE . Hence we get the formula (6).
nz0

To obtain (7), it is enough to show —u LG4 f = IIG5Yf. Since G&Yf is an
xE-Y()-potential, its boundary value is zero. Therefore

an wLGEf(0)=0= 3 awll(h, )G ()= —wllGE 1)

Thus we have proved the first statement of this theorem. In
we have already given the generator’s domain of the k-th instantaneous return
process. But in this case, since lim (., /1% x, X*)=0, every function » € B(X)
satisfies -

a2 lim | oo lT300 ]| S 1im | o1, X)=0.

‘Therefore we need not the condition () in (6.32). Thus we have accomplished
the proof of this theorem.

Here we shall list several sufficient conditions for P,(z x+1=co)=1 to hold,
which we can easily check up.

THEOREM 3. If any one of the following conditions holds, then P(Tye+1= 00)
=1 for every x= X.

(1) The k-th exit boundary (OuX). ave divided into finitely many disjoint
Borel sets By, -, B, Such that mﬁ(b, A) is independent of b so long as b runs
over each By.

(ii) inf (b, o) > 0.

b€ @zyX),

(iii) There exists a finite set A such that Pfx., < A)=0.
PrROOF. (i) By the definition of operator «,V,, we have

(13) wValo) =2 (k)ﬁ(b: ) aohal(y) :yeEX(k)ﬁ(b’ NE (e~ ")

yeX
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Therefore V,1(0) <1 for every fixed ». Since «,V,1(b) is a finitely valued
function, we get |Vl = r(gla);:r a Vel(d) <1. Therefore by the
b= O e

of [Theorem 1, Py(z,e+1=0c0)=1. (ii) Since
(14 | S, »]=1= _inf Ilp,00)<1

E@X)e

we get [l Vall = 3 wlI6, Mal = 1| S wfl(e, )] <1 (iif) Noting Plrey = 4

Ex
= whall(c, A, @b, AY=0 for every b e (9uX). Put KZE??AX E, (e~ %),
then K <1 and

(15) laoVal =K 3 10,0 =K<1.

REMARK. Probabilistically speacking, (k)ﬁ(b, co) is the probability that
the particle is absorbed to oo as soon as it reached the k-th exit boundary
point b. The condition (ii) of the above theorem shows that the probability
of being absorbed is uniformly positive with respect to 5. If we take k=1
in (i), it will be clear that Examples II and III of Section 8 satisfy
Pz,2=00)=1. Similarly, if we consider k=2, we see easily that Example
IV of previous section satisfies Pz, —o0)=1.
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