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1. Preliminaries.

W. Kaplan [1] defined a close-to-convex function for $|z|<1$ as follows.
Let $f(z)$ be analytic for $|z|<1$ . Then $f(z)$ is close-to-convex for $|z|<1$ ,

if there exists a convex and schlicht function $\phi(z)$ for $|z|<1$ , such that
$f^{\prime}(z)/\phi^{\prime}(z)$ has positive real part for $|z|<1$ . Furthermore he showed that $f(z)$

is close-to-convex if and only if

(1) $\int_{\theta_{1}^{\theta_{z}}}\mathfrak{R}(1+z\frac{f^{\prime\prime}(z)}{f(z)})d\theta>-\pi$ ,

where $\theta_{1}<\theta_{2},$ $z=re^{i\theta}$ and $r<1$ .
Lately T. Umezawa [2] obtained some criteria for univalence as follows.
Let $w=f(z)$ be regular in a simply connected closed region $D_{z}$ whose

boundary $\Gamma_{z}$ consists of a regular curve and suppose $f^{\prime}(z)\neq 0$ on $\Gamma_{z}$ . If there
holds one of the following conditions:

(i) For arbitrary arcs $C_{z}$ on $\Gamma_{z}$

(2) $\int_{c_{z}}d\arg df(z)>-\pi$ and $\int_{\Gamma_{z}}d\arg df(z)=2\pi$ ,

(ii) For arbitrary arcs $C_{z}$ on $\Gamma_{z}$

$\int_{c_{z}}d\arg df(z)<3\pi$ ,

then $f(z)$ is univalent in $D_{z}$ .
As M. O. Reade [3] specified, above two criteria (1) and (2) are essentially

equivalent to each other. In this paper we show some generalization of these
criteria and some extension concerning p-valent functions.

2. Main criterion.

We can generalize above criteria for univalence as follows [4].

MAIN CRITERION. Let $w=f(z)$ be regular on a simply connected closed
domain $D_{z}$, whose boundary $C_{z}$ consists of a regular curve and suppose $f^{\prime}(z)\neq 0$

on $C_{z}$ . If there holds the following condition for a suitable real function $\varphi(w)$,

which is a single-valued and differentiable function of $w$, and for a suitable real
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constant $k$ ,

(3) $\int_{c_{z}}d\arg df(z)=2\pi$ $z\in C_{z}$

and

(4) $\int_{c_{z^{\prime}}}[d\arg df(z)+kd\varphi(f(z))]>-\pi$ $z\in C_{z^{\prime}}$ ,

where $C_{z^{\prime}}$ is an arbitrary arc on $C_{z}$ and the integration is taken in the positive
direction with respect to $D_{z}$ , then $f(z)$ is univalent in $D_{z}$ .

The inequality (4) has the following geometrical meaning. Let $L_{t}$ be the
level curve of $\varphi(w)$ for $\varphi(w)=t$ on w-plane, and $w_{1}$ and $w_{2}$ be the intersections
of $L_{t}$ and $C_{w}$ , where $C_{w}$ means the map of $C_{z}$ . Then the argument of the
tangent of $C_{w}$ at $w_{2}$ never drops to a value $\pi$ radians below the previous value
at $w_{1}$ .

3. The case in which $\varphi(f(z))=\arg f(z)$ .
For $\varphi(f(z))$ we may use various real functions. For example we can put

$\varphi(f(z))=\mathfrak{R}f(z)$ or $\varphi(f(z))=s^{\alpha}f(z)$ or more generally $\varphi(f(z))=s^{\alpha}(e^{i\omega}f(z))[4]$ . In
this paper we show some results obtained in the case in which $\varphi(f(z))=\arg f(z)$ .

LEMMA 1. Let us denote by $D_{z}$ a simply connected closed domain including

$z=0$ in it and by $C_{z}$ the boundaary of $D_{z}$ . Let $w=f(z)=z+$$\sum_{),n=-}^{\infty}a_{n}z^{n}$ be regular

on $D_{t}$ and $f(z)\neq 0(z\neq 0),$ $f^{\prime}(z)\neq 0$ on $D_{z}$ . If $\ell c=f(z)$ is multivalent for $D_{z}$ , then
$C_{z}$ has at least one arc $C_{z^{\prime}}$ such that both

(5) $\int_{C_{z}^{\prime}}d\arg df(z)\leqq-\pi$

and

(6) $\int_{C_{z}^{\prime}}d\arg f(z)=0$ $z\in C_{z^{f}}$

hold.
PROOF. Let $z=\phi(\zeta)$ be the univalent regular function which maps the

unit circle $|\zeta|\leqq 1$ onto $D_{z}$ and suppose $\phi(0)=0$ . Let us denote by $L_{\approx}(\rho)$ the
map of $|\zeta|=\rho$ under $z=\phi(\zeta)$ , by $L_{u},(\rho)$ the map of $L_{z}(\rho)$ under $w=f(z)$ and
by $D_{w}(\rho)$ the region bounded by $L_{w}(\rho)$ . We remark that, since $f^{\prime}(z)$ never
vanishes, for arbitrary $\rho_{1}$ and $\rho_{2}(\rho_{1}<\rho_{2})D_{w}(\rho_{2})$ contains $D_{w}(\rho_{1})$ entirely in it.

Now we observe that $\rho$ increases monotonously from $0$ to 1. When $\rho$ is
sufficiently small, it is clear that $D_{w}(\rho)$ is univalent containing $w=0$ in it.
Let $\rho_{0}$ be such a radius that $D_{w}(\rho)$ is univalent for $0<\rho<\rho_{0}$ and $D_{w}(\rho)$ is
not univalent for $\rho_{0}<\rho$ . For such $\rho_{0},$

$D_{w}(\rho_{0})$ has at least one self-touching
point. Let $w_{0}=f(z_{1})=f(z_{2})$ be such a point and for any $z^{\prime}$ and $z^{\prime\prime}(\arg\phi^{-1}(z_{1})$

$<\arg\phi^{-1}(z^{\prime})<\arg\phi^{-1}(\sim>^{\gamma\prime})<\arg\phi^{-1}(z_{2}))$ suppose $f(z^{\prime})\neq f(z^{\prime\prime})$ on $L_{c\iota},(\rho_{t)})$ . On the
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loop $L_{w}^{\prime}(\rho_{0})$ , the partial arc of $L_{w}(\rho_{0})$ bounded by $f(z_{1})$ and $f(z_{2})$ , zv moves
from $f(z_{1})$ to $f(z_{2})$ with a clock-wise direction when $z$ moves from $z_{1}$ to $z_{2}$ on
$L_{z}(\rho_{0})$ . Here we remark that the loop $L_{w}^{\prime}(\rho_{0})$ is simple and the inner region
$\Delta_{w}^{\prime}(\rho_{0})$ , bounded by $L_{w}^{\prime}(\rho_{0})$ , does not contain $w=0$ in it. From this we have

$\int_{L_{z}^{\prime}(\rho_{0})}d\arg df(z)=-\pi$

and

$\int_{L_{z}^{\prime}(\rho_{0})}d\arg f(z)=0$ $z\in L_{z}^{\prime}(\rho_{J})$ ,

where $L_{z}^{\prime}(\rho_{0})$ is the map of $L_{w}^{\prime}(\rho_{0})$ .
When $\rho$ tends to 1 exceeding $\rho_{0}$ , the region $\Delta_{\omega}^{\prime}(\rho)$ may reduce with the

direction of the positive normal of $L_{w}(\rho)$ and some parts of $L_{w}^{\prime}(\rho)$ may self-
overlap, but $\Delta_{w}^{\prime}(\rho)$ cannot reduce to a point in accordance with $f^{\prime}(z)\neq 0$ for
$z\in D_{z}$ . Hence, there should finally remain at least one simple loop $C^{\prime}(w)$ in
$\Delta_{w}^{\prime}(\rho_{0})$ , which has a clock-wise encircling direction and clearly does not con-
tain $w=0$ inside it. Denoting by $C^{\prime}(z)$ the map of $C^{\prime}(w)$ , we have (5) and (6)

for such $C^{\prime}(z)$ .
From Main Criterion and Lemma 1 we have following theorem immediately.
THEOREM 1. Let us denote by $D_{z}$ a simply connected closed domain including

$z=0$ in it and by $C_{z}$ the boundary of $D_{z}$ . Let $w=f(z)=z+\sum_{n=2}^{\infty}a_{n}z^{n}$ be regular

on $D_{z}$ and $f(z)\neq 0(z\neq 0),$ $f^{\prime}(z)\neq 0$ on $D_{z}$ . If there holds for a suitable real
constant $k$

$\int_{c_{z^{\prime}}}[d\arg df(z)+kd\arg f(z)]>-\pi$ $z\in C_{z^{\prime}}$ ,

$\iota chereC_{z^{\prime}}$ is an arbitrary arc on $C_{z}$ , then $f(z)$ is univalent on $D_{z}$ .
REMARK 1. In this theorem $k$ has to satisfy $k>-\frac{3}{2}$ , because for $C_{z}$ we

have

$\int_{c_{z}}[d\arg df(z)+hd\arg f(z)]=2\pi(1+k)>-\pi$ .

REMARK 2. In this theorem we may modify above inequality as follows;

$\int_{c_{z}},[d\arg df(z)+kd\arg f(z)]>-\alpha\pi$ $(1\geqq\alpha\geqq 0,$ $k>-\frac{\alpha}{2}-1)$ .

In this inequality, for $k=0,$ $\alpha=0$ , it coincides with the condition that $f(z)$

should be convex. For $k=0,$ $\alpha=1,$ $f(z)$ should be close-to-convex, and for
$k=+\infty,$ $f(z)$ should be star-like.

4. Extension to $p$-valence.

Theorem 1 may be extended to the case of p-valence. For this purpose
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we shall generalize Lemma 1.
LEMMA 2. Let us denote by $D_{z}$ a simply connectted closed domain including

$z=0$ in it and by $C_{z}$ the boundary of $D_{z}$ . Let $w=f(z)=z^{p}+\sum_{n=p+1}^{\infty}a_{n}z^{n}$ be regular

on $D_{z}$ and $f(z)\neq 0,$ $f^{\prime}(z)\neq 0$ except at $z=0$ on $D_{z}$ . If $f(z)$ is at least $(p+1)$-valent,

then $C_{z}$ has at least one arc $C_{z^{\prime}}$ such that both

(7) $\int_{c_{z}^{r}}d\arg df(z)\leqq-\pi$

and

(8) $\int_{c_{z^{\prime}}}d\arg f(z)=0$ $z\in C_{z^{\prime}}$

holds.
PROOF. Let us apply the same notations as in Lemma 1. When $\rho$ is

sufficiently small, $D_{w}(\rho)$ is $p$-valent with the branch point of $(p-1)$-th order
at $w=0$ . Thus we suppose a p-sheeted Riemann surface as a “ basic surface “

and we denote by $\Sigma$ this surface and by $D_{w^{*}}(\rho)$ the domain $D_{w}(\rho)$ developed
on $\Sigma$ . We remark that since $f^{\prime}(z)$ never vanishes except for $z=0$ , for arbitrary
$\rho_{1}$ and $\rho_{2}(\rho_{1}<\rho_{2})D_{w}(\rho_{2})$ contains $D_{w}(\rho_{1})$ entirely in it.

When $\rho$ is sufficiently small, $D_{w^{*}}(\rho)$ is univalent on each sheet of $\Sigma$ . Let
us suppose that $D_{w^{*}}(\rho)$ becomes two-valent on some sheet of $\Sigma$ . Then as in
Lemma 1 there is such a radius $\rho_{0}$ that $D_{w^{*}}(\rho)$ is univalent for $\rho$ smaller than
$\rho_{0}$ and $D_{w^{*}}(\rho)$ is no longer univalent for $\rho$ greater than $\rho_{0}$ . Thus we have
some loop of $L_{w^{*}}(\rho_{0})$, the boundary of $D_{w^{*}}(\rho_{0})$ , which is simple and does not
contain $w=0$ . When $\rho$ exceeds $\rho_{0}$ and tends to 1, there remains at least one
loop $C_{w}^{\prime}$ which is simple and does not contain $w=0$ and has a clock-wise
encircling direction. For this $C_{w}^{\prime}$ hold (7) and (8).

On the other hand if $D_{w}$ has a part which is at least $(p+1)$-valent, then
$D_{w^{*}}$ is at least two-valent on some sheet of $\Sigma$ . Thus we have this lemma.

From this lemma we have next theorem immediately.
THEOREM 2. Let us denote by $D_{z}$ a simply connected closed domain including

$z=0$ in it and by $C_{z}$ the boundary of $D_{z}$ . Let $w=f(z)=z^{p}+\sum_{n=p+i}^{\infty}a_{n}z^{n}$ be regular

on $D_{z}$ and $f(z)\neq 0,$ $f^{\prime}(z)\neq 0$ except at $z=0$ on $D_{z}$ . If there holds for a suitable
real constant $k$ ,

(9) $\int_{c_{z^{\prime}}}[d\arg df(z)+kd\arg f(z)]>-\pi$ $z\in C_{z^{\prime}z}$

$n)hereC_{z^{\prime}}$ is an arbitrary arc on $C_{z}$ , then $f(z)$ is p-valent on $D_{z}$ .
REMARK. In this theorem $k$ has to satisfy $k>-\frac{1}{2p}-1$ , because for $C_{z}$

we have

$\int_{c_{z}}[d\arg d_{-}f(z)+kd\arg f(z)]=2\pi p(1+k)>-\pi$ .
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5. Some applications of Theorem 2.

THEOREM 3. Let $D_{z}$ and $w=f(z)=z^{p}+\sum_{n\rightarrow p+1}^{\infty}a_{n}z^{n}$ satisfy the hypothesis of

Theorem 2. If there holds for a suitable convex function (may be $multivalent$) $ $

$\phi(z)$ and for real constants $\alpha$ and $k$ ,

(10) $\mathfrak{R}e^{i\alpha}\frac{f^{\prime}(z}{\phi},\frac{f(z)^{h}}{(z)}>0$

)
$z\in D_{z}$ ,

then $f(z)$ is p-valent for $D_{z}$ .
PROOF. Let $C_{z^{\prime}}$ be an arbitrary arc on $C_{z}$ and $z_{1},$ $z_{2}$ be the initial and end

point respectively. Then from (10) we have

$\arg\frac{f^{\prime}(z_{2})f(z_{2})^{k}}{\phi(z_{2})}-\arg\frac{f^{\prime}(z_{1})f(z_{1})^{h}}{\phi(z_{1})}>-\pi$ .
Thus we have
(11) $[\arg df(z_{2})+k\arg f(z_{2})]-[\arg df(z_{1})+k\arg f(z_{1})_{\lrcorner}^{-}$

$-[\arg d\phi(z_{2})-\arg d\phi(z_{1})]>-\pi$ .
Since $\phi(z)$ is convex, we have

(12) $\arg d\phi(z_{2})>\arg d\phi(z_{1})$ .
By (11) and (12) we have

$[\arg df(z_{2})+k\arg f(z_{2})]-[\arg df(z_{1})+k\arg f(z_{I})_{\lrcorner}^{\urcorner}>-\pi$ ,

$\int_{c_{z^{\prime}}}[d\arg df(z)+kd\arg f(z)]>-\pi$ .

Thus by Theorem 2 we see that $f(z)$ is p-valent.

THEOREM 4. Let $D_{z}$ and $w=f(z)=z^{p}+\sum_{n=p+1}^{\infty}a_{n}z^{n}$ satisfy the hypothesis $of^{-}$

Theorem 2 and furthermore let $D_{z}$ be convex. Then the following condition is
sufficient for p-valence of $f(z)$ for D. :

(13) $\mathfrak{R}e^{i\alpha}\frac{f^{\prime}(z)}{\psi}\frac{f(z)^{h}}{(z)}>0$ ,

where $\psi(z)$ is a suitable star-like function with respect to $z=0$ (may be multivalent).

PROOF. As in Theorem 3 following inequalities hold:

$\arg\frac{f^{\prime}(z_{2})f(}{\psi(z_{2}}\frac{z_{2})^{k}}{)}-\arg\frac{f^{\prime}(z_{1})f(z_{1})^{k}}{\psi(z_{1})}>-\pi$ ,

$[\arg df(z_{2})+k\arg f(z_{2})]-[\arg df(z_{1})+k\arg f(z_{1})]$

$-[\arg\psi(z_{2})-\arg\psi(z_{1})]-[\arg dz_{2}-\arg dz_{1}]>-\pi$ .
Observing that $\psi(z)$ is star-like and $D_{z}$ is convex, we have

$\arg\psi(z_{2})>\arg\psi(z_{1})$ , $\arg dz_{2}>\arg dz_{\underline{\gamma}}$ .
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This implies

$[\arg df(z_{2})+k\arg f(z_{2})]-[\arg df(z_{1})+k\arg f(z_{1})]>-\pi$ ,

and this yields (9).

COROLLARY 1. Let D. in Theorem 4 be the closed disc $|z|\leqq r$. If there
holds any one of the following inequalities for a suitable convex function $\phi(z)$ or
star-like function $\psi(z)$ (both may be multivalent) and for real constants $\alpha$ and $k$ ,

(10) $\mathfrak{R}e^{i\alpha}\frac{f^{\prime}(z)}{\phi},\frac{f}{(z}>0(\underline{z)^{k}})$ (10) $\mathfrak{R}_{()}e^{i\alpha}\frac{zf^{\prime}(z}{\psi}>0)_{\frac{f}{z}}\underline{(z)^{k}}$

(13) $\mathfrak{R}e^{i\alpha}\frac{f^{\prime}(z)f(}{\psi(z}$

)
$\underline{z)^{k}}>0$ , $(13^{\prime})$ $\mathfrak{R}e^{i\alpha}\frac{f^{\prime}(z)f(z)^{k}}{z\phi(z)}>0$ ,

then $f(z)$ is p-valent for $D_{z}$ .
PROOF. The well-known relation:

$F(z)$ is $convex\Leftrightarrow zF^{\prime}(z)$ is star-like

yields (10) from (10) and (13) from (13) immediately.

COROLLARY 2. Let $w=f(z)=z^{p}+\sum_{n=p+1}^{\infty}a_{n}z^{n}$ be regular for $|z|\leqq r$ and $f(z)\neq 0$,

$f^{\prime}(z)\neq 0$ except for $z=0$ . If for some positive integer $nf(’$ be close-to-convex
(multivalent except for $p=1,$ $n=1$), then $f(z)$ is p-valent for $|z|\leqq 7^{\prime}$.

PROOF. Putting $k=n-1$ we have

$\mathfrak{R}e^{ia}\frac{f^{\prime}(z)f(z)^{n-1}}{\phi’(z)}=\frac{1}{n}\mathfrak{R}e^{i\alpha}\frac{[f(z)^{n}]^{\prime}}{\phi(z)}$ .

This means that $f(z)^{n}$ is close-to-convex (may be multivalent).

COROLLARY 3. Let $f(z)=z^{p}+\sum_{?^{\prime+1}n=}^{\infty}a_{n}z^{n}$ be regular for $|z|\leqq r$. If there holds

(14) $\mathfrak{R}e^{?a}\frac{zf^{\prime}(z)}{f(z)}>0$ ,

then $f(z)$ is p-valent (p-valent spiral-like).
PROOF. As easily seen from the assumption, $f(z)$ and $f^{\prime}(z)$ can not vanish

except for $z=0$ for $|z|\leqq\gamma$. Thus $f(z)$ satisfies the assumption of Corollary 1.
Thus putting $\psi(z)=1,$ $k=-1$ in (10) we have (14).

We may obtain various sufficient conditions for p-valence substituting ap-
propriate concrete star-like or convex function into $\psi$ or $\phi$ respectively, for

example $\mathfrak{R}e^{i\alpha}\frac{f^{\prime}(z)}{z^{p-1}}>0$ [ $2$, p. 226], but the details are omitted here.

6. Some sufficient conditions for $p$-valence.

In this section we show some sufficient conditions for p-valence, following
the idea introduced by S. Ozaki [5] and T. Umezawa [6]. For this purpose
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we prepare the following lemmas.
LEMMA 3 [4]. Let $h(re^{t\theta})$ be a real function continuous for $ 0\leqq\theta\leqq 2\pi$ satis-

fying the following for some positive number $m(m>\frac{1}{2})$ ,

(16) $-m<h(re^{i\theta})<\frac{(2h_{0}+1)m}{2m-1}$ $(0\leqq\theta\leqq 2\pi)$ ,

$ u\cdot hereh_{0}=\frac{1}{2\pi}\int_{0^{\pi}}^{2}h(re^{i\theta})d\theta$ and $h_{0}>-\frac{1}{2}$, then for arbitrary interval $C$ of $\theta$ (or

the sum of these inlervals) on $[0,2\pi]$ there holds

(17) $\int_{c}h(re^{i\theta})d\theta>-\pi$ .

LEMMA 4. Let $f(z)=z^{p}+\sum_{n=p+1}^{\infty}a_{n}z^{n}$ ($p$ : positive integer) be meromorphic for
$|z|\leqq r$ and satisfy

(18) $\mathfrak{R}[e^{\dot{t}\alpha}(1+z\frac{f^{\prime\prime}(z)}{f’(z)}+kz\frac{f^{\prime}(z)}{f(z)})]>K$

for suitable real constants $\alpha,$ $K$ and $k$ , where $k\neq-\frac{q-1}{q}$ for any integer $q$, then

$f(z)$ is regular for $|z|\leqq\gamma$ and $f(z)\neq 0,$ $f^{\prime}(z)\neq 0$ for $0<|z|\leqq r$.
PROOF. Let us assume that $f(z)$ has zero or pole of $|q|$ -th order at $z=z_{0}$

$(z_{0}\neq 0)$ . Then we can put

$f(z)=z^{p}(z-z_{0})^{q}g(z)$ $g(0)\neq 0,$ $\infty$ , $g(z_{0})\neq 0,$ $\infty$ ,

$F(z)\equiv zf^{\prime}(z)=z^{p}(z-z_{0})^{q-1}G(z)$ ,

where $G(z)=p(z-z_{0})g(z)+qzg(z)+z(z-z_{0})g^{\prime}(z),$ $G(O)\neq 0,$ $\infty,$ $G(z_{0})\neq 0,$ $\infty$ . An ele-
mentary calculation shows

$h(z)\equiv 1+z\frac{f^{\prime\prime}(z)}{f’(z)}+kz\frac{f^{\prime}(z)}{f(z)}=z\frac{F^{\prime}(z)}{F(z)}+kz\frac{f^{\prime}(z)}{f(z)}$

$=p(1+k)+(q-1+kq)\frac{z}{z-z_{0}}+z\frac{G^{\prime}(z)}{G(z)}+z\frac{g^{\prime}(z)}{g(z)}$ .
Since $q-1+kq$ never vanishes, we see that $h(z)$ has a pole at $z=z_{0}$ and $ h(z)\rightarrow\infty$

for $z\rightarrow z_{0}$ . This contradicts (18).

THEOREM 6. Let $f(z)=z^{p}+\sum_{n=p+1}^{\infty}a_{n}z^{n}$ ($p$ : positive integer) be meromorphic

for $|z|\leqq\gamma$ and satisfy

(19) $-m<\mathfrak{R}[1+z\frac{f^{\prime\prime}(z)}{f(z)}+kz\frac{f^{\prime}(z)}{f(z)}]<\frac{[2(k+1)p+1]m}{2m-1}$

for real constants $m(m>\frac{1}{2})$ and $k(k>-(\frac{1}{2p}+1),$ $k\neq-\frac{q-1}{q}$ for any integer

$q)$, then $f(z)$ is regular and p-valent for $|z|\leqq r$.
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PROOF. From Lemma 4, we see that $f(z)$ is regular for $|z|\leqq r$ and $f(z)\neq \mathbb{O}_{r}$

$f^{\prime}(z)\neq 0$ for $0<|z|\leqq r$. Then $f(z)$ satisfies the assumption of Theorem 2. As
is well-known [5, p. 49], we have

$ d\arg df(z)=\mathfrak{R}(1+z\frac{f^{\prime\prime}(z)}{f(z)})d\theta$ ,

$ d\arg f(z)=\mathfrak{R}(z\frac{f^{\prime}(z)}{f(z)})d\theta$

for $z=re^{i\theta}$ . Thus we have

$\int_{|z|=r}[d\arg df(z)+kd\arg f(z)]=\int \mathfrak{R}[1+z\frac{f^{\prime\prime}(z)}{f(z)}+kz\frac{f^{f}(z)}{f(z)}]d\theta$ , $(z=re^{i\theta})$ .

Since $h(z)\equiv \mathfrak{R}[1+z\frac{f^{\prime\prime}(z)}{f’(z)}+kz\frac{f^{\prime}(z)}{f(z)}]$ is harmonic for $|z|\leqq\gamma$ by above statement,

$h_{0}=_{2}-\frac{1}{\pi}\int_{0^{\pi}}^{\underline{Q}}h(re^{i\theta})d\theta=h(0)=(k+1)p$ .

Thus we see that (19) is equivalent to (16) and so (16) yields (17). (17)

means that $f(z)$ satisfies (9) in Theorem 2. Hence $f(z)$ is p-valent for $|z|\leqq r$.
COROLLARY 4. In Theorem 6 we may replace (19) with any one of the fol-

lowing conditions,

(20) $\mathfrak{R}[1+z\frac{f^{\prime\prime}(z)}{f(z)}+kz\frac{f^{\prime}(z)}{f(z)}]<(k+1)p+\frac{1}{2}$ ,

(21) $\mathfrak{R}[1+z\frac{f^{\prime\prime}(z)}{f^{\prime}(z)}+kz\frac{f^{\prime}(z)}{f(z)}]>-\frac{1}{2}$ ,

(22) $|\mathfrak{R}[1+z\frac{f^{\prime\prime}(z}{f(z})^{)_{-}}+kz\frac{f^{\prime}(z)}{f(z)}]|<(k+1)p+1$ ,

(23) $|\mathfrak{R}[z\frac{f^{\prime\prime}(z)}{f’(z)}+kz\frac{f^{\prime}(z)}{f(z)}]|<\frac{(k+1)p+1+\sqrt{\{(k+1)p-1\}^{2}+4}}{2}$ .

PROOF. The following special cases of (19) give (20) $\sim(23)$ respectively:
$ m\rightarrow+\infty$ (20),

$m\rightarrow\frac{1}{2}$ (21),

$m=\frac{[2(k+1)p+1]m}{2m-1}$ (22),

$m+1=[p_{-}+\underline{1]m}_{--1}\frac{2(k+1)}{2m}-1$ (23).

REMARK. Putting $p=1$ and $k=0$ in Corollary 4, we have Ozaki’s criteria
for univalence [5, p. 56]. Putting $k=0$ , we have Ozaki’s criteria for p-valence
as the special case $k=p$ in his Theorem 3 [5, p. 57].
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7. Some extension of radius of convexity.

In this section we consider a function $f(z)=z+\sum_{n=2}^{\infty}a_{n}z^{n}$, which is regular

and univalent for $|z|<1$ . As a sufficient condition that $f(z)$ should satisfy

$\int^{\backslash }[d\arg df(z)-kd\arg f(z)]>-\alpha\pi$ $(|z|=r<1)$

or
$\int_{\theta_{1}^{2}}^{\theta}\mathfrak{R}[1+z\frac{f^{\prime\prime}(z)}{f’(z)}kz\frac{f^{\prime}(z)}{f(z)}]d\theta>-\alpha\pi$ $(z=re^{i\theta}, \theta_{1}\leqq\theta\leqq\theta_{2})$ ,

we have

(24) $\mathfrak{R}[1+z\frac{f^{\prime\prime}(z)}{f(z)}kz\frac{f^{\prime}(z)}{f(z)}]>-\frac{\alpha}{2}$ .

Now we seek such a radius that (24) should hold. For this purpose we
employ the following lemma due to Golusin [7].

LEMMA 5. Let $f(z)=z+\sum_{n=\Delta}^{\infty}a_{n}z^{n}$ be regular and univalent for $|z|<1$ , then

we have

(25) $p\mathfrak{R}[1+z\frac{f^{\prime f}(z)}{f(z)}(1-\frac{1}{p})\frac{zf^{\prime}(z)}{f(z)}]\geqq\frac{1-2(p+1)|z|+|z|^{2}}{1-|z|^{2}}$ $(p\geqq 1)$ .

THEOREM 7. Let $f(z)=z+\sum_{n=\Delta}^{\infty}a_{n}z^{n}$ be regular and univalent for $|z|<1$ .
Then $f(z)$ satisfies
(26) $\mathfrak{R}[1+z\frac{f^{\prime\prime}(z)}{f’(z)}kz\frac{f^{\prime}(z)}{f(z)}]>_{2}^{\alpha_{-}}--$

for

(i) $|z|<\frac{2(2-k)-\sqrt{12-8k+\alpha^{2}}}{2(1-k)-\alpha}$ $(2(1-k)-\alpha\neq 0)$ ,

(ii) $|z|<\frac{\alpha}{\alpha+2}$ $(2(1-k)-\alpha=0)$ ,

zvhere constant $k$ and $\alpha$ satisfy $1\geqq k\geqq 0,1\geqq\alpha\geqq 0$ .
PROOF. Putting $1-\frac{1}{p}=k$ in (25), we have

$\mathfrak{R}[1+z\frac{f^{\prime\prime}(z)}{f(z)}kz\frac{f^{\prime}(z)}{f(z)}]\geqq\frac{1-k-2(2-k)|z|+(1-k)|z|^{2}}{1-|z|^{2}}$ .

Thus as a sufficient condition for (26), we have

$\frac{1-k-2(2-k)|z|+(1-k)|z|^{2}}{1-|z|^{2}}>-\frac{\alpha}{2}$ .
This yields

$F(|z|, k, \alpha)\equiv(2(1-k)-\alpha)|z|^{2}-4(2-k)|z|+2(1-k)+\alpha>0$ .
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Noticing $F(O, k, \alpha)=2(1-k)+\alpha>0,$ $F(1, k, \alpha)=-4$ , we have (i) or (ii) in each
case.

COROLLARY 5. Under the same assumption as Theorem 7, $\iota ue$ have for
$|z|<\frac{4-\sqrt{12+\alpha^{2}}}{2-\alpha}$ the inequalily

$\mathfrak{R}[1+z^{(\alpha}\frac{f^{f/}}{f’(}\frac{z)}{z)}]>--2-$

and so

$\int d\arg df(z)>-\alpha\pi$ $(|z|=r)$ .

This corollary means that for such $r$, the argument of any tangent on the
arc $f(re^{i\theta})$ never drops to a value $\alpha\pi$ radians below the previous value. For

example, putting $\alpha=\frac{1}{2}$ we have $|z|<--31$ . Thus we see that for $r\ll\frac{1}{3}$ the

argument of any tangent on the arc $f(re^{i\theta})$ never drops to a value $\frac{\pi}{2}$ radians
below the previous value.

COROLLARY 6. Under the same assumption as Theorem 7, $f(z)$ is convex for
$|z|<2-\sqrt{3}$

This case corresponds to $\alpha=0$ in Corollary 5.
COROLLARY 7. Under the same assumption as Theorem 7, let $|z|<4-\sqrt{13}$

Then $f(z)$ is close-to-convex or, more precisely, $f(z)$ is convex in one direction [6].

This case corresponds to $\alpha=1$ in Corollary 5. It is known that if $J(z)$

satisfies $\mathfrak{R}(1+z\frac{f^{\prime\prime}(z)}{f(z)})>-\frac{1}{2}$, then $f(z)$ is not merely close-to-convex but also

convex in one direction [6].

8. The case for meromorphic functions.

In Theorem 1, let $f(z)$ be $F(z)^{-1}$ . Then $F(z)$ has an expansion $F(z)=$

$\frac{1}{z}+\sum_{n\Rightarrow 0}^{\infty}a_{n}z^{n}$ at $z=0$ . Furthermore we have by an elementary culculation

(27) $d\arg df+kd\arg f=d\arg dF-(k+2)d\arg F$ .
Since $F(z)$ is univalent if and only if $f(z)$ is univalent, we have the following
theorem.

THEOREM 8. Let us denote by $D_{z}$ a simply connected closed domain including

$z=0$ in it and $C_{z}$ the boundary of $D_{z}$ . Let $f(z)=\frac{1}{z}+\sum_{n=0}^{\infty}a_{n}z^{n}$ be regular on $D_{z}$

except at $z=0$ and suppose $f(z)\neq 0,$ $f^{\prime}(z)\neq 0$ on $D_{z}$ . If there holds for a sui-
table real constant $k$

(28) $\int_{c_{z}},[d\arg df(z)-kd\arg f(z)]>-\pi$ $(z\in C_{z^{\prime}})$ .
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where $C_{z^{\prime}}$ is an arbitrary arc on $C_{z}$ , then $f(z)$ is univalent on $D_{z}$ .
REMARK 1. In this theorem $k$ has to satisfy $k>\frac{1}{2}$ .
REMARK 2. For $k\rightarrow+\infty,$ $f(z)$ should be star-like.
REMARK 3. Though we have (28) immediately from (27), we may prove

this theorem as follows. Suppose that $f(z)$ be multivalent, then $D_{w}$ has some
overlapping parts and accordingly, $C_{w}$ has two loops separated by these parts.
One of these loops should encircle $w=0$ , so that the other loops $C_{w}^{\prime}$ can not
encircle $w=0$ . Thus for $C_{z^{f}}$ we have

$\int_{c_{z^{\prime}}}[d\arg df(z)-kd\arg f(z)]=\int_{c_{z^{\prime}}}d\arg df(z)\leqq-\pi$ .

Just as we deduced theorems of \S 5 from Theorem 2, we could deduce

many results concerning $f(z)=z^{-p}+\sum_{n=-y+1}^{\infty}a_{n}z^{n}$ from theorem 8. We omit them

as these results are easily obtained in the same manner.

Nara Gakugei University
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