On some criteria for p-valence

By Shôtarô Ogawa

(Received Dec. 7, 1960)

1. Preliminaries.

W. Kaplan [1] defined a close-to-convex function for $|z|<1$ as follows.

Let $f(z)$ be analytic for $|z|<1$. Then $f(z)$ is close-to-convex for $|z|<1$, if there exists a convex and schlicht function $\phi(z)$ for $|z|<1$, such that $f^{\prime}(z) / \phi^{\prime}(z)$ has positive real part for $|z|<1$. Furthermore he showed that $f(z)$ is close-to-convex if and only if

$$
\begin{equation*}
\int_{\theta_{1}}^{\theta_{z}} \mathfrak{R}\left(1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right) d \theta>-\pi, \tag{1}
\end{equation*}
$$

where $\theta_{1}<\theta_{2}, z=r e^{i \theta}$ and $r<1$.
Lately T. Umezawa [2] obtained some criteria for univalence as follows.
Let $w=f(z)$ be regular in a simply connected closed region D_{z} whose boundary Γ_{z} consists of a regular curve and suppose $f^{\prime}(z) \neq 0$ on Γ_{z}. If there holds one of the following conditions:
(i) For arbitrary $\operatorname{arcs} C_{z}$ on Γ_{z}

$$
\begin{equation*}
\int_{C_{z}} d \arg d f(z)>-\pi \quad \text { and } \quad \int_{\Gamma_{z}} d \arg d f(z)=2 \pi, \tag{2}
\end{equation*}
$$

(ii) For arbitrary $\operatorname{arcs} C_{z}$ on Γ_{z}

$$
\int_{C_{z}} d \arg d f(z)<3 \pi,
$$

then $f(z)$ is univalent in D_{z}.
As M. O. Reade [3] specified, above two criteria (1) and (2) are essentially equivalent to each other. In this paper we show some generalization of these criteria and some extension concerning p-valent functions.

2. Main criterion.

We can generalize above criteria for univalence as follows [4],
MAIN CRITERION. Let $w=f(z)$ be regular on a simply connected closed domain D_{z}, whose boundary C_{z} consists of a regular curve and suppose $f^{\prime}(z) \neq 0$ on C_{z}. If there holds the following condition for a suitable real function $\varphi(w)$, which is a single-valued and differentiable function of w, and for a suitable real
constant k,

$$
\begin{equation*}
\int_{C_{z}} d \arg d f(z)=2 \pi \quad z \in C_{z} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{C_{z^{\prime}}}[d \arg d f(z)+k d \varphi(f(z))]>-\pi \quad z \in C_{z^{\prime}}^{\prime}, \tag{4}
\end{equation*}
$$

where $C_{z}{ }^{\prime}$ is an arbitrary arc on C_{z} and the integration is taken in the positive direction with respect to D_{z}, then $f(z)$ is univalent in D_{z}.

The inequality (4) has the following geometrical meaning. Let L_{t} be the level curve of $\varphi(w)$ for $\varphi(w)=t$ on w-plane, and w_{1} and w_{2} be the intersections. of L_{t} and C_{w}, where C_{w} means the map of C_{z}. Then the argument of the tangent of C_{w} at w_{2} never drops to a value π radians below the previous value at w_{1}.

3. The case in which $\varphi(f(z))=\arg f(z)$.

For $\varphi(f(z))$ we may use various real functions. For example we can put $\varphi(f(z))=\mathfrak{\Re} f(z)$ or $\varphi(f(z))=\mathfrak{J} f(z)$ or more generally $\varphi(f(z))=\mathfrak{J}\left(e^{i \omega} f(z)\right)$ [4]. In this paper we show some results obtained in the case in which $\varphi(f(z))=\arg f(z)$.

Lemma 1. Let us denote by D_{z} a simply connected closed domain including $z=0$ in it and by C_{z} the boundaary of D_{z}. Let $w=f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be regular on D_{z} and $f(z) \neq 0(z \neq 0), f^{\prime}(z) \neq 0$ on D_{z}. If $u=f(z)$ is multivalent for D_{z}, then C_{z} has at least one arc C_{z}^{\prime} such that both

$$
\begin{equation*}
\int_{C_{z^{\prime}}} d \arg d f(z) \leqq-\pi \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{C_{z^{\prime}}} d \arg f(z)=0 \quad z \in C_{z}^{\prime} \tag{6}
\end{equation*}
$$

hold.
Proof. Let $z=\phi(\zeta)$ be the univalent regular function which maps the unit circle $|\zeta| \leqq 1$ onto D_{z} and suppose $\phi(0)=0$. Let us denote by $L_{z}(\rho)$ the map of $|\zeta|=\rho$ under $z=\phi(\zeta)$, by $L_{w}(\rho)$ the map of $L_{z}(\rho)$ under $w=f(z)$ and by $D_{w}(\rho)$ the region bounded by $L_{w}(\rho)$. We remark that, since $f^{\prime}(z)$ never vanishes, for arbitrary ρ_{1} and $\rho_{2}\left(\rho_{1}<\rho_{2}\right) D_{w}\left(\rho_{2}\right)$ contains $D_{w}\left(\rho_{1}\right)$ entirely in it.

Now we observe that ρ increases monotonously from 0 to 1 . When ρ is sufficiently small, it is clear that $D_{w}(\rho)$ is univalent containing $w=0$ in it. Let ρ_{0} be such a radius that $D_{w}(\rho)$ is univalent for $0<\rho<\rho_{0}$ and $D_{w}(\rho)$ is not univalent for $\rho_{0}<\rho$. For such $\rho_{0}, D_{x}\left(\rho_{0}\right)$ has at least one self-touching point. Let $w_{0}=f\left(z_{1}\right)=f\left(z_{2}\right)$ be such a point and for any z^{\prime} and $z^{\prime \prime}\left(\arg \phi^{-1}\left(z_{1}\right)\right.$ $\left.<\arg \phi^{-1}\left(z^{\prime}\right)<\arg \phi^{-1}\left(z^{\prime \prime}\right)<\arg \phi^{-1}\left(z_{2}\right)\right)$ suppose $f\left(z^{\prime}\right) \neq f\left(z^{\prime \prime}\right)$ on $L_{v}\left(\rho_{0}\right)$. On the
loop $L_{w}{ }^{\prime}\left(\rho_{0}\right)$, the partial arc of $L_{w}\left(\rho_{0}\right)$ bounded by $f\left(z_{1}\right)$ and $f\left(z_{2}\right), w$ moves from $f\left(z_{1}\right)$ to $f\left(z_{2}\right)$ with a clock-wise direction when z moves from z_{1} to z_{2} on $L_{z}\left(\rho_{0}\right)$. Here we remark that the loop $L_{w}{ }^{\prime}\left(\rho_{0}\right)$ is simple and the inner region $\Delta_{w}{ }^{\prime}\left(\rho_{0}\right)$, bounded by $L_{w}{ }^{\prime}\left(\rho_{0}\right)$, does not contain $w=0$ in it. From this we have

$$
\int_{L_{z^{\prime}}\left(\rho_{0}\right)} d \arg d f(z)=-\pi
$$

and

$$
\int_{L_{z^{\prime}}\left(\rho_{0}\right)} d \arg f(z)=0 \quad z \in L_{z}^{\prime}\left(\rho_{0}\right),
$$

where $L_{z}{ }^{\prime}\left(\rho_{0}\right)$ is the map of $L_{w}{ }^{\prime}\left(\rho_{0}\right)$.
When ρ tends to 1 exceeding ρ_{0}, the region $\Delta_{w}{ }^{\prime}(\rho)$ may reduce with the direction of the positive normal of $L_{w}(\rho)$ and some parts of $L_{w}{ }^{\prime}(\rho)$ may selfoverlap, but $\Delta_{w}{ }^{\prime}(\rho)$ cannot reduce to a point in accordance with $f^{\prime}(z) \neq 0$ for $z \in D_{z}$. Hence, there should finally remain at least one simple loop $C^{\prime}(w)$ in $\Delta_{w}{ }^{\prime}\left(\rho_{0}\right)$, which has a clock-wise encircling direction and clearly does not contain $w=0$ inside it. Denoting by $C^{\prime}(z)$ the map of $C^{\prime}(w)$, we have (5) and (6) for such $C^{\prime}(z)$.

From Main Criterion and Lemma 1 we have following theorem immediately.
Theorem 1. Let us denote by D_{z} a simply connected closed domain including $z=0$ in it and by C_{z} the boundary of D_{z}. Let $w=f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be regular on D_{z} and $f(z) \neq 0(z \neq 0), f^{\prime}(z) \neq 0$ on D_{z}. If there holds for a suitable real constant k

$$
\int_{C_{z^{\prime}}}[d \arg d f(z)+k d \arg f(z)]>-\pi \quad z \in C_{z^{\prime}}^{\prime},
$$

where $C_{z}{ }^{\prime}$ is an arbitrary arc on C_{z}, then $f(z)$ is univalent on D_{z}.
Remark 1. In this theorem k has to satisfy $k>-\frac{3}{2}$, because for C_{z} we have

$$
\int_{C_{z}}[d \arg d f(z)+k d \arg f(z)]=2 \pi(1+k)>-\pi .
$$

Remark 2. In this theorem we may modify above inequality as follows;

$$
\int_{C_{z}^{\prime}}[d \arg d f(z)+k d \arg f(z)]>-\alpha \pi \quad\left(1 \geqq \alpha \geqq 0, k>-\frac{\alpha}{2}-1\right) .
$$

In this inequality, for $k=0, \alpha=0$, it coincides with the condition that $f(z)$ should be convex. For $k=0, \alpha=1, f(z)$ should be close-to-convex, and for $k=+\infty, f(z)$ should be star-like.

4. Extension to \boldsymbol{p}-valence.

Theorem 1 may be extended to the case of p-valence. For this purpose
we shall generalize Lemma 1.
Lemma 2. Let us denote by D_{z} a simply connectted closed domain including$z=0$ in it and by C_{z} the boundary of D_{z}. Let $w=f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ be regular on D_{z} and $f(z) \neq 0, f^{\prime}(z) \neq 0$ except at $z=0$ on D_{z}. If $f(z)$ is at least $(p+1)$-valent, then C_{z} has at least one arc $C_{z}{ }^{\prime}$ such that both

$$
\begin{equation*}
\int_{C_{z^{\prime}}} d \arg d f(z) \leqq-\pi \tag{7}
\end{equation*}
$$

and
(8)

$$
\int_{C_{z^{\prime}}} d \arg f(z)=0 \quad z \in C_{z}^{\prime}
$$

holds.
Proof. Let us apply the same notations as in Lemma 1 . When ρ is sufficiently small, $D_{w}(\rho)$ is p-valent with the branch point of ($p-1$)-th order at $w=0$. Thus we suppose a p-sheeted Riemann surface as a " basic surface" and we denote by Σ this surface and by $D_{w}{ }^{*}(\rho)$ the domain $D_{w}(\rho)$ developed on Σ. We remark that since $f^{\prime}(z)$ never vanishes except for $z=0$, for arbitrary ρ_{1} and $\rho_{2}\left(\rho_{1}<\rho_{2}\right) D_{w}\left(\rho_{2}\right)$ contains $D_{w}\left(\rho_{1}\right)$ entirely in it.

When ρ is sufficiently small, $D_{w}{ }^{*}(\rho)$ is univalent on each sheet of Σ. Let us suppose that $D_{w}{ }^{*}(\rho)$ becomes two-valent on some sheet of Σ. Then as in Lemma 1 there is such a radius ρ_{0} that $D_{w} *(\rho)$ is univalent for ρ smaller than ρ_{0} and $D_{w}^{*}(\rho)$ is no longer univalent for ρ greater than ρ_{0}. Thus we have some loop of $L_{w} *\left(\rho_{0}\right)$, the boundary of $D_{w} *\left(\rho_{0}\right)$, which is simple and does not contain $w=0$. When ρ exceeds ρ_{0} and tends to 1 , there remains at least one loop $C_{w}{ }^{\prime}$ which is simple and does not contain $w=0$ and has a clock-wise encircling direction. For this $C_{w}{ }^{\prime}$ hold (7) and (8).

On the other hand if D_{w} has a part which is at least $(p+1)$-valent, then $D_{w}{ }^{*}$ is at least two-valent on some sheet of Σ. Thus we have this lemma.

From this lemma we have next theorem immediately.
Theorem 2. Let us denote by D_{z} a simply connected closed domain including $z=0$ in it and by C_{z} the boundary of D_{z}. Let $w=f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ be regular on D_{z} and $f(z) \neq 0, f^{\prime}(z) \neq 0$ except at $z=0$ on D_{z}. If there holds for a suitable real constant k,

$$
\begin{equation*}
\int_{C_{z^{\prime}}}[d \arg d f(z)+k d \arg f(z)]>-\pi \quad z \in C_{z^{\prime}}{ }^{\prime} \tag{9}
\end{equation*}
$$

where $C_{z}{ }^{\prime}$ is an arbitrary arc on C_{z}, then $f(z)$ is p-valent on D_{z}.
REMARK. In this theorem k has to satisfy $k>-\frac{1}{2 p}-1$, because for C_{z} we have

$$
\int_{C_{z}}[d \arg d f(z)+k d \arg f(z)]=2 \pi p(1+k)>-\pi
$$

5. Some applications of Theorem 2.

Theorem 3. Let D_{z} and $w=f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ satisfy the hypothesis of Theorem 2. If there holds for a suitable convex function (may be multivalent) $\phi(z)$ and for real constants α and k,

$$
\begin{equation*}
\Re e^{i \alpha} \frac{f^{\prime}(z) f(z)^{k}}{\phi^{\prime}(z)}>0 \quad z \in D_{z} \tag{10}
\end{equation*}
$$

then $f(z)$ is p-valent for D_{z}.
Proof. Let $C_{z}{ }^{\prime}$ be an arbitrary arc on C_{z} and z_{1}, z_{2} be the initial and end point respectively. Then from (10) we have

$$
\arg \frac{f^{\prime}\left(z_{2}\right) f\left(z_{2}\right)^{k}}{\phi^{\prime}\left(z_{2}\right)}-\arg \frac{f^{\prime}\left(z_{1}\right) f\left(z_{1}\right)^{k}}{\phi^{\prime}\left(z_{1}\right)}>-\pi
$$

Thus we have

$$
\begin{align*}
{\left[\arg d f\left(z_{2}\right)+k \arg f\left(z_{2}\right)\right]-} & {\left[\arg d f\left(z_{1}\right)+k \arg f\left(z_{1}\right)\right] } \tag{11}\\
- & {\left[\arg d \phi\left(z_{2}\right)-\arg d \phi\left(z_{1}\right)\right]>-\pi . }
\end{align*}
$$

Since $\phi(z)$ is convex, we have

$$
\begin{equation*}
\arg d \phi\left(z_{2}\right)>\arg d \phi\left(z_{1}\right) \tag{12}
\end{equation*}
$$

By (11) and (12) we have

$$
\begin{gathered}
{\left[\arg d f\left(z_{2}\right)+k \arg f\left(z_{2}\right)\right]-\left[\arg d f\left(z_{1}\right)+k \arg f\left(z_{1}\right)\right]>-\pi,} \\
\int_{C_{z^{\prime}}}[d \arg d f(z)+k d \arg f(z)]>-\pi .
\end{gathered}
$$

Thus by Theorem 2 we see that $f(z)$ is p-valent.
THEOREM 4. Let D_{z} and $w=f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ satisfy the hypothesis of Theorem 2 and furthermore let D_{z} be convex. Then the following condition is sufficient for p-valence of $f(z)$ for D_{z} :

$$
\begin{equation*}
\Re e^{i \alpha} \frac{f^{\prime}(z) f(z)^{k}}{\psi(z)}>0, \tag{13}
\end{equation*}
$$

where $\psi(z)$ is a suitable star-like function with respect to $z=0$ (may be multivalent).,
Proof. As in Theorem 3 following inequalities hold:

$$
\begin{gathered}
\arg \frac{f^{\prime}\left(z_{2}\right) f\left(z_{2}\right)^{k}}{\psi\left(z_{2}\right)}-\arg \frac{f^{\prime}\left(z_{1}\right) f\left(z_{1}\right)^{k}}{\psi\left(z_{1}\right)}>-\pi, \\
{\left[\arg d f\left(z_{2}\right)+k \arg f\left(z_{2}\right)\right]-\left[\arg d f\left(z_{1}\right)+k \arg f\left(z_{1}\right)\right]} \\
-\left[\arg \psi\left(z_{2}\right)-\arg \psi\left(z_{1}\right)\right]-\left[\arg d z_{2}-\arg d z_{1}\right]>-\pi .
\end{gathered}
$$

Observing that $\psi(z)$ is star-like and D_{z} is convex, we have

$$
\arg \psi\left(z_{2}\right)>\arg \psi\left(z_{1}\right), \quad \arg d z_{2}>\arg d z_{1}
$$

This implies

$$
\left[\arg d f\left(z_{2}\right)+k \arg f\left(z_{2}\right)\right]-\left[\arg d f\left(z_{1}\right)+k \arg f\left(z_{1}\right)\right]>-\pi,
$$

and this yields (9).
Corollary 1. Let D_{z} in Theorem 4 be the closed disc $|z| \leqq r$. If there holds any one of the following inequalities for a suitable convex function $\phi(z)$ or star-like function $\psi(z)$ (both may be multivalent) and for real constants α and k,
(10) $\Re e^{i \alpha} \frac{f^{\prime}(z) f(z)^{k}}{\phi^{\prime}(z)}>0$,
(10') $\Re e^{i \alpha} \frac{z f^{\prime}(z) f(z)^{k}}{\psi(z)}>0$,
(13) $\Re e^{i \alpha} \frac{f^{\prime}(z) f(z)^{k}}{\psi(z)}>0$,
(13') $\quad \Re e^{i \alpha} \frac{f^{\prime}(z) f(z)^{k}}{z \phi^{\prime}(z)}>0$,
then $f(z)$ is p-valent for D_{z}.
Proof. The well-known relation:
$F(z)$ is convex $\rightleftarrows z F^{\prime}(z)$ is star-like
yields (10') from (10) and (13') from (13) immediately.
COROLLARY 2. Let $w=f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ be regular for $|z| \leqq r$ and $f(z) \neq 0$, $f^{\prime}(z) \neq 0$ except for $z=0$. If for some positive integer $n f(z)^{n}$ be close-to-convex (multivalent except for $p=1, n=1$), then $f(z)$ is p-valent for $|z| \leqq r$.

Proof. Putting $k=n-1$ we have

$$
\Re e^{i \alpha} \frac{f^{\prime}(z) f(z)^{n-1}}{\phi^{\prime}(z)}=\frac{1}{n} \Re e^{i \alpha} \frac{\left[f(z)^{n}\right]^{\prime}}{\phi^{\prime}(z)} .
$$

This means that $f(z)^{n}$ is close-to-convex (may be multivalent).
Corollary 3. Let $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ be regular for $|z| \leqq r$. If there holds

$$
\begin{equation*}
\Re e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}>0, \tag{14}
\end{equation*}
$$

then $f(z)$ is p-valent (p-valent spiral-like).
Proof. As easily seen from the assumption, $f(z)$ and $f^{\prime}(z)$ can not vanish except for $z=0$ for $|z| \leqq r$. Thus $f(z)$ satisfies the assumption of Corollary 1. Thus putting $\psi(z)=1, k=-1$ in (10^{\prime}) we have (14).

We may obtain various sufficient conditions for p-valence substituting appropriate concrete star-like or convex function into ψ or ϕ respectively, for example $\Re e^{i \alpha} \frac{f^{\prime}(z)}{z^{p-1}}>0$ [2, p. 226], but the details are omitted here.

6. Some sufficient conditions for \boldsymbol{p}-valence.

In this section we show some sufficient conditions for p-valence, following the idea introduced by S. Ozaki [5] and T. Umezawa [6]. For this purpose
we prepare the following lemmas.
Lemma $3[4]$. Let $h\left(r e^{i \theta}\right)$ be a real function continuous for $0 \leqq \theta \leqq 2 \pi$ satisfying the following for some positive number $m\left(m>\frac{1}{2}\right)$,

$$
\begin{equation*}
-m<h\left(r e^{i \theta}\right)<\frac{\left(2 h_{0}+1\right) m}{2 m-1} \quad(0 \leqq \theta \leqq 2 \pi), \tag{16}
\end{equation*}
$$

where $h_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} h\left(r e^{i \theta}\right) d \theta$ and $h_{0}>-\frac{1}{2}$, then for arbitrary interval C of θ (or the sum of these intervals) on $[0,2 \pi]$ there holds

$$
\begin{equation*}
\int_{C} h\left(r e^{i \theta}\right) d \theta>-\pi . \tag{17}
\end{equation*}
$$

Lemma 4. Let $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ (p : positive integer) be meromorphic for $|z| \leqq r$ and satisfy

$$
\begin{equation*}
\Re\left[e^{i \alpha}\left(1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+k z \frac{f^{\prime}(z)}{f(z)}\right)\right]>K \tag{18}
\end{equation*}
$$

for suitable real constants α, K and k, where $k \neq-\frac{q-1}{q}$ for any integer q, then $f(z)$ is regular for $|z| \leqq r$ and $f(z) \neq 0, f^{\prime}(z) \neq 0$ for $0<|z| \leqq r$.

Proof. Let us assume that $f(z)$ has zero or pole of $|q|$-th order at $z=z_{0}$ $\left(z_{0} \neq 0\right)$. Then we can put

$$
\begin{aligned}
& f(z)=z^{p}\left(z-z_{0}\right)^{q} g(z) \quad g(0) \neq 0, \infty, \quad g\left(z_{0}\right) \neq 0, \infty, \\
& F(z) \equiv z f^{\prime}(z)=z^{p}\left(z-z_{0}\right)^{q-1} G(z),
\end{aligned}
$$

where $G(z)=p\left(z-z_{0}\right) g(z)+q z g(z)+z\left(z-z_{0}\right) g^{\prime}(z), G(0) \neq 0, \infty, G\left(z_{0}\right) \neq 0, \infty$. An elementary calculation shows

$$
\begin{aligned}
h(z) & \equiv 1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+k z \frac{f^{\prime}(z)}{f(z)}=z \frac{F^{\prime}(z)}{F(z)}+k z \frac{f^{\prime}(z)}{f(z)} \\
& =p(1+k)+(q-1+k q) \frac{z}{z-z_{0}}+z \frac{G^{\prime}(z)}{G(z)}+z \frac{g^{\prime}(z)}{g(z)} .
\end{aligned}
$$

Since $q-1+k q$ never vanishes, we see that $h(z)$ has a pole at $z=z_{0}$ and $h(z) \rightarrow \infty$ for $z \rightarrow z_{0}$. This contradicts (18).

Theorem 6. Let $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ (p : positive integer) be meromorphic for $|z| \leqq r$ and satisfy

$$
\begin{equation*}
-m<\mathfrak{R}\left[1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+k z \frac{f^{\prime}(z)}{f(z)}\right]<\frac{[2(k+1) p+1] m}{2 m-1} \tag{19}
\end{equation*}
$$

for real constants $m\left(m>\frac{1}{2}\right)$ and $k\left(k>-\left(\frac{1}{2 p}+1\right), k \neq-\frac{q-1}{q}\right.$ for any integer q), then $f(z)$ is regular and p-valent for $|z| \leqq r$.

Proof. From Lemma 4, we see that $f(z)$ is regular for $|z| \leqq r$ and $f(z) \neq 0$, $f^{\prime}(z) \neq 0$ for $0<|z| \leqq r$. Then $f(z)$ satisfies the assumption of Theorem 2. As is well-known [5, p. 49], we have

$$
\begin{aligned}
& d \arg d f(z)=\Re\left(1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right) d \theta, \\
& d \arg f(z)=\Re\left(z \frac{f^{\prime}(z)}{f(z)}\right) d \theta
\end{aligned}
$$

for $z=r e^{i \theta}$. Thus we have

$$
\int_{|z|=r}[d \arg d f(z)+k d \arg f(z)]=\int \mathfrak{R}\left[1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+k z \frac{f^{\prime}(z)}{f(z)}\right] d \theta, \quad\left(z=r e^{i \theta}\right) .
$$

Since $h(z) \equiv \mathfrak{R}\left[1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+k z \frac{f^{\prime}(z)}{f(z)}\right]$ is harmonic for $|z| \leqq r$ by above statement,

$$
h_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} h\left(r e^{i \theta}\right) d \theta=h(0)=(k+1) p .
$$

Thus we see that (19) is equivalent to (16) and so (16) yields (17). (17) means that $f(z)$ satisfies (9) in Theorem 2. Hence $f(z)$ is p-valent for $|z| \leqq r$.

Corollary 4. In Theorem 6 we may replace (19) with any one of the following conditions,

$$
\begin{equation*}
\mathfrak{R}\left[1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+k z \frac{f^{\prime}(z)}{f(z)}\right]<(k+1) p+\frac{1}{2}, \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\mathfrak{R}\left[1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+k z \frac{f^{\prime}(z)}{f(z)}\right]>-\frac{1}{2} \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\left|\Re\left[1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+k z \frac{f^{\prime}(z)}{f(z)}\right]\right|<(k+1) p+1 \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
\left|\Re\left[z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+k z \frac{f^{\prime}(z)}{f(z)}\right]\right|<\frac{(k+1) p+1+\sqrt{\{(k+1) p-1\}^{2}+4}}{2} . \tag{23}
\end{equation*}
$$

Proof. The following special cases of (19) give (20) $\sim(23)$ respectively :

$$
\begin{align*}
& m \rightarrow+\infty \tag{20}\\
& m \rightarrow \frac{1}{2} \tag{21}\\
& m=\frac{[2(k+1) p+1] m}{2 m-1} \tag{22}\\
& m+1=\frac{[2(k+1) p+1] m}{2 m-1}-1 \tag{23}
\end{align*}
$$

Remark. Putting $p=1$ and $k=0$ in Corollary 4, we have Ozaki's criteria for univalence [5, p. 56]. Putting $k=0$, we have Ozaki's criteria for p-valence as the special case $k=p$ in his Theorem 3 [5, p. 57].

7. Some extension of radius of convexity.

In this section we consider a function $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$, which is regular and univalent for $|z|<1$. As a sufficient condition that $f(z)$ should satisfy

$$
\int[d \arg d f(z)-k d \arg f(z)]>-\alpha \pi \quad(|z|=r<1)
$$

or

$$
\int_{\theta_{1}}^{\theta_{2}} \Re\left[1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}-k z \frac{f^{\prime}(z)}{f(z)}\right] d \theta>-\alpha \pi \quad\left(z=r e^{i \theta}, \theta_{1} \leqq \theta \leqq \theta_{2}\right),
$$

we have

$$
\begin{equation*}
\mathfrak{R}\left[1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}-k z \frac{f^{\prime}(z)}{f(z)}\right]>-\frac{\alpha}{2} . \tag{24}
\end{equation*}
$$

Now we seek such a radius that (24) should hold. For this purpose we employ the following lemma due to Golusin [7].

Lemma 5. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be regular and univalent for $|z|<1$, then we have

$$
\begin{equation*}
p \Re\left[1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}-\left(1-\frac{1}{p}\right) \frac{z f^{\prime}(z)}{f(z)}\right] \geqq \frac{1-2(p+1)|z|+|z|^{2}}{1-|z|^{2}} \quad(p \geqq 1) . \tag{25}
\end{equation*}
$$

Theorem 7. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be regular and univalent for $|z|<1$. Then $f(z)$ satisfies

$$
\begin{equation*}
\mathfrak{R}\left[1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}-k z \frac{f^{\prime}(z)}{f(z)}\right]>-\frac{\alpha}{2} \tag{26}
\end{equation*}
$$

for
(i)

$$
|z|<\frac{2(2-k)-\sqrt{12-8 k+\alpha^{2}}}{2(1-k)-\alpha} \quad(2(1-k)-\alpha \neq 0)
$$

(ii)

$$
|z|<\frac{\alpha}{\alpha+2}
$$

$$
(2(1-k)-\alpha=0),
$$

where constant k and α satisfy $1 \geqq k \geqq 0,1 \geqq \alpha \geqq 0$.
Proof. Putting $1-\frac{1}{p}=k$ in (25), we have

$$
\Re\left[1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}-k z \frac{f^{\prime}(z)}{f(z)}\right] \geqq \frac{1-k-2(2-k)|z|+(1-k)|z|^{2}}{1-|z|^{2}} .
$$

Thus as a sufficient condition for (26), we have

$$
\frac{1-k-2(2-k)|z|+(1-k)|z|^{2}}{1-|z|^{2}}>-\frac{\alpha}{2} .
$$

This yields

$$
F(|z|, k, \alpha) \equiv(2(1-k)-\alpha)|z|^{2}-4(2-k)|z|+2(1-k)+\alpha>0 .
$$

Noticing $F(0, k, \alpha)=2(1-k)+\alpha>0, F(1, k, \alpha)=-4$, we have (i) or (ii) in each case.

COROLLARY 5. Under the same assumption as Theorem 7, we have for $|z|<\frac{4-\sqrt{12+\alpha^{2}}}{2-\alpha}$ the inequalily

$$
\Re\left[1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right]>-\frac{\alpha}{2}
$$

and so

$$
\int d \arg d f(z)>-\alpha \pi \quad(|z|=r)
$$

This corollary means that for such r, the argument of any tangent on the arc $f\left(r e^{i \theta}\right)$ never drops to a value $\alpha \pi$ radians below the previous value. For example, putting $\alpha=\frac{1}{2}$ we have $|z|<\frac{1}{3}$. Thus we see that for $r<\frac{1}{3}$ the argument of any tangent on the $\operatorname{arc} f\left(r e^{i \theta}\right)$ never drops to a value $\frac{\pi}{2}$ radians below the previous value.

Corollary 6. Under the same assumption as Theorem 7, $f(z)$ is convex for $|z|<2-\sqrt{3}$.

This case corresponds to $\alpha=0$ in Corollary 5,
Corollary 7. Under the same assumption as Theorem 7, let $|z|<4-\sqrt{13}$. Then $f(z)$ is close-to-convex or, more precisely, $f(z)$ is convex in one direction [6].

This case corresponds to $\alpha=1$ in Corollary 5. It is known that if $f(z)$
 convex in one direction [6].

8. The case for meromorphic functions.

In Theorem 1, let $f(z)$ be $F(z)^{-1}$. Then $F(z)$ has an expansion $F(z)=$ $\frac{1}{z}+\sum_{n=0}^{\infty} a_{n} z^{n}$ at $z=0$. Furthermore we have by an elementary culculation (27)

$$
d \arg d f+k d \arg f=d \arg d F-(k+2) d \arg F .
$$

Since $F(z)$ is univalent if and only if $f(z)$ is univalent, we have the following theorem.

Theorem 8. Let us denote by D_{z} a simply connected closed domain including. $z=0$ in it and C_{z} the boundary of D_{z}. Let $f(z)=\frac{1}{z}+\sum_{n=0}^{\infty} a_{n} z^{n}$ be regular on D_{z} except at $z=0$ and suppose $f(z) \neq 0, f^{\prime}(z) \neq 0$ on D_{z}. If there holds for a suitable real constant k

$$
\begin{equation*}
\int_{C_{z^{\prime}}^{\prime}}[d \arg d f(z)-k d \arg f(z)]>-\pi \quad\left(z \in C_{z^{\prime}}^{\prime}\right) \tag{28}
\end{equation*}
$$

where $C_{z}{ }^{\prime}$ is an arbitrary arc on C_{z}, then $f(z)$ is univalent on D_{z}.
Remark 1. In this theorem k has to satisfy $k>\frac{1}{2}$.
Remark 2. For $k \rightarrow+\infty, f(z)$ should be star-like.
Remark 3. Though we have (28) immediately from (27), we may prove this theorem as follows. Suppose that $f(z)$ be multivalent, then D_{w} has some overlapping parts and accordingly, C_{w} has two loops separated by these parts. One of these loops should encircle $w=0$, so that the other loops $C_{w}{ }^{\prime}$ can not encircle $w=0$. Thus for $C_{z}{ }^{\prime}$ we have

$$
\int_{C_{z^{\prime}}}[d \arg d f(z)-k d \arg f(z)]=\int_{C_{z^{\prime}}} d \arg d f(z) \leqq-\pi .
$$

Just as we deduced theorems of $\S 5$ from Theorem 2, we could deduce many results concerning $f(z)=z^{-p}+\sum_{n=-p+1}^{\infty} a_{n} z^{n}$ from theorem 8. We omit them as these results are easily obtained in the same manner.

Nara Gakugei University

References

[1] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., 1 (1952), 169-185.
[2] T. Umezawa, On the theory of univalent functions, Tôhoku Math. J., 7 (1955), 212-228.
[3] M. O. Reade, On Umezawa’s criteria for univalence, J. Math. Soc. Japan, 9 (1957), 234-237.
[4] S. Ogawa, Some criteria for univalence, J. Nara Gakugei Univ., 10 (1961), 712.
[5] S. Ozaki, On the theory of multivalent functions, II, Sci. Rep. Tokyo Bunrika Daigaku A, 4 (1941), 45-87.
[6] T. Umezawa, Analytic functions convex in one direction, J. Math. Soc. Japan, 4 (1952), 194-202.
[7] G. M. Golusin, Zur Theorie der schlichten konformen Abbildung. Recueil Math., 42 (1935), 169-190.

