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1. Introduction.

The theory of norm residue symbol in algebraic number fields has been
variously treated. An explicit formula of the local norm symbol has been given
as the Safarevi¢ symbol by Safarevi¢ [§] Hasse [5] and Kneser [7] improved
the result of Safarevi¢ and supplied a link for the 2"-th symbols.

As for a more special case than that of éafarevi(:, Yamamoto has
proved the local reciprocity law of Kummer-Hilbert, on which the present
author gave a note [9]

The structure of norm group of Kummer extension of prime degree was
characterized to a certain extent by Hensel-Hasse [6] The specially important

formula of Hasse
1-4

() () ==, (=v=1@),

is widely known. Here g, v mean two total-positive numbers in an algebraic
number field which are mutually prime, and S denotes the trace from this field
to the field of rational numbers.

Recently Siegel proved the formula of Hasse from the viewpoint of
the Gauss-Hecke sum in the theta function theory.

In this paper it is our purpose to give a local refinement of the formula of
Hasse, from which we also show that the Safarevic-Hasse-Kneser formula 51
in the quadratic case can be readily derived.

Our method is to calculate explicitly the norm elements in the quadratic
case by means of an idea of Yamamoto and the present author [9] In
order to make this paper self-contained we shall prove several lemmas analogous

to those given in [11] [9]

2. Several preliminary lemmas,

Let % be a local number field of finite degree over the field of rational 2-adic
numbers R,, e its ramification order, f its residue class degree and %k, the field
of inertia, i.e., the maximal unramified field, contained in 2 We denote by
g, O O, the rings of integers in R,, %, kr respectively and also by I, =
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the prime ideal, a prime element in k.

We consider K =%(+/x) with the ramification constant », in which z means
a principal unit in k.. If { denotes the prime ideal in K, then of course {=
2, the different of K/k is Dy, =L+

LEMMA 1. If K/k is ramified, we can select « suitable unit n such that
Ord(1—p)=s, s=1 (2), and then we have s+v=2e. Thevefore the number s is
uniquely determined by K [2].

PrOOF. If we have K=#k(z), s=0 (2), then select a number s’
= u(1+b,s_7z“j’*)"2 with b = aff_l, p=14an’+ -, a, = . Because s < 2e¢ in the
2 2
ramified case, we have Ord;(2b,72%)= e+~%* >s, from which E(Wu )=k 1),
2

Ord,(1—u") > s follows. Here if s’ =0 (2) again occurs, select a unit #” from
' as above. By continuing the same process if necessary, we can find some
unit £ such that k(v z )=k £®), s® =1 (2), because we have s < s’ < -+ < 2e.
Now set s=2d+1 with the non-negative rational integer d and M =+/z, then
II=1—M)x? is a prime element of K. From the definition of the ramifica-
tion constant » =2e—s [2] directly follows.

LeMMA 2. If (Z) denotes a binomial coefficient, then

Ord2{2<2jt><;;)}gj——2n-l for i>2n.
4

Proor. First we have

E(gt)(it):(g>2(2t k) k) E (J k) 2““(;,) if jzk+1.

t =7 (2)

Now, the Faad di Bruno formula on successive derivatives gives us immediately

for f(§)=¢%, &=z,

. E A1 '>mn~!- a1 ((‘,}z“)l)m((%%)m """ @0

in which the summation runs over all partition «: »=a,+2a,+ -+
@@+
Therefore we have

22G)0) = 2wy arar-a-ra-2a=or- (G)(F),

=2T,.

y &=

Ord, T, = Ordy( ZZ ) - (j—a—1)—S a,0rd,(i D),
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>0rd( )+(] a—1)— Zaz(z—l)—Ord( >+] n—1,

Finally we obtain Ord,{ > ( J V(£ )} zi—2n—1.
t

We denote by Ngj the norm from K to & and by Sk, the trace. Then
we put y = Ngull, 6;= Sga(Il’) (= 1).
LEMMA 3.

Uj = Zﬁ—jdﬂ[%] (Iv+1) .

Here [x] denmotes the Gawuss symbol indicating the greatest integer =x and
f=1—p.

PROOF. o, =~ %(1— MY —n~(1+ MY ~n-dJ2V( )M”
=7r“”222(-—1)’°(2];>( L )ﬂk. Now by m we obtain
E t

Ord;(27c‘dj(—1)’“2< 2]; )( ,’; ),@k);_e— jdte(i—2k—1) +hs = —jd -+ ks + e(G—2k),

t

from which —jd-+ks+e(j—2k) <v is valid if and only if k:[é;].
. <] J [4] . agl 5]
Therefore ;= 2z~%—1)" 2 2[4;] B2 (1°*1). Observing that Ord 2z =)
2

>L+J- we obtain our proposition.

LEMMA 3. We have
J
0'_7'52]’2 (Iv+1) Z:f jEO (2)y

Sy i =10

]71
O'jEZT 2

_ I A
PROOF. Because we have y = Nguill =n 8 =xr lnﬂ , we see 27:“”,8[‘-’]’

J-1

= _s1

= 2(8=* ‘3)2 —2r2 if 7=0 (2) and 22778 = Z(ﬁyrl‘s)*2 =2r 2 ® ifj=1().
Therefore we obtain similarly
LEMMA 4. For any element a Oy, we have

Nea(l—all’y=(1+ar 2y o i =0,
Nep(l—all)=14a*i+2ar T = & @) if =1 ().

LEMMA 5. For any partition n=1i,+i,+ - +ip 1; =0, of natural number n,

!
it is mecessary and sufficient for ; n N =1 @) that we have c;= Z}c;‘”
0
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t=0, -+, 7, with respect to the coefficients of n :tg c2' and i; -——t‘:\]:)cﬁ)Z‘, 0=a=1,
0= 1.

Proor. If p=1, we have always ¢, @4+c¢c,V+d,-; =c,+2d;, with d,=0 or 1
for t=1,---,r—1, and d_,=d,=0.

! 7 7 7 . .
Because Ordz—z;—~7;‘—i'~,-—=0 is equivalent to X ¢, =2 ¢+ ¢V, this also is
01?1+ t=0 t=0

t=0
equivalent to 4,=0 for all ¢ i.e, ¢,=c¢®+c® for all £ For the numbers
p>1, the proposition can be easily verified by induction on p.

3. A formula of Hasse.

We can immediately verify one of the formulas of Hasse from

Let v be another principal unit in k£, and denote by (v, #) the quadratic
local Hilbert norm symbol, that is, (v, #)=+1 or —1 according to that v is
the norm of an element from K to 2 or not.

THEOREM 1 (Hasse [27, [3]). Under the assumption s+v=2¢, Ord(1—u)
=s, Ord|(1—v) =0,

i-v

0, )= (=Dl 55,
Here Si, means the trvace from kp to R,.

PROOF. Put 2z~ 1 =71 @), OG)= 3 &', & <Oy then by Lemma 4
=0

Nep(l—all’) =1+4{a*+aD()}r” ),
for any element ¢ € O,.
Therefore vy =1+by® (I°*Y), b € O, is the norm of an element of K if and
only if b= a*+a&, (2) is valid for some element @ in Ok, This condition is.
§$-—-1 —
equivalent to S,,(¢,726)=0 (2). By making use of that £,72= "5, 7°*! S Sl 2

R 22
(2), this also equals to S,CT<—1—2__” ~1~:2-£‘—) =0 (2). Therefore we obtain our for-

mula.
COROLLARY (Hasse [2], [3]). Ifv=pu=1 (2), then

G m=(-1 5,

Here S denotes the trace from k to R.,.

Proor. If Ord,(1—v)>v, then (v, 2)=1. On the other side we also have

S(lgL lgu) =0 (2) and the proposition is valid. If Ord(1—v)=v, we see

v=e, s=e, v-+s=2¢ by the assumption, from which v=s=¢, e=1 (2) follows.
Thus we have S(x)=eS;,(x)= S, (x) (2). Our proposition is also valid from
Theorem 1.
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4. Recursive formulas.

It is our task to obtain an explicit formula for the symbol (v, #) under no
assumption with respect to the orders of 1—y, 1—u.

For convenience’ sake, we put 2/-'=4, and then of course we have ¢*
=a*’ =q (2) for any element ¢ € Oy,

If two principal units A, B in k belong to the same coset with respect to
the multiplicative group of the norms Ng,K*, i.e., there exists an element X
in K such that A= B Ng,X, which is equivalent to A=B NgX ") for
some element X’ in K, then we shall write A~ B.

By making use of this notation, yields for a natural number m
and g € Oy,.

apom 14 @02
@ 1+apm~l+ 1T ap ?
L
) 1+42472m+1“’1+‘ﬁ;7;‘2“’""®(?’)
l+ar2m+l .
s-1 v+1

Here @(y) means an [-adic expansion of 2z 2 y 2 with a prime element 7,
and so a unit in k.

In order to simplify our computations, we assume g=1—p=1-2x% 1 T,
where T means a system of representatives of Teichmiiller, that is, the multi-
plicatively closed representative system of the residue class field of 4.

If we denote by Zzérmﬂ' the l-adic expansion of 2 with the coefficients

s-1 co 1
contained in 7, then we have O(r)=21 % y*=327% ;7" 2 2 n,= 7. Then

also from (1), (2) follow after a short calculation,

@ I4aermelt 2 (S (—Diedain)r,

t=e+m (2+1)m+j=t

v s=L
@) ltaeMrmiald 3 ( = (—=D'ada'n;d * )y

t=vt+m m+ @maDivg- S L=t

2

Here we put o* :%l—. In the second summation we mean j =¢ and { =0 and

we fix these meaning in this and the next sections. Also the letter / means
always an odd number.

We see
(—Dia4atn; = S (d'gH)? (mod 2),

Qi+1)m+j=t < O+ 2j=0¢

by (—D'a?a’n;2 = by (@'n2as1)4 (mod 2).

m+ Qm+1)i+j— s;1 =t ((Gm+1) +2j—s=2¢
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If we denote the coefficients of F= 377 and G =722 "'r*~* respec-
j=e

Jj=e

tively by D,F and D,G, we evidently obtain the following formulas.

) Ttadrmalt 3 (8 d - DuFY,

t=e+m (+2m+m,=2¢

®) Ltadpmtinds 3 (% DaGY
t

=v*+m ((2m+1) +m,=2t
Remark that D,FF=0 for p < 2e, and that our formulas are reduced to the
trivial ones if » <v*4-m occurs.
Now we put H= —F-+G and denote its coefficients by D,H. Observing that
D,H=—D,F for m=0 (2) and D, H=D,G for m=1 (2), we obtain for both
cases n=2m and n =2m-+1,

@ Ita@ials 3 (X dDuHYT.
t={£’;75} Lontmo=2¢
Here {x} means the symbol indicating the least integer = x and so {x} = —[—x].
REMARK.

(D. In the case where n = v*, we particularly obtain from (V) the follow-
ing formula.

®) ltari~l+ 3 (@Dy-nH)7t.
= L

fChud
2

For, /=3 yields nl+m = 3v*+m > v+1+m and we see by our definition D, H=
0 for m,<wv. Therefore 2t=In+m,>v+1+v—=20-+1, i.e, t=v+1. Thus the
terms with the summation 2¢ =In-+m,, [ =3 makes no contribution in (7). On
the other hand we have trivially 1+ae?7" =1+4ar® (**Y) for w = v*. Thus (8)
follows from (7).

(iD. Our definition evidently yields

H= —F+G = —F+4 1y F=(—142"17)F

— (—1+ 1_1u )F: 1fﬂ F.

By making use of the formula (7), we can transform 1-+ar’, a = O, as
follows.
1+(lrt’\/ 1+arv 5 a < DkT ’

in which « is not uniquely determined, but l4ar’~1+a’y’, a,a’ =9y, is,
from [Theorem 1|, equivalent to

©) S,CT(—D%) = skr(—b%) @).

Here we shall denote by a = «’, that two elements «, «’ satisfy the rela-
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tion (9), and by ¢(a,?) a representative of the equivalence class of «a, deter-
mined by 1+¢a7t.

Evidently we have the following propositions.

@ If ola,)=4 (2), then ¢(a, ) = B.

Ay If 14art~1+a’r", then ¢(a,t) = ¢la’,t').

di) ele+a’, n) = 9la, n)+9(a’, n) for n=v*.

Now we shall obtain a recursive formula for ¢(z,#) from the formula (7).

Set dba=( ¥ & DpH) (mod 2) ¢=¢). Then from (7) and the re-

it +mo=2t,

mark we see

Ltadinld 3 dtart~ I1 A+dtar®)

w={1) w5}

~ L, (reGianr~le 3 ey,

t1= 5 t,= ."%_

Consequently we obtain

10) s n= 35 sGiat,
u={2t

in particular for = v¥,

a s~ 3 o0,

t.={2%

Here note that ¢(q,v) = a = (aD,H)?.
By making repeatedly use of (10), (11) with (), (II), (III),

b

2, —v
p@, )= X o X ondhaty).
t *{,,3,”+L _{LJFL}

L 22 L )

Generally we obtain

2t;-v 2ty —v

@, =e( 2 > e X gtz e OLa, ty)

ti=ug tj—1=uj—1 Li1=uy

in which we put ui:{—(.zfioli)ﬂi .

If we select a sufficiently large i such that #;=v holds, our remark after
(11) shows

v 2ty -0

(12) Pa, Hm 3 e 3 0L e Bl
ti—1=ug—1 1=u;
5. An explicit expression for ¢(a, t).

Our next concern is to give an explicit expression of the member of the
right hand side of (12) by means of 14247
From our definition we see immediately
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65;6£1a = 2 (al * DmuH)Ag(D%l—hH)d (mOd 2)‘

tl+m,=2t,

Generally we have

041043 +++ St = X a4 (DagyuHY* Doty -ts Y™ v+ (Dot H)* -
Therefore we obtain from (12),

13) 9™~ 3 -3 2 @4 Dy -+ (st

ti—|=ug—1 t, Uy

. v s~ .
~ ;au% 2 2 (chwuH)ﬂ (Dzv-ti-1H)d

tim1=Ui~-1 L1=uy
~ 3 a4 > (D H)* (D, HY*' ™ -2+ (Do H)* .
Qo=¢l+m M=o +2M g+ +5¥"1m g

Now we define a formal power series H{x)= 2( D, Hx" 1” (/fzx) —F(xy

by taking an indeterminate x instead of r in the [-adic expansion of H, in-
dicated before. The u(x) denotes the polynomial 1—A!%x® and the F(x) a formal
power series defined by replacement of y in /. Then
S R N t—1 (2 ) 2o i1
W H@ = > YD) 2 (DHY(D,H)" -+

t=(-1)v @

where the second summation runs over all partition a: i,+i,+ --- =2—1,
i1+ 204 o=

shows for all #= (%1,

(15) {D(H@ )4 = > (Do ) (D Y™ -+ (D H)*

t=mo+2m,+ et 28l

(mod 2).

Here D(H(x)*-!) denotes the coefficient of degree # of the series H(x)*".

If we select for ¢ an element belonging to T, we have a*/=qa. So we have

16) o@D~ 3 {@DuHE D),

Lo=tl+m

in which the suffix s runs over all integers satisfying 2% =t/+m, (/,2)=1,
29— =<m=2w—t < 2%—].

On the other hand

A7) Du(H@ ) =Dp(H@*H® ™= 3 Dy H@ - DpH®™ .

M=n,+n,

If 2[x] denotes the ideal consisting of power series with the coefficients
divisible by 2 in the ring of formal power series of x over £,,, then

H(x)ﬂ‘zé (D, H)* - 57 (mod 2[x7).

Therefore
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0 (mod 2) if #=0 (29,

Dan(x)Zi = . .
(Da HY (mod 2) if n=0 (29.
9t

The only remaining term mod 2 of (17) is that of n, = 2%, since , =2'(v-+1)
with n, = —v yields n,+n, = 2(w+1)—v =20+ 2"—0) > 2v—t = m.
Thus

D, (H@ 1y = (DH Y + Dpeis H(@) ™ = (DyGY D H (%)™ (mod 2).
And we obtain finally
(18) o, b) ~ 2 (@ - (DG + DpsgisH(X) 114,
Yo=tl+m

= (D0G>(i 2 {al - Dm—zivH(x)—l}Ai ’

Loo=tl+m

~ l ) 1—“#(96)_ —11 40
N(DUG)ziu§+m{a : Dm—zlv ,u(x) F(x) }A .

Now we define a polynomial v,(x) = 1+ax® for 1+ay’, and then for (/,2)=1,

l o k) — 1=vlx)
@ = Dl L=y} = Dal X A=) =Du(, [57%)  (mod 2).

Thus it follows from the above formula that

19 =003 (D (12D)p, (140 1)

_ 1—y,(x) 1—ulx) 1 4
~(DUG)'Do( vi(x  mlx) F (x)) .

If 2(x):§mxi denotes the power series attached to the [(-adic expansion

.2:_:29 7:r" of 2, then we readily see
F(x)=2(x)? (mod 2[x]).

Consequéntly an explicit expression of ¢(g, £) follows from the formula (19)
as follows.

20) #(a, )= (DG - {Dy( 122 1) P ))”

1—u(x) 1
2(x)  2x)?

Therefore for

For an odd number ¢, we need only the terms of odd degree of -

l—p() 1 o 1—p® 1
w(x) 2 DY a2

and then we may replace
(t,Z)'—'l,

21 ola, )= (DvG){Do( 1;(1;;)(296) 1;('{;%26) 2(126)2 )}A .

The formulas and (21) give us a complete solution for our problem.
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6. A local law of reciprocity.

We shall select a system of generators of principal unit group in .2 such

as l—ar', a,= T, t=1,2,---. Then we have to modify slightly the formulas.
(20), (21) as follows.
By making use of Ord,2y)=e+t= %18— +¢=ov*, a short calculation shows.
— t— t _%d_rt__ v+1
@ lear'=0rar) (L) )
=Utar) I A+ 3 at*ig)®) (1)
k=e+t m+ (1+)t=k

where in the case of #=v*, the second products of the number of the right
hand side become the unity.
Therefore

1—ar'~1+{g(a D+ :2 9B @ B

m+ (15 ) t=k

In this equivalence we see by (21), for some large number i,

2 + " 2@)ax® 1—pnlx) 1 4t
(23> A:§+t¢(m+ (1+zj)t=ka1 jnm’ k) = (DvG){D0< 1+axt w(x) 2(x)2 >} )

Put v(x)=1—ax* for the principal unit v =1—¢7’, then

ot 1 1—v@1—p(®) 1 1—=v(®) 1—p(D\\ 4 .
@) 1-ar 1+[(D ”G>{D° 20x)? v(x)?  ulx) +2(x) v(x)  ulx) ) } ;]T -
From we obtain the following fundamental formula.
1N © _ 1 1—v(x)1—u(x) 1 1—v(x) 1—ulx)
@) ©o=CD", C=Dags i w TED A )
Here v=1—ar’, 1 =1-07% a,b = T and v(x) =1—ax’, u(x)=1—0bx".
Particularly under the condition (¢,2)=1 we have

. 11—y 1—p) 1 1—vlx) 1—ul®)
@) C=Dlgay “yr aor TS ) am )

_ 1 1@ 11—
=Dty oy A )

In this case our formula shows that the norm symbol is symmetric with
respect to v and .

Now we shall take as a system of generators of the principal unit group
in % the principal units expressed by means of the Artin-Hasse-Safarevié
functions. By this system we can more simply express our local reciprocity
law. ’

We shall here recall the Artin-Hasse function E(e,7’) for e = T. If u(m)
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denotes the Mobius’ function, then

H(m,
20N E(a, 7%) —_—( 1;)1—1 (1— amrmc)~mi Y
A1 o
(28) La, 75 = E 57 'yt
=0

Since our norm symbol has evidently the property v, &)=, )V, ££)
from the definition, an explicit expression of (£(a, 7", #) can be obtained as
follows.

m .. mé
(29) A g = 3 A (mod 2[x]),

m
(30) —1—"—};,,7 = S amign (mod 2[J),

@D A—amm™y =, =A—am™),m)  for =1 ).
Our fundamental formula (25) with (29), (30), (31) yields

(Ea, 1), 1) =(—1)%?,

C:DO{ E ﬁg/}’:i)_ E QN 1’“1“(9‘1 1

u(x)* 2x)?
(m,2)=1 (n,2)=1

mk mkt 1 1
+ Yy E R Earil

(m,2)=1

On the other hand, if ¢(!) means Euler’s function, then
E ﬂ(?’}’L) E amnxmnt__ E ] ¢(l)dl ltﬂ. (mod 2[:‘,])’
(m,2)=1 (n,2)=1 ,2)=1
and similarly

E #Szn : Eamkxm“EEd2jx2’° (mod 2[x7J).
k=1 =0

(m,2)=1

Here we define L(a, x%)= %aﬁj ¥t Then

=0

(Ea, 1), ) =(— 1%,
NI C N B S B B
C=Do{axt =5 g + L a9 55550}

Our symbol has the property of symmetry which is easily verified, so that
W, wtt) =, u)v, #,) holds. Therefore the similar discussion as above shows
for (s,2)=1,
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(32) (E(a, 7%, E®, r)=(—1)%,
of s 1 o of s 1
€ =Di{as'Llb, 5 gy + L, x00b, )9 5}
The exponent S, (C) can be slightly simplified as follows.

(33) SkT(C)ESk,<D0{ax‘Z(b,xs)-2(17)2 +f(a2,x2”)f(b2,x2s)%)§}> (mod 2),

= Sk,<00{%x)2 Lta, x9E0, x4} ) (mod 2).

Thus we have obtained our main theorem.
THEOREM 2. Under the assumption (5,2)=1, a,b = T, we have
_ La, x% L, %%
A NNy — (__1\B — IONTY T S TN T
E@ 1 EG =1, R=Su(Df "5~ })
where 2(x) means, as before, the formal power sevies defined by replacement of r
by x in the {-adic expansion of 2 by r, whose coefficients belong to the Teichmiiller
representative system T.
Note that we can regard 7 as an arbitrary prime element in £ in this
theorem.

7. The case of ramification constant 2e.

In this section we consider an extension field K=&z ) over %, and an
explicit formula of the symbol (K (e, z*), z) can be derived by the same method
as before.

LEMMA 6. Put Il =~'n and Nguill ==, then for a € Oy,

t
Nip(l—all) = 14a?n'—2an ? if t=0(),
Nia(l—all)y=1+a’z" it 1=1(2).

The proof is trivial. Moreover it is evident that the ramification constant
of K/k is v=2e¢. From an analogous calculation to (8) gives us for
a natural number ¢,

(34) 11 g2an2t~ 11 i > (@A),
5=} 1=,
i. e,
35) I4+@n2~1+ D ) ora w .

t={*;

Here of course our equivalence relation ~ means that with respect to the

multiplicative norm group Ng,K*, and we put dfa= X (&%9,5)? (mod 2),
{t+j=2¢t,
t,2)=1, jZe

as before.
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Thus we have the following known theorem.
THEOREM 3. If a principal unit v has the order Ord(1—v)=2e, we have
@, m)= (1),
Proor. By making use of above notations,
Ngp(l—all*) = 1+(a®—7.a)n* (SN

Therefore it is necessary and sufficient for v =14bz%, b = Oy, to be the norm:
of an element from K that there exists an element «a € O, satisfying b =a*—7.a
(2), that is, equivalent to S, (b7, ) =0 (2), in other word, Sy, LE;) =0 ).

We define ¢(a?4, 2f) the same as before and then (35) becomes

o420~ Y ¢ha, ).

=15t}

In general, we also have

e 2t,—e
P04, 2)~ S - S (ot - Bha, 28,

ty=uyg ti=u,

where u]-:{ (2]—213)e+t} and m;=e. For a sufficiently large number i,

e 2t,—e
§D((ZZA, Zt) ~ Z Z 53@‘—1 5510

tg—1=uUg—1 i =u,

_ 4t At-1 g1-2
= 2 a 2 Mo Tms— ** Tmi—1 -
9te=tl+m m=m°+2m1+"'+2’b_lmi—l

A quite similar discussion as in previous sections yields for a = T,

9@ 2= 5 (@4 Dul2af )
te=t{+m

= 7782 > (al : Dm—-2ie(2(x)—1)2)di

2le=tl+m

, 1— 1 4
=0t AP 2 )}

Here v(x) denotes the polynomial v(x)=1+ax% for v =1+ax¥, and 2(x) has the
same meaning as before, but of course we must use 7 instead of 7.
Thus for an element ¢ = 7,
(I+an®, )= (1% b 5&7 )

Now we easily see

2e
l—ar*=Q4an) TI (1+( 2 - al+i77j)7,k) 12+,
k=e+t 2t(l+z) 'i:]0=k
jZe, iz

that is,
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l—an?~(I4ar®) TI A+ S a*in) ™).
Therefore for an element a € 7,
(—ar®, m)= (1%,
_ 1—v(x) 1 ax? 2(x)
C=Du(5 aor + 1rax ) (mod 2),
N 1—v(x) 1 1—v(x) 1
=Dy 2w T 2 (mod 2),
_ 11—yl
Here the same approach as (33) from (26) gives us the following theorem.
THEOREM 4.
(E(a, n*), ) =(—1®, R= SkT<D0{~2(1;C)7 LN(a,x”)}) (mod 2).

8. The Safarevi¢-Hasse-Kneser formula.

We shall show in this section that the Safarevi¢-Hasse-Kneser formula
[5] in the quadratic case can be derived from our [Theorem 2, [Theorem 4

The Safarevic-Hasse-Kneser formula reads:

(E(d, ﬂ:j)’ E(Z), ns)) — (7[‘:, E(sab’ n.t-{—s) ﬁ E((21—1t+2J—lS>d21b2‘7’ 71.27:t+2j3)) ,
i, i—=1

LJ=
in which «, 5 need not belong to the Teichmiiller representative system 7T,
but in the quadratic case we may assume that they belong to 7, and further-
more (¢,2)=(s,2)=1.
From follows
(ﬂ:, E(sab, n.!-l-s)‘ ﬁlE((zi"lf*l—zj-lS)clzibz], zziwz]’s)): (_l)SkT(C) ,

1=

1 =~ s +ofs 1 3 f eire  aicess
C:DO{WL(ab, xtF HF»W;E L(a?b?, x2+% )+Wi:21 L(a?'b?, x?'t+2 )} .

— Doﬁ (Fa, x9E, ) —axt B, x)—bx*Ea, 9},
_ [ L,z L, x%)
=Dy 200 2% ;-
Thus by the Safarevi¢-Hasse-Kneser formula has been verified.

Now by the canonical decomposition theorem of Safarevié 051 73
we can decompose two principal units v, # in k:
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Y EI<1;[% Ea,, ni) a9, n= I E,, 7fi) 29

=is 1592
(1,2)=1 (i,2)=1

The elements a;, b; in this form belong to £, but in the quadratic case
we can assume that they belong to the Teichmiiller representative system 7.
For the square E(2a,n")=E(a,n%? is a trivial factor in our case.

Let L(v,x), L(#,x) denote the power series defined by L(v,x) = 7(1;)—1 > K,
=is%
(i,2)=1

Ly, x)zf(li] > ]j(bi,xi), then our main theorem shows

=ix=2
G, 2=1

(V ,Lt) . (__1)SkT(Do{L(V,$)‘L(/1)z)})
, =

’

which gives us a slightly more explicit formula of the norm symbol than
Safarevi¢-Hasse-Kneser symbol,

General Education Department,
Kyushu University
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