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1. If $\tau;X\rightarrow Y$ is a meromorphic mapping in the sense of Remmert with
(irremovable) singularities $M$, then there exists a proper modification (X, $1lI\sim$,
$\pi,$ $M,$ $X$) such that there exists a holomorphic mapping $\lambda:\tilde{X}\rightarrow Y$ for which
$\lambda=\tau\circ\pi$ on $\tilde{X}-\tilde{M}$. (See Remmert [4] and Iwahashi [3].) In this paper we
consider the following converse problem: Let $1\psi$ be a nowhere dense closed
subset of a normal complex space $X$, and $\tau$ a holomorphic mapping of $x_{-1}\uparrow/I$

into a complex space $Y$. Assume there exist a connected normal complex
space $\tilde{X}$, a holomorphic surjective mapping $\pi;\tilde{X}\rightarrow X$ and a holomorphic map-
ping $\lambda:\tilde{X}\rightarrow Y$ for which $\lambda=\tau\circ\pi$ on $\pi^{-1}(X-M)$ . Then we may ask: what
character does the mapping $\tau$ have ? We give the following two results on
this problem: (1) If the space $\tilde{X}$ has a countable basis, the set of irremovable
singularities of $\tau$ is closed and almost thin of order 2. (2) If $\pi$ is proper, the
mapping $\tau$ is meromorphic in the sense of Remmert.

At the end of this paper we give a remark on removable singularities of
a holomorphic (or meromorphic) function in normal complex spaces.

The author wishes to express his sincere thanks to Professor S. Hitotumatu
who has suggested to him this problem and given valuable advices.

2. I adopt the notion of complex spaces ( $=complex\beta$-spaces) and the related
notions such as holomorphic mapping, analytic set, normalization of an analytic
set and so on as given in Grauert-Remmert [2]. The number $n=\dim_{P}X$ is
the complex dimension of a complex space $X$ at $P\in X$.

Let $\tau;X\rightarrow Y$ be a holomorphic mapping of a complex space $X$ into a
complex space $Y$. The number $r_{\tau}(P)=\dim_{p}X-\dim_{p}\tau^{-1}\tau(P)$ is called the rank
of the mapping $\tau$ at a point $P\in X.$

$r_{\tau}=\sup_{P\in X}r_{\tau}(P)$ is called the global rank of
the mapping $\tau$ on $X$. The set

$\{P\in X|r_{\tau}(P)<\lim_{P\rightarrow}\sup_{P}r_{\tau}(P^{\prime})\}$

is called the set of degeneration of the mapping $\tau$ . When the space $X$ is irre-
ducible, the set $\{P\in X|r_{\tau}(P)<r_{\tau}\}$ coincides with the set of degeneration of $\tau$ .

A subset $1\psi$ of a complex space $X$ is said to be thin of orderq if for every
point $P\in M$ there exists an open neighborhood $U$ of $P$ in $X$ in which an
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analytic set $M^{0}$ is given such that $M_{\cap}U\subset M^{0},$ $\dim_{P}M^{0}\leqq\dim_{P}X-q$ . A subset
$M$ of $X$ is said to be almost thin of order $q$ if $M=\bigcup_{i=1}^{\infty}M_{i}$ , where each $M_{i}$ is

thin of order $q$. First we remark the following fact:
THEOREM 1. Let $\tau;X\rightarrow Y$ be a holomorphic mapping of a normal complex

space $X$ into a normal complex space $Y$, and $N$ be the set of $de_{\epsilon^{\sigma}}$,eneration of $\tau$ .
If the space $X$ has a countable basis, then the set $\tau(N)$ is almost thin of order
2 in $Y$.

PROOF. The space $X$ has at most countable number of components. There-
$4ore$ we may assume that $X$ and $Y$ are connected and pure-dimensional. If
$\dim Y$ is $0$ or 1, $N$ is empty. So we assume that $\dim X=m,$ $\dim Y=n$ and
$n\geqq 2$ . The set $\{P\in X|r_{\tau}(P)\leqq n-2\}$ is analytic in $X$ and its image under $\tau$

is almost thin of order 2 in $Y$ (Stoll [6, Hilfssatz $6.3]^{1)}$). Hence, for the proof
it is sufficient to consider the case of $r_{r}=n,$ $r_{\tau}(P)=n-1$ at every point $P\in N$

and $m\geqq n$ . The normalization of the analytic set $N$ is denoted by $(N^{*}, \mu)$.
The space $N^{*}$ is a normal complex space and has also a countable basis. Let

$\bigcup_{i=1}^{\infty}N_{i^{*}}$ be a decomposition into connected components of $N^{*}$ and $\mu_{i}$ be the

restriction of the mapping $\mu$ to $N_{i^{*}}$ . $N_{i}=\mu(N_{i^{*}})$ is an irreducible component of

$N$ and $N=\bigcup_{i=1}^{\infty}N_{i}$ . For every point $P^{*}\in N_{i^{*}}$ $(i=1,2, \cdots )$ , there exists $P^{*\gamma}\in N_{i^{*}}$

in an arbitrary neighborhood of $P^{*}$ such that $P^{\prime}=\mu(P^{*\prime})$ is an ordinary point
of $N_{i}$ and there exists a neighborhood $U$ of $P^{\prime}$ in $X$ for which $N_{\cap}U=N_{i}\cap U$.
In a sufficiently small neighborhood of $P^{\prime}$ there is at least one irreducible
$m-n+1$ dimensional component of $\tau^{-1}\tau(P^{\prime})$ contained in $N$, accordingly in $N_{i}$ .
Therefore, $\dim_{P},$ $\tau^{-1}\tau(P^{\prime})\cap N_{i}\geqq m-n+1$ . Since the set of degeneration $N$ is
at most $m-1$ dimensional and $\mu_{i}$ is the mapping of the normalization, we have

$r_{\tau 0_{1}},i(P^{*\prime})=\dim N_{i^{*}}-\dim_{P^{*/}}(\tau\circ\mu_{i})^{-1}(\tau^{o}\mu_{i})(P^{*\prime})$

$=\dim$ $N.-\dim_{P}\tau^{-1}\tau(P^{\prime})_{\cap}N_{i}\leqq(m-1)-(m-n+1)=n-2$ .
By the lower semi-continuity of the rank of a holomorphic mapping (Remmert
[4, Satz 15]), the global rank of $\tau\circ\mu_{i}$ on $N_{i^{*}}$ is at most $n-2$ . Hence, $\tau\circ\mu_{i}(N_{i^{*}})=$

$\tau(N_{i})$ is almost thin of order 2 and $\tau(N)=\bigcup_{i=1}^{\infty}\tau(N_{i})$ is so. $q.e$ . $d$ .

3. Now we state;
THEOREM 2. Let $M$ be a subset of an n-dimensional connected normal com-

$t\}lex$ space $X$ such that $X-M$ is dense in $X$ and let $\tau$ be a mapping (it need not
be continuous) of $X-M$ into a complex space Y. Suppose that there exist a
ncrmal complex space $\tilde{X}$ and a holomorphic mapping $\pi;\tilde{X}\rightarrow X$ such that the

!) Every complex space in Stoll [6] is normal and has a countable basis. But
in this lemma there is no need for the image space to have a countable basis.
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global rank of $\pi$ on each component of $\tilde{X}$ is $n(=\dim X)$ and there exists a
holomorphic mapping $\lambda$ : $\tilde{X}\rightarrow Y$ for which $\lambda=\tau\circ\pi$ on $\pi^{-1}(X-M)$ . The set of
degeneration of $\pi$ is denoted by $\tilde{N}$.

Then $\pi(\tilde{X}-\tilde{N})$ is an open set in $X$ and there exists a holomorphic mapping
$\tau^{*};$ $\pi(\tilde{X}-\tilde{N})\rightarrow Y$ such that $\tau^{*}=\tau$ on $(X-M)\cap\pi(\tilde{X}-\tilde{N})$ and $\lambda=\tau^{*}\circ\pi$ on $\tilde{X}-\tilde{N}_{\nu}$

PROOF. Under our assumptions, the restriction of $\pi$ to $\tilde{X}-\tilde{N}$ is an open
mapping (Remmert [4, Sats 28]). Hence $\pi(\tilde{X}-\tilde{N})$ is an open set in $X$.

For every point $P\in\pi(\tilde{X}-\tilde{N})$, we take two arbitrary points $\tilde{P}^{1}$ and $\tilde{P}^{2}$ of
$\pi^{-1}(P)\cap(\tilde{X}-\tilde{N})$ . If $P\not\in M$, then $\lambda(\tilde{P}^{1})=\lambda(\tilde{P}^{2})$ . Suppose that $P\in M$. Since $M$

contains no interior points, $\tilde{M}=\pi^{-1}(M)$ can not contain interior points in $\tilde{X}-\tilde{N}$.
Therefore there exist $\tilde{P}_{\lrcorner}^{1}\in\tilde{X}-(\tilde{N}U\tilde{M})(\nu=1,2, \cdots)$ such that $\lim_{\nu\rightarrow\infty}$

$P.’=\tilde{P}^{1}$ ,

Define $P.=\pi(\tilde{P}_{\nu^{1}})$ . Choose a neighborhood $\tilde{U}$ of $\tilde{P}^{2}$ such that $\tilde{U}_{\cap}\tilde{N}=\emptyset$ and
there exists a metric $\sigma$ in $\tilde{U}$. Let $U_{\mu}$ be a neighborhood of $\tilde{P}^{2}$ such that

$[y_{J}\subset\{\tilde{P}\in\tilde{U}|\sigma(\tilde{P}^{2},\tilde{P})<1/\mu\}$ $(\mu=1,2, \cdots)$ .
$\pi(\tilde{U}_{\mu})=U_{f1}$ is a neighborhood of $P$. Since $\lim_{\nu\rightarrow\infty}$ $P.=P$, the sequence $\{P_{\nu}\}$ con-
tains a subsequence $\{P_{j}\}\mu$ for which $P_{\lrcorner}\mu\in U_{l1}$ , $(\mu=1,2, \cdots )$ . We can choose
a point $\tilde{P}_{\nu_{\mu}^{2}}\in U_{/1}\cap\pi^{-1}(P_{\nu_{\mu}})$ for every $\nu_{\mu}$ . Since $\lim\tilde{P}_{\nu_{\mu}}^{2}=\tilde{P}^{2},$ $\lambda(\tilde{P}^{1})=\lim\lambda(\tilde{P}_{\nu^{1}})=$

$\lim_{\mu\rightarrow\infty}\tau\circ\pi(\tilde{P}_{\nu_{\mu}^{1}})=$ $\lim_{u\rightarrow\infty,\prime}\tau\circ\pi(\tilde{P}_{\nu_{\mu}^{2}})=\lim_{\mu\rightarrow\infty}\lambda(\tilde{P}_{\nu_{\mu}^{2}})=\lambda(\tilde{P}^{2})$ . $\mu\rightarrow\infty Therefore$ for $every^{\mu\rightarrow\infty}pointP\in$

$\pi(\tilde{X}-\tilde{N})$ the mapping $\lambda$ is constant on $(\tilde{X}-\tilde{N})\cap\pi^{-1}(P)$ .
Suppose that $P$ is an arbitrary point of $\pi(\tilde{X}-\tilde{N})$ . Let $\Sigma_{r}(P)$ be the set

of all points $Q\in Y$ such that there exist $P_{\lrcorner}\in X-M(\nu=1,2, \cdots)$ for which
$\lim_{\nu\rightarrow\infty}$ $P.=P$ and $\lim_{\nu\rightarrow\infty}\tau(P_{\nu})=Q$ . It is trivial that $\Sigma_{\tau}(P)\neq\phi$ , because there exists

at least one point $\tilde{P}\in(\tilde{X}-\tilde{N})\cap\pi^{-1}(P)$ . We can easily prove in the same way
that $Q=\lambda(\tilde{P})$ for an arbitrary point $Q\in\Sigma_{\tau}(P)$ . Hence $\Sigma_{\tau}(P)$ contains one and
only one point for every $P\in\pi(\tilde{X}-\tilde{N})$ .

Define $\tau^{*}(P)=\Sigma_{\tau}(P)$ for every $P\in\pi(\tilde{X}-\tilde{N})$ . By a Stein’s theorem $([5_{r}$

Staz 2, $Zusatz]^{2)}$), $\tau^{*}$ is a holomorphic mapping from $\pi(\tilde{X}-\tilde{N})$ into $Y$. Thus
our assertion is proved. $q$ . $e$ . $d$ .

A point $P\in X$ is called a regular point of $\tau^{*}$ if there exist an open neigh-
borhood $U$ of $P$ and a holomorphic mapping $\tau^{**}$ from $\pi(\tilde{X}-\tilde{N})\cup U$ into $Y$

such that $\tau^{**}=\tau^{*}$ on $\pi(\tilde{X}-\tilde{N})$ . The point $P\in X$ is called a $(irremovable)|$

singular point of $\tau^{*}$ if it is not a regular point of $\tau^{*}$ . We have,
COROLLARY 1. In addition to the same assumptions as in Theorem 2, $we$

assume that $\tilde{X}$ has a countable basis and $\pi$ is surjective. Then the set $S$ of all
singular points of $\tau^{*}$ is closed and almost thin of order 2.

2) Every complex space in Stein [5] is normal. But in this theorem there is no
need for the image space to be normal.
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PROOF. It is trivial that $S$ is closed. By Theorem 1, $\pi(\tilde{N})$ is almost thin
of order 2. Since $\pi$ is surjective, $S\subset X-\pi(\tilde{X}-\tilde{N})\subset\pi(\tilde{N})$ . Hence $S$ is almost
thin of order 2. $q$ . $e$ . $d$ .

I adopt the definition of a meromorphic mapping in the sense of Rem-
mert (=SR-meromorphic mapping) as given in Stoll [6]; $\tau;X\rightarrow Y$ is called a
meromorphic mapping (in the sense of Remmert) of a complex space $X$ into a
complex space $Y$ if it has the following properties: (a) There exists a closed
thin set $M$ of order 1 in $X$, and $\tau$ is a holomorphic mapping of $X-M$ into $Y_{\sim}$

(b) We \‘oenote by $T$ the graph of $\tau$ . The closure $\overline{T}$ of $T$ in $x\times Y$ is analytic
in $x\times Y$. (c) For every point $P\in X$, the set $(\{P\}\times Y)\cap\overline{T}$ is not empty and
compact. Then we have the following fact:

COROLLARY 2. In addition to the same assumptions as in Theorem 2, $we$

assume that the mapping $\pi$ is proper and surjective. Then $\tau^{*}$ is a meromorphic
mapping from $X$ into $Y$.

PROOF. Since $\pi$ is proper, $N=\pi(\tilde{N})$ is an analytic set of at most $n-2$

dimension and consequently $X-\pi(\tilde{X}-\tilde{N})$ is closed thin of order 1. We denote
by $T$ the set

$\{(P, \tau^{*}(P))|P\in\pi(\tilde{X}-\tilde{N})\}$ ,

and by $G$ the set
$\{(\pi(\tilde{P}), \lambda(\tilde{P}))|\tilde{P}\in\tilde{X}\}$ .

The closure of $T$ in $x\times Y$ is denoted by $\overline{T}$. It is trivial that
$T=\{(\pi(\tilde{P}), \lambda(\tilde{P}))|\tilde{P}\in\tilde{X}-\tilde{N}\}$

$andG\subset\overline{T}$. $Conversely,$ $supposethat(P, Q)\in\overline{T}$. $ThenthereexistP_{\nu}\in\pi(\tilde{X}-\tilde{N})$}

such that $\lim_{\nu\rightarrow\infty}$
(P., $\tau^{*}(P_{\nu})$) $=(P, Q)$ . Since $\pi$ is proper, we can select a sub-

sequence {P.,} of the sequence $\{P_{v}\}$ such that there exist $P_{\mu}\in(\tilde{X}-\tilde{N})\cap\pi^{-1}(P_{\nu_{\mu}})$,

and $\tilde{P}\in\tilde{X}$ for which $\lim_{\mu\rightarrow\infty}P_{\mu}=\tilde{P}$. Since

$(P, Q)=\lim_{\nu\rightarrow\infty}(P_{\nu}, \tau^{*}(P_{\nu}))=\lim_{\mu\rightarrow\infty}(\pi(\tilde{P}_{\nu_{\mu}}), \lambda(\tilde{P}_{\nu_{\mu}}))=(\pi(\tilde{P}), \lambda(\tilde{P}))$ ,

$\overline{T}$ is contained in $G$ . Thus we have $\overline{T}=G$ .
The set $H=\{(\tilde{P}, \pi(\tilde{P}), \lambda(\tilde{P}))|\tilde{P}\in\tilde{X}\}$ is analytic in $\tilde{X}\times X\times Y$. We denote

by $\alpha$ the natural projection
$H\rightarrow X\times Y$ such that $(\tilde{P}, \pi(\tilde{P}),$ $\lambda(\tilde{P}))\rightarrow(\pi(\tilde{P}), \lambda(\tilde{P}))$ ,

and similarly by $\beta$

$X\times Y\rightarrow X$ such that $(P, Q)\in x\times Y\rightarrow P\in X$ .
Let $K$ be a compact set in $X\times Y$. $\pi^{-1}\beta(K)$ is compact in $X$. Since $\pi^{-1}\beta(K)\times K$

is compact in $\tilde{X}\times X\times Y$ and $H$ is closed in $xxXxY,$ $\alpha^{-1}(K)=(\pi^{-1}\beta(K)\times K)\cap H$

is a compact subset of $H$. Hence the mapping a is proper and $\alpha(H)=G=\overline{T}$
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is analytic in XX $Y$. For every point $P\in X$, the set $(\{P\}\times Y)\cap\overline{T}$ coincides
with $\{P\}\times\lambda\pi^{-1}(P)$, and consequently it is compact and not empty. $q$ . $e$ . $d$ .

4. Let $X$ be a connected normal complex space, $M$ be a closed almost thin
set of order 2 and $f$ be a holomorphic (or meromorphic) function in $X-M$. We
would like to show that $f$ can be extended to the whole space $X$ by a holomorphic
\langle or meromorphic) function.

When $M$ is a closed almost thin set of order 2 and furthermore thin of
order 1, this fact is used as a well-known result in Stoll’s paper ([6]), but
I don’t know his proof. When $M$ is a closed thin set of order 2, this fact is
well-known. (See Grauert-Remmert [2, p. 270].) Therefore, it is sufficient to
prove the following Theorem 3.

A subset $M$ of a connected normal complex space $X$ is said to be of F-type
with respect to holomorphic (or meromorphic) functions if for every point
$P\in M$ there exists an open neighborhood $U$ of $P$ in $X$ in which a nowhere
dense relatively-closed subset $M^{0}$ in $U$ is given such that $M_{\cap}U\subset M^{0}$ and
each function holomorphic (or meromorphic) in $U-M^{0}$ can be extended to the
whole $U$ by a holomorphic (or meromorphic) function. Now, we have the
following theorem:

THEOREM 3. Let $X$ be a connected normal complex space and $Mbe$ a closed

subset. If $ M=UM_{i}i=1\infty$ and each $M_{i}$ is of F-type with respect to holomorphic (or

meromorphic) functions, then $\mathbb{J}l$ itself is also of F-type with respect to holomorphic
(or meromorphic) functions.

PROOF. For every point $P\in M$, there exists an open neighborhood $V$

which has a metric $\sigma$ and we choose an open relatively-compact neighborhood
$U$ of $P$ such that $U\subset\overline{U}\subset V$. Let $f$ be a holomorphic (or meromorphic) function
in $U-M$ and $S$ be the set of all (irremovable) singularities of $f$ in $U$. Suppose
$S$ were not empty. $S$ is relatively-closed in $U$ and $S\subset M$. $S_{i}=S_{\cap}M_{i}$ is also

of F-type and $S=\bigcup_{i\Rightarrow 1}^{\infty}S_{i}$ . We denote $\overline{S}\cap(\overline{U}-U)$ by $\overline{S}_{0}$ . Then we have easily

$\overline{S}=\bigcup_{i=0}^{\infty}\overline{S}_{i}$ .
With respect to the relative topology induced from $X$ to $S,$ $S$ is a complete

metric space and each $\overline{S}_{i}$ is its closed subset. By the Baire’s theorem, there
exists a non-negative integer $i_{0}$ such that there exist a point $P_{0}\in\overline{S}_{i}$ , and a
neighborhood $U_{1}$ of $P_{0}$ in $X$ in which $\overline{S_{i_{0}}}\cap U_{1}=\overline{S}\cap U_{1}$ .

We distinguish three cases as follows:
\langle 1) If $i_{0}=0$ , i. e. $P_{0}\in\overline{S}_{0}$ , then $S\cap U_{1}$ would be empty, because $\overline{S}_{0}\subset\overline{U}-U$,
$S\subset U$ and $\overline{S}_{0}\cap U_{1}=\overline{S}\cap U_{1}$ . But this contradicts the facts that $P_{0}\in\overline{S}$ and $U_{1}$

is a neighborhood of $P_{0}$ .
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(2) If $i_{0}\neq 0$ and $P_{0}\in S_{l}$ ., then there would exist an open neighborhood $U_{2}$ of
$P_{0}$ in $X$ and a subset $S_{i_{0}}^{0}$ of $U_{2}$ which would satisfy the conditions of F-type.
As $P_{0}\in S_{i_{\theta}}\subset U$, we may assume $U_{2}\subset U\cap U_{1}$ . Since $S_{i_{0}}\cap U_{2}\subset S_{i}^{0_{0}},\overline{S}_{i_{0}}\cap U_{1}=$

$\overline{S}_{\cap}U_{1}$ and $S_{i_{0}}^{0}$ is relatively-closed in $U_{2}$ , we have $\overline{S}_{\cap}U_{2}\subset$ S2.. The function
$f$ is holomorphic (or meromorphic) in $U_{2}-S$, so it is holomorphic (or mero-
morphic) in $U_{2}-S_{i_{0}}^{0}$ , and consequently in $U_{2}$ . This contradicts the fact $P_{0}\in S$

(3) If $i_{0}\neq 0$ and $P_{0}\in\overline{S}_{i_{0}}$ –Si., then we could choose a point $P_{0^{\prime}}\in S_{i_{\Phi}}$ and a
neighborhood $U_{1}^{\prime}$ of $P_{0^{\prime}}$ contained in $U_{1}$ . In the same way as in the case (2),

this leads to a contradiction.
These contradictions prove our theorem. $q$ . $e$ . $d$ .
The field of all meromorphic functions on a connected normal complex

space $X$ is denoted by $K(X)$ . We have,
COROLLARY 1. We assume the hypothesis of Corollary 1 of Theorem 2 and

furthermore $Y$ to be connected normal. Suppose $\tau^{*}\circ f$ is a meromorphic function
in $X-S$ for every $f\in K(Y)$ . Then there exists a homomorphism $\eta:K(Y)\rightarrow K(X)$

which satisfies the relation $\eta(f)=f\circ\tau^{*}$ on a dense open subset of $X$ for every
$f\in K(Y)$ .

From Theorem 3, we have the following fact: (For the proof see Andreotti-
Stoll [1, p. 316].)

COROLLARY 2. We assume the hypothesis of Corollary 1 of Theorem 2 and
furthermore $Y$ to be K-complete. Then the set of all singular points of $\tau^{*}$ is
empty, $i$ . $e$ . $\tau^{*}$ can be extended to a holomorphic mapping of $X$ into $Y$.

Department of Mathematics, University of Tokyo
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