J. Math. Soc. Japan
Vol. 13, No. 4, 1961

8-manifolds admitting no differentiable structure

By Itiro TAMURA

(Received May 23, 1961)

J. Milnor [5],[6] and R. Thom have given examples of compact un-
bounded triangulated topological 8-manifolds admitting no differentiable struc-
ture compatible with the given triangulations. In this paper we shall prove
that some of these examples do not admit any differentiable structure, com-
patible or not with the given triangulations, as in the case of Kervaire’s 10-
manifold [4] The well-known result of Milnor on the existence of non-
canonical differentiable structures on the 7-sphere is responsible for this situa-
tion. An analogous result holds also for the 15-sphere (Shimada [9], Tamura
[137]), whence follows the existence of 16-manifolds admitting no differentiable
structure. This will be shown at the same time.

1. 3-sphere bundles over the 4-sphere.

We recall here some results about 3-sphere bundles over the 4-sphere (resp.
7-pshere bundles over the 8-sphere). For the proofs of them, see Milnor [5],

Shimada [9], Tamura [12],[13]
Let p, 6:S*— SOWM) (resp. o/, ¢’ : S7™— SO(8)) be maps defined by

ol =uvu™t, ol =uv,
(resp. 'Ry =xyx~",  o'(x)y=xy,)

where » and v denote quaternions with norm 1 (resp. x and y denote Cayley
numbers with norm 1). Then the homotopy classes {p}, {a} (resp. {0’}, {0’})
are generators of #,(SO4)) = Z+Z (resp. n.(SO8)~ Z+Z). Let

Emn=(Brnn, S S% Ttm, n)
(feSP- E;n,n - (B;r‘?,n, Sgy ST: 7777/n,11>)

be the S* bundle over S* (resp. S” bundle over S®) with the characteristic
map mi{p}+n{c} (resp. m{o’}+n{c’}). Moreover let

gm,n - (Egz,n, S47 D4, 2rfm,n)
(resp. &, = (B, S% D", Tn,n))

be the 4-cell bundle over S* (resp. 8-cell bundle over S®) associated with &,
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(resp. &,,,). Bl,. and BS, , (resp. B% ., and B},‘j,n) have (C*) differentiable struc-
tures naturally defined by bundle structures. Thus B}, , (resp. B ,) is a com-
pact unbounded differentiable 7-(resp. 15-) manifold and B%, , (resp. BY,) is a
compact differentiable 8-(resp. 16-) manifold with the boundary 958 ,= B,
(resp. 9B ,= B ,). The homology groups of B?, , (resp. Bl ) are as follows:

HO(BZn,n;Z)zH7(an,n;Z)zZ) HZ(BZn,n;Z):O i¢013:417;

0 n+0
[—13(BZn,n ; Z) = Zn » H4(B;7n,n : Z) = {
Z n=0
(resp. H(Bun; 2) = Hi(Bin; Z)= 2, H{BRn.;2)=0 i+0,7,815,
0 n+0
Z n=0

Hy(Bhn; Z) (resp. H(B)) »; Z)) is generated by a cycle z;} (%) (x,= S*) (resp.
Tma(®e) (%, € S¥). Bl (resp. B} ) is homeomorphic to S7 (resp. S¥) and B},
(resp. B} is diffeomorphic to the standard S? (resp. S®¥). B?n,n (resp. BI.)
has the homotopy type of S* (resp. S?%).

The first (resp. the second) Pontrjagin class of B% , (resp. BY,) is given
by

2:(B) =+2@2m+n)ay,  (resp. p(Bi ) ==6Qm+n)as),

where «, is a generator of H*(B%, ,; Z) ~ Z (resp. a; is a generator of H*(BY ,; Z)
= 7).

As is well-known, we have

n(SY = Z+Z,, (resp. 7,5(S®) = Z+4Z150) -
The homotopy class {v,} (resp. {vs}) represented by the Hopf map v,=J(0):
S7— St (resp. vs=J(0") : S'»— S?®) generates the infinite cyclic direct summand
Z of m,(S*Y) (resp. 7,5,(S®)) and the homotopy class {r,} (resp. {rs}) represented
by ri=J(p) : S7— S* (resp. rs=J(p’) : S¥*— S®) generates the finite cyclic direct
summand Z;, of 7,(S*) (resp. Z,, of 7,(S®), where J: z,(SO®)—r,..(S7) is the
J-homomorphism. Then, choosing the orientation of B, ; (resp. B ;) properly,
the homotopy class of the map =,,: B}, — S* (resp. n},,;: B, — S¥) is given
as follows:
{m,1} = {vi}+mir,} (resp. {mm,1} = {vs} +m{rs}).

2. 3-connected compact unbounded differentiable 8-manifold with the 4 th
Betti number 1.

In this section we consider a 3-connected compact unbounded differentiable
8-manifold M?® such that H,(M?*;Z)~=Z. The notation D" will be used for the
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closed disk in Euclidean space R™ bounded by the unit sphere S»-I

Let i: D®*— M? be a differentiable imbedding. Then the compact differen-
tiable 8-manifold V?®=M?—i(Int D%) with the boundary #(0D?) is a handle-
body, an element of .4((8,1,4) by Smale [10, Theorem F7J, [117. That is to
say, we have

V=D, D'xD*,

where f: 9D*XD*—9D? is a differentiable imbedding and D®\J,;D*x D* denotes
the differentiable 8-manifold-with-boundary obtained from the disjoint union
of D® and D*XD* by identifying each point of D*xX D* with its image under
f, making use of the device of straightening the angle. 8718 is diffeomor-
phic to S7 with the natural differentiable structure. Clearly V® has the

homotopy type of S
Let j,: D*—D? be a continuous map such that

7i(Int DY) C Int D3, 7)) =s(x,0) (x=08DY),
and let j,: D*— D*X D* be the map defined by
J®) =0 D'*x0 (x=DY.

Define a continuous map j: St— V® by j, (resp. j,) on the upper (lower) hemi-
sphere of S Then j(S*) represents a generator of (V= H(V?;Z)=2Z We
can assume without loss of generality that j is a differentiable imbedding
{Milnor [8; Theorem 5.97).

Now we shall show that V* is diffeomorphic to E?n,l. Let N be a closed
tubular neighborhood of 7(S%). N is a differentiable 8-manifold with the bound-
ary ON. Let (9N, (S*), S, =) be a S? bundle over S* associated with the normal
bundle (V,7(S*), D', 7). N has the homotopy type of S* Consider the Mayer-
Vietoris homology sequence of a triad (V?; N, V¥—Int N):

e Hy (V8 Z2) > H(ON; Z) > Hy(N; Z)+ H{V:—Int N; Z)> H(V?; Z)
—H; (ON; Z2)—>Hy-\(N; Z)+Hy o ((VE—=Int N; Z)—> H,_(V?; Z)— - .
The exactness of this sequence yields
Vot HON; Z)= H(V:—Int N; 2) q=0,1,2,4,5,6,7,8,
where ¢ : ON— V& — Int N is the inclusion map. Moreover we have
HON;Z)=0.

In fact v (H,(ON; Z)) =0 holds, because a 3-cycle ¥(z~'(0,0)) ((0,0)= D*x0
7(S*)) is homotopic to 0xX9D* CdV?®=S". Therefore the normal bundle (&, 7(S%),
D4, 7) is gm’l and 9N is homeomorphic to S7 (Section 1). (More exactly (N, 7(S%),

1) I am indebted to Prof. S. Smale for his kindness of sending me a copy of the
manuscript of his paper before publication.
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D47 is &, or &, ;. But &, _, isequivalent to &, ;) As is easily verified,
V&—Int N is simply connected. It follows now that is a homotopy equiva-
lence and that dN is a deformation retract of V®—Int N. V®—Int N has the
same homotopy type as S’.

On the other hand, let v': V8- V&—Int N be the inclusion map. Both
dV® and V®é-—Int N have the homotopy type of ST and ¥/ (6V®) is homologous
to Y(ON) which represents a generator of H(V¥—Int N;Z). Therefore v is
a homotopy equivalence and 818 is a deformation retract of V®—Int N. Hence
Vé—Int N defines the J-equivalence relation between 8V¢ and dN (Milnor [8],
Thom [14].

Since a recent result of Smale [10], implies that 8V?® and ON are
diffeomorphic and that V®—Int N is diffeomorphic to 9V xXI=0Nx I, it follows
that V# is diffeomorphic to N=B% ;. Thus we have

MS — Bfn,l 'lng )
where i: 0D*— 8B, ,= B, is an onto diffeomorphism.
Pontrjagin classes of M?® satisfy the following two relations (A), (B). ([M"]

denotes the fundamental homology class of A/™) Firstly, the index theorem
(Hirzebruch implies

(A) 45(ce, J a)LM* ] = (Tp(M*)—p*(ME)LM*] -

Secondly, the integrality of A—genus A(Mg): 27_115 (—4p,(MB)+Tp (M) M?]
(Atiyah and Hirzebruch [1], Borel and Hirzebruch [27]) implies
(B) Up (MO —Tp (MO M*]=0  mod 27-45.
Since the first Pontrjagin class of M8= B, ,\J,D? is given by (Section 1)
(M%) = p(BS,) = £22m+1ay,
(A), (B) yield
Tpo(MOLM*] = (2°2m~+-17+45) (e, J a)[M*], ()
PAMECME] =TC2m~+1)2(a, \J a )L M*] mod 2°-45.
Therefore we have
722m+1)? = 222m—+1)>+45 mod 2°-45,
hence
m(m—+1)=0 mod 8. (%)
Moreover (¥) implies
m(m+1)=0 mod 7. (x%)
Thus we have the following theorem.
THEOREM 1. Let M8 be a 3-connected compact unbounded differentiable 8-

manifold such that H(M®;Z)Y~Z. Then M? is diffeomorphic to B, \J;D® with
m satisfying m(m+1)=0 mod 56, where i: D*— aéﬁn,l:BZn,l is an onto dif-
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feomorphism.

The following theorem is an immediate consequence of the above theorem
and the fact that {z, } = {v,}+m{r,} (Section 1).

THEOREM 2. Let M?® be a 3-connected compact unbounded diffeventiable 8-
manifold such that H(M?®; Z)Y=Z. Then M® has the homotopy type of S*\J,eb,
wheve g. S"— S* is a map such that {g} = {v,} +m{r,} € n.(SY) with m satisfying
m(m+1)=0 mod 4.

For a 7-connected compact unbounded differentiable 16-manifold AM'®%, by a
similar argument, making use of two relations (A’), (B"):

(A% 34.5° T(a, \J at)[ M = (381p,(M*%)— 19, "M )L M*],
(B") (27 -3p, (M%)~ 25 13p(MINIMI] =0 mod 216-31.5.7,

we obtain the following theorems.

THEOREM 1’. Let M be a T-connected compact unbounded differventiable
16-manifold such that H(M'®; Z)= Z. Then M*'® is diffeomorphic to Bi,‘f,lUiD“"
with m satisfying m(Gm-+1) =0 mod 16256, where i: 6D16—>8§$,‘2,1 = B, is an onto
diffeomorphism.

THEOREM 2/. Let M'® be a T-conmected compact umnbounded diffeventiable
16-manifold such that H (M ;Z)=Z. Then M has the homotopy type of
S8\, e'%, where g: S*¥—S® is a map such that {g} = {vs}tm{rs} € m,(S%) with
m satisfyving m(m-+1)=0 mod 8.

It is known that an (—1)-connected compact unbounded differentiable 2n-
manifold with the »th Betti number 1 exists only for »=2,4,8 (Milnor [7).
The quaternion (resp. Cayley) projective plane is homeomorphic to Bg,,UiDS'
(resp. B, \J; D).

Now let B%,;\JD® denote the space obtained from the disjoint union of
Bt and D¢ by identifying 853, = BY,, with 8D® topologically. Then B3, ,\J D®
is a compact unbounded triangulable topological 8-manifoid (Milnor [6], Thom
[14]. B3I D® has the homotopy type of S*\J,e®, where 2: S7— S* is a map
such that {4} = {v,}+m{r,} €m,(S* (Section 1). Thus the following theorem
is an immediate consequence of

THEOREM 3. If m(m—+1) =0 mod 4, B?ﬂ,IUD8 does not admit any diffeven-
tiable structure.

REMARK. Choose a C* triangulation of B'fn,l and extend it to a triangula-
tion of B%, ,\J D naturally. Then B3,V D* and B%,,\J D are combinatorially
distinct if m’ s=m, —m—1 (Thom [14]).

Furthermore by Theorem 2’ we have

THEOREM 3'. Let B w1 \J D¢ denote the compact unbounded triangulable topo-
logical 16-manifold obtained from the disjoint union of B, and D' by identifying
OB = B | with D' topologically. Then if m(m-1)# 0 mod 8, B},‘f,l \J D' does

m,1
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not admit any diffeventiable structure.
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