Quasi-equality in maximal orders

By Oscar GOLDMAN¹⁾

(Received May 1, 1961)

Introduction.

Let R be an integrally closed noetherian domain. Artin and van der Waerden [3] have defined the group of quasi-equality classes of ideals of R. In this paper we extend this notion to the case of a maximal order in a separable algebra over the quotient field K of R.

If Λ is a maximal order in such an algebra Σ , we consider the finitely generated R-submodules of Σ which span Σ over K and which have Λ as a left and right operator domain. Restricting our attention to those modules which are reflexive (Section 1) and defining multiplication suitably (Section 3), there is defined a group $G(\Lambda)$ which has the same relation to Λ as has the group of quasi-equality classes of ideals to R.

The group $G(\Lambda)$ is abelian and does not depend on Λ ; if Γ is another maximal order, then $G(\Lambda)$ and $G(\Gamma)$ are naturally isomorphic. Finally, Theorem 3.4 shows that $G(\Lambda)$ is completely determined by the arithmetic of Σ in relation to the minimal prime ideals of R.

We use certain facts of the general theory of maximal orders over Dedekind rings; these may be found for example in Chapter VI of Deuring [2].

Section 1. Lattices.

Throughout this paper, R will denote an integrally closed noetherian domain with quotient field K and Σ will denote a (finite dimensional) separable algebra over K. By a *lattice* in Σ will be meant a finitely generated R-submodule of Σ which spans Σ over K.

If A is an R-module, we shall denote by A^* the dual, $\operatorname{Hom}_R(A, R)$ of A. There is an obvious natural homomorphism $A \to A^{**}$. We shall say that A is *reflexive* if that homomorphism is an isomorphism.

If A is a lattice in Σ every element of A^* has a unique extension to an element of $\operatorname{Hom}_{\kappa}(\Sigma, K)$. Since Σ is a finite dimensional vector space over K

¹⁾ This work was done while the author held a fellowship from the National Science Foundation.

O. GOLDMAN

it is certainly reflexive, so that we may identify A^{**} with a submodule of Σ . Under that identification, A^{**} is again a lattice, and $A \subset A^{**}$. We may describe A^{**} explicitly as follows: an element $x \in \Sigma$ is in A^{**} if, and only if, $f(x) \in R$ for all those $f \in \text{Hom}_{K}(\Sigma, K)$ for which $f(A) \subset R$.

PROPOSITION 1.1. Let A and B be lattices in Σ , and let $C = \{x \in \Sigma \mid xA \subset B\}$. Then C is also a lattice. If B is reflexive, then C is also reflexive. The same statements hold for $D = \{x \in \Sigma \mid Ax \subset B\}$.

PROOF. The assertion that *C* is a lattice is trivial to verify. To show that the reflexivity of *B* implies that of *C*, we proceed as follows. Let $f \in B^*$ and $a \in A$. Define, for $x \in \Sigma$, g(x) = f(xa). If *x* is in *C*, then $xa \in B$ so that $g(x) = f(xa) \in R$. Thus, $g \in C^*$. Hence, if $y \in C^{**}$, we have $g(y) \in R$. But this shows that $f(yA) \subset R$, for every $f \in B^*$. Thus, $yA \subset B^{**} = B$, or $y \in C$. Hence $C^{**} = C$, or *C* is reflexive.

For later application we describe some of the relations between the formation of double duals and localization with respect to minimal prime ideals of R. If \mathfrak{p} is a minimal prime ideal in R, we denote by $R_{\mathfrak{p}}$ the ring of quotients of R with respect to \mathfrak{p} . If A is a lattice in Σ , then $AR_{\mathfrak{p}}$ is a lattice over $R_{\mathfrak{p}}$.

PROPOSITION 1.2. If A is a lattice in Σ and \mathfrak{p} is a minimal prime ideal of R, then $AR_{\mathfrak{p}} = A^{**}R_{\mathfrak{p}}$.

PROOF. It is clear that $A^*R_{\mathfrak{p}} = \operatorname{Hom}_{R_{\mathfrak{p}}}(AR_{\mathfrak{p}}, R_{\mathfrak{p}})$ and therefore that $A^{**}R_{\mathfrak{p}} = \operatorname{Hom}_{R_{\mathfrak{p}}}(A^*R_{\mathfrak{p}}, R_{\mathfrak{p}}) = \operatorname{Hom}_{R_{\mathfrak{p}}}(\operatorname{Hom}_{R_{\mathfrak{p}}}(AR_{\mathfrak{p}}, R_{\mathfrak{p}}), R_{\mathfrak{p}})$. Since $R_{\mathfrak{p}}$ is a discrete valuation ring, we find $\operatorname{Hom}_{R_{\mathfrak{p}}}(\operatorname{Hom}_{R_{\mathfrak{p}}}(AR_{\mathfrak{p}}, R_{\mathfrak{p}}), R_{\mathfrak{p}}) = AR_{\mathfrak{p}}$ and the result follows.

PROPOSITION 1.3. If A and B are reflexive lattices such that the equality $AR_{\mathfrak{p}} = BR_{\mathfrak{p}}$ holds for every minimal prime ideal \mathfrak{p} of R, then A = B.

PROOF. Set C = A + B and $\mathfrak{a} = \operatorname{ann}(C/A)$. Since A is reflexive, it follows from Proposition 1.4 of [1] that either $\mathfrak{a} = R$ (in which case A = C), or else \mathfrak{a} is contained in some minimal prime ideal of R. If \mathfrak{p} is any minimal prime ideal, the equality $AR_{\mathfrak{p}} = BR_{\mathfrak{p}}$ gives $AR_{\mathfrak{p}} = CR_{\mathfrak{p}}$ so that $\mathfrak{a} \subset \mathfrak{p}$. Thus, $\mathfrak{a} = R$ and therefore A = C. Since the situation is symmetric in A and B, it follows that A = B.

Section 2. Orders.

A lattice subring of Σ is called an *order*. An order is said to be *maximal* if it is not contained in a properly larger order.

The general discussion on orders in the first section of [1] is formulated for central simple algebras. Actually the proofs apply unchanged to the case of separable algebras. In particular, this is so for Theorem 1.5 of [1]: an order Λ is maximal if, and only if, Λ is reflexive and $\Lambda R_{\mathfrak{p}}$ is a maximal order over $R_{\mathfrak{p}}$, for every minimal prime ideal \mathfrak{p} of R.

If A is a lattice, the set $\mathfrak{O}_{l}(A)$ of all $x \in \Sigma$ such that $xA \subset A$ is an order,

called the *left order* of A. The *right order* $\mathfrak{O}_r(A)$ of A is defined in a similar fashion. The orders $\mathfrak{O}_t(A)$ and $\mathfrak{O}_r(A)$ are also referred to as the *associated* orders of A.

As an immediate application of Proposition 1.1 we have:

THEOREM 2.1. The associated orders of a reflexive lattice are reflexive.

PROOF. The assertion follows immediately from Proposition 1.1 by taking A = B equal to the given lattice.

COROLLARY 2.2. If A is a reflexive lattice and one of its associated orders is maximal, then the other one is also.

PROOF. Suppose that $\mathfrak{O}_l(A)$ is maximal. By the proposition above we already known that $\mathfrak{O}_r(A)$ is reflexive. Hence, it is sufficient to show that $\mathfrak{O}_r(A)R_{\mathfrak{p}}$ is a maximal order over $R_{\mathfrak{p}}$, for every minimal prime ideal \mathfrak{p} of R. It is clear that $\mathfrak{O}_l(AR_{\mathfrak{p}}) = \mathfrak{O}_l(A)R_{\mathfrak{p}}$ and $\mathfrak{O}_r(AR_{\mathfrak{p}}) = \mathfrak{O}(A)R_{\mathfrak{p}}$. The maximality of $\mathfrak{O}_l(A)$ over R implies the maximality of $\mathfrak{O}_l(A)R_{\mathfrak{p}}$ over $R_{\mathfrak{p}}$ which, because $R_{\mathfrak{p}}$ is a Dedekind ring, implies the maximality of $\mathfrak{O}_r(AR_{\mathfrak{p}})$ over $R_{\mathfrak{p}}$. Thus $\mathfrak{O}_r(A)R_{\mathfrak{p}}$ is maximal over $R_{\mathfrak{p}}$ and hence $\mathfrak{O}_r(A)$ is a maximal order.

If A is a lattice, the *inverse* A^{-1} of A is defined as the set of all $x \in \Sigma$ for which $AxA \subset A$. Equivalently, A^{-1} is the set of all $y \in \Sigma$ such that $yA \subset \mathcal{D}_r(A)$ or the set of all $z \in \Sigma$ such that $Az \subset \mathcal{D}_r(A)$.

If A is a lattice, set $\Lambda = \mathbb{Q}_{l}(A)$. Then A is naturally a left Λ -module. The inverse A^{-1} may be identified with $\operatorname{Hom}_{A}(A, \Lambda)$ as follows. If $z \in A^{-1}$ set f(a) = az for $a \in A$. Then $f(a) \in \Lambda$ so that f defines a map from A into Λ , which is clearly Λ -linear on the left. On the other hand, let $f \in \operatorname{Hom}_{A}(A, \Lambda)$. Then, f extends uniquely to an element of $\operatorname{Hom}_{\Sigma}(\Sigma, \Sigma)$ (where Σ is considered as a left Σ -module). Such a homomorphism is given by right multiplication by some $z \in \Sigma$. Since $f(A) \subset \Lambda$, it follows that $z \in A^{-1}$.

THEOREM 2.3. Let A be a lattice such that $\Lambda = \mathfrak{O}_i(A)$ is maximal. Then, A is reflexive as an R-module if, and only if, A is reflexive as a Λ -module.

PROOF. Suppose first that A is reflexive as an R-module. Then by Proprosition 1.1, A^{-1} is also a reflexive R-module. Furthermore, by Corollary 2.2, $\mathbb{O}_r(A)$ is also maximal. Clearly, $\mathbb{O}_l(A^{-1}) = \mathbb{O}_r(A)$ and $\mathbb{O}_r(A^{-1}) = \mathbb{O}_l(A)$. Hence, $(A^{-1})^{-1} = \operatorname{Hom}_A(A^{-1}, A)$. If \mathfrak{p} is any minimal prime ideal of R, then $(A^{-1})R_{\mathfrak{p}} = (AR_{\mathfrak{p}})^{-1}$, with a similar statement for $(A^{-1})^{-1}$. However, $R_{\mathfrak{p}}$ is a Dedekind ring, so that $(A^{-1})^{-1}R_{\mathfrak{p}} = AR_{\mathfrak{p}}$. Applying Proposition 1.3 shows that $(A^{-1})^{-1} = A$, or that A is a reflexive Λ -module.

On the other hand, suppose that A is a reflexive A-module. Namely, $A = \{x \in \Sigma \mid A^{-1}x \subset A\}$. Since A is reflexive, because it is maximal, it follows from Proposition 1.1 that A is a reflexive R-module.

A lattice will be called *proper* if it is reflexive and its associated orders are maximal.

THEOREM 2.4. Let A be a proper lattice. Then A^{-1} is also proper, $(AA^{-1})^{**} = \mathfrak{O}_l(A)$ and $(A^{-1}A)^{**} = \mathfrak{O}_r(A)$. Finally, $(A^{-1})^{-1} = A$.

PROOF. The statement that A^{-1} is proper and that $(A^{-1})^{-1} = A$ is contained in Theorem 2.3. To see that $(AA^{-1})^{**} = \mathbb{Q}_l(A)$, let \mathfrak{P} be a minimal prime ideal of R. Then, $A^{-1}R_{\mathfrak{P}} = (AR_{\mathfrak{P}})^{-1}$, and $(AR_{\mathfrak{P}})(AR_{\mathfrak{P}})^{-1} = \mathbb{Q}_l(AR_{\mathfrak{P}}) = \mathbb{Q}_l(A)R_{\mathfrak{P}}$ because $R_{\mathfrak{P}}$ is a Dedekind ring. Using Proposition 1.2 shows that $(AA^{-1})^{**}R_{\mathfrak{P}} = (AA^{-1})R_{\mathfrak{P}} = \mathbb{Q}_l(A)R_{\mathfrak{P}}$. Since this is so for every minimal prime ideal of R, it follows from Proposition 1.3 that $(AA^{-1})^{**} = \mathbb{Q}_l(A)$. In the same way we find $(AA^{-1})^{**} = \mathbb{Q}_r(A)$.

Section 3. The group of a maximal order.

If A and B are lattices, we define the *product* $A \circ B$ as $(AB)^{**}$. Clearly, $A \circ B$ is a reflexive lattice. It is also clear that $\mathbb{O}_l(A \circ B) \supset \mathbb{O}_l(A)$. Hence if A is a proper lattice, so that $\mathbb{O}_l(A)$ is a maximal order, then $\mathbb{O}_l(A \circ B)$ must coincide with $\mathbb{O}_l(A)$ and therefore $A \circ B$ is also a proper lattice.

PROPOSITION 3.1. If A, B and C are lattices, then $(A \circ B) \circ C = A \circ (B \circ C) = (ABC)^{**}$.

PROOF. Let \mathfrak{p} be a minimal prime ideal of R. Then, a repeated application of Proposition 1.2 shows that $(A \circ B) \circ CR_{\mathfrak{p}} = (ABC)^{**}R_{\mathfrak{p}} = A \circ (B \circ C)R_{\mathfrak{p}}$. Since the three lattices $A \circ (B \circ C)$, $(A \circ B) \circ C$ and $(ABC)^{**}$ are all reflexive, the assertion follows from Proposition 1.3.

Let Λ be a maximal order, and let $G(\Lambda)$ be the set of all proper lattices in Σ having Λ as both right and left associated orders. If Λ and B are in $G(\Lambda)$, then $\Lambda \circ B$ and Λ^{-1} are also in $G(\Lambda)$. Clearly $\Lambda \in G(\Lambda)$.

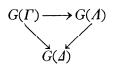
THEOREM 3.2. $G(\Lambda)$ is an abelian group under the composition $A, B \rightarrow A \circ B$.

PROOF. That $G(\Lambda)$ is a group follows from Theorem 2.4 and Proposition 3.1; the neutral element of $G(\Lambda)$ is clearly Λ . To see that $G(\Lambda)$ is abelian, let A and B be elements of $G(\Lambda)$ and let \mathfrak{p} be any minimal prime ideal of R. Then, $(A \circ B)R_{\mathfrak{p}} = ABR_{\mathfrak{p}} = (AR_{\mathfrak{p}})(BR_{\mathfrak{p}})$. Since $R_{\mathfrak{p}}$ is a Dedekind ring, we have $(AR_{\mathfrak{p}})(BR_{\mathfrak{p}}) = (BR_{\mathfrak{p}})(AR_{\mathfrak{p}})$. Thus, $(A \circ B)R_{\mathfrak{p}} = (B \circ A)R_{\mathfrak{p}}$ and Proposition 1.3 then shows that $A \circ B = B \circ A$.

THEOREM 3.3. If Λ and Γ are maximal orders in Σ , then $G(\Lambda)$ and $G(\Gamma)$ are naturally isomorphic.

PROOF. Let \mathfrak{F} be the *conductor* of Γ with respect to Λ , i.e., $\mathfrak{F} = \{x \in \Sigma \mid x\Gamma \subset \Lambda\}$. Then \mathfrak{F} is a proper lattice whose associated left order is Λ and right order is Γ . If $B \in G(\Gamma)$, then $\mathfrak{F} \circ B \circ \mathfrak{F}^{-1} \in G(\Lambda)$ and the map $B \to \mathfrak{F} \circ B \circ \mathfrak{F}^{-1}$ is an isomorphism of $G(\Gamma)$ with $G(\Lambda)$.

Let \varDelta be a third order. Then, defining the isomorphisms by means of the appropriate conductors leads to the following diagram:



The naturality of the isomorphisms between these various groups will be proved when we show that the diagram is commutative.

Set $\mathfrak{F}_1 = \{x \mid xA \subset \mathcal{A}\}$ and $\mathfrak{F}_2 = \{x \mid x\Gamma \subset \mathcal{A}\}$. Then, if $A \in G(\Gamma)$ we must show that $\mathfrak{F}_1 \circ \mathfrak{F} \circ A \circ \mathfrak{F}^{-1} \circ \mathfrak{F}_1^{-1} = \mathfrak{F}_2 \circ A \circ \mathfrak{F}_2^{-1}$. Now, $\mathfrak{F}_2^{-1} \circ \mathfrak{F}_1 \circ \mathfrak{F} \in G(\Gamma)$, so that because $G(\Gamma)$ is abelian, we have $\mathfrak{F}_2^{-1} \circ \mathfrak{F}_1 \circ \mathfrak{F} \circ A \circ \mathfrak{F}^{-1} \circ \mathfrak{F}_1^{-1} \circ \mathfrak{F}_2 = A$ from which the assertion follows.

Let Λ be a maximal order in Σ and let A be an element of $G(\Lambda)$ which is contained in Λ . Set $\mathfrak{a} = \operatorname{ann}(\Lambda/A)$. Then the ideal \mathfrak{a} is contained in only a finite number of minimal prime ideals of R. If \mathfrak{p} is a minimal prime ideal which does not contain \mathfrak{a} , then $AR_{\mathfrak{p}} = \Lambda R_{\mathfrak{p}}$. Thus $AR_{\mathfrak{p}} \neq \Lambda R_{\mathfrak{p}}$ for only finitely many \mathfrak{p} . Given any $C \in G(\Lambda)$, C can be expressed in the form $A \circ B^{-1}$ with both A and B in $G(\Lambda)$ and both contained in Λ . Hence, $CR_{\mathfrak{p}} \neq \Lambda R_{\mathfrak{p}}$ for only a finite set of \mathfrak{p} .

The map $A \to AR_{\mathfrak{p}}$ defines a homomorphism from $G(\Lambda)$ into $G(\Lambda R_{\mathfrak{p}})$. There is therefore defined a homomorphism from $G(\Lambda)$ into the direct product $\prod_{\mathfrak{p}} G(\Lambda R_{\mathfrak{p}})$. The preceding remarks show that the image is contained in the direct sum $\sum_{\mathfrak{p}} G(\Lambda R_{\mathfrak{p}})$ of the groups $G(\Lambda R_{\mathfrak{p}})$.

THEOREM 3.4. The homomorphism $G(\Lambda) \rightarrow \sum_{\nu} G(\Lambda R_{\nu})$ is an isomorphism.

PROOF. Proposition 1.3 shows immediately that the homomorphism is a monomorphism. We must prove that the mapping is onto.

Let \mathfrak{p} be some minimal prime ideal, and let M be an element of $G(AR_{\mathfrak{p}})$ which is contained in $AR_{\mathfrak{p}}$. Then M contains some power of \mathfrak{p} . Set $A = M \cap A$. Then it is readily verified that A is a lattice and that both of the associated orders of A coincide with A. Furthermore, $AR_{\mathfrak{p}} = M$. Finally, let \mathfrak{q} be a minimal prime ideal of R different from \mathfrak{p} . Then, the fact that A contains a power of \mathfrak{p} shows that $AR_{\mathfrak{q}} = AR_{\mathfrak{q}}$. Now set $B = A^{**}$. Then, $B \in G(A)$ and $BR_{\mathfrak{p}} = M$ while $BR_{\mathfrak{q}} = AR_{\mathfrak{q}}$ for all $\mathfrak{q} \neq \mathfrak{p}$. (These last two statements follow from Proposition 1.2.) Every element of $G(AR_{\mathfrak{p}})$ has the form $M \circ N^{-1}$ with Mand N contained in $AR_{\mathfrak{p}}$. Hence, given any element $M \in G(AR_{\mathfrak{p}})$, there exists an $A \in G(A)$ such that $AR_{\mathfrak{p}} = M$ and $AR_{\mathfrak{q}} = AR_{\mathfrak{q}}$, for all $\mathfrak{q} \neq \mathfrak{p}$. It follows immediately that the map $G(A) \to \Sigma G(AR_{\mathfrak{p}})$ is an epimorphism.

COROLLARY 3.5. If Σ is a central simple algebra over K and A is a maximal order in Σ , then G(A) is a free abelian group whose generators are in one-to-one correspondence with the minimal prime ideals of R.

PROOF. In this case $G(\Lambda R_{\mathfrak{p}})$ is an infinite cyclic group, and the assertion follows from the theorem.

Institute for Advanced Study Princeton, New Jersey

O. GOLDMAN

References

- [1] M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc., 97 (1960), 1-24.
- [2] M. Deuring, Algebren, Springer, Berlin, 1935.
- [3] B. L. van der Waerden, Modern Algebra, vol. II, New York, 1950.