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Introduction.

Let $R$ be an integrally closed noetherian domain. Artin and van der Waer-
den [3] have defined the group of quasi-equality classes of ideals of $R$ . In
this paper we extend this notion to the case of a maximal order in a separable
algebra over the quotient field $K$ of $R$ .

If $\Lambda$ is a maximal order in such an algebra $\Sigma$ , we consider the finitely
generated R-submodules of $\Sigma$ which span $\Sigma$ over $K$ and which have $\Lambda$ as a
left and right operator domain. Restricting our attention to those modules
which are reflexive (Section 1) and defining multiplication suitably (Section 3),

there is defined a group $G(\Lambda)$ which has the same relation to $\Lambda$ as has the
group of quasi-equality classes of ideals to $R$ .

The group $G(\Lambda)$ is abelian and does not depend on $\Lambda$ ; if $\Gamma$ is another
maximal order, then $G(\Lambda)$ and $G(\Gamma)$ are naturally isomorphic. Finally, Theorem
3.4 shows that $G(\Lambda)$ is completely determined by the arithmetic of $\Sigma$ in rela-
tion to the minimal prime ideals of $R$ .

We use certain facts of the general theory of maximal orders over Dedekind
rings; these may be found for example in Chapter VI of Deuring [2].

Section 1. Lattices.

Throughout this paper, $R$ will denote an integrally closed noetherian domain
with quotient field $K$ and $\Sigma$ will denote a (finite dimensional) separable algebra
over $K$. By a lattice in $\Sigma$ will be meant a finitely generated R-submodule of
$\Sigma$ which spans $\Sigma$ over $K$.

If $A$ is an R-module, we shall denote by $A^{*}$ the dual, $Hom_{R}(A, R)$ of
$A$ . There is an obvious natural homomorphism $A\rightarrow A^{**}$ . We shall say that
$A$ is reflexive if that homomorphism is an isomorphism.

If $A$ is a lattice in $\Sigma$ every element of $A^{*}$ has a unique extension to an
element of $Hom_{K}(\Sigma, K)$ . Since $\Sigma$ is a finite dimensional vector space over $K$
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it is certainly reflexive, so that we may identify $A^{**}$ with a submodule of $\Sigma$ .
Under that identification, $A^{**}$ is again a lattice, and $A\subset A^{**}$ . We may de-
scribe $A^{**}$ explicitly as follows: an element $ x\in\Sigma$ is in $A^{**}$ if, and only if,
$f(x)\in R$ for all those $f\in Hom_{K}(\Sigma, K)$ for which $f(A)\subset R$ .

PROPOSITION 1.1. Let $A$ and $B$ be lattices in $\Sigma$ , and let $C=\{x\in\Sigma|xA\subset B\}$ .
Then $C$ is also a lattice. If $B$ is reflexive, then $C$ is also reflexive. The same
statements hold for $D=\{x\in\Sigma|Ax\subset B\}$ .

PROOF. The assertion that $C$ is a lattice is trivial to verify. To show
that the reflexivity of $B$ implies that of $C$ , we proceed as follows. Let $f\in B^{k}$

and $a\in A$ . Define, for $x\in\Sigma,$ $g(x)=f(xa)$ . If $x$ is in $C$ , then $xa\in B$ so that
$g(x)=f(xa)\in R$ . Thus, $g\in C^{*}$ . Hence, if $y\in C^{**}$ , we have g $(y)\in R$ . But this
shows that $f(yA)\subset R$, for every $f\in B^{*}$ . Thus, $yA\subset B^{**}=B$, or $y\in C$. Hence
$C^{**}=C$, or $C$ is reflexive.

For later application we describe some of the relations between the forma-
tion of double duals and localization with respect to minimal prime ideals of
$R$. If $\mathfrak{p}$ is a minimal prime ideal in $R$, we denote by $R_{\mathfrak{p}}$ the ring of quotients
of $R$ with respect to $\mathfrak{p}$ . If $A$ is a lattice in $\Sigma$ , then $AR_{\mathfrak{p}}$ is a lattice over $R_{\mathfrak{p}}$ .

PROPOSITION 1.2. If $A$ is a lattice in $\Sigma$ and $\mathfrak{p}$ is a minimal prime ideal of
$R$, then $AR_{\mathfrak{p}}=A^{**}R_{\mathfrak{p}}$ .

PROOF. It is clear that $A^{*}R_{\mathfrak{p}}=Hom_{R\mathfrak{p}}(AR_{\mathfrak{p}}, R_{\mathfrak{p}})$ and therefore that $A^{**}R_{\mathfrak{p}}=$

$Hom_{R\mathfrak{p}}(A^{*}R_{\mathfrak{p}}, R_{\mathfrak{p}})=Hom_{R\mathfrak{p}}(Hom_{R\mathfrak{p}}(AR_{\mathfrak{p}}, R_{\mathfrak{p}}),$ $R_{0}$). Since $R_{0}$ is a discrete valuation
ring, we find $Hom_{R\mathfrak{p}}(Hom_{R\mathfrak{p}}(AR_{\mathfrak{p}}, R_{\mathfrak{p}}),$ $R_{\mathfrak{p}}$ ) $=AR_{\mathfrak{p}}$ and the result follows.

PROPOSITION 1.3. If $A$ and $B$ are reflexive lattices such that the equality
$AR_{\mathfrak{p}}=BR_{\mathfrak{p}}$ holds for every minimal prime ideal $\mathfrak{p}$ of $R$, then $A=B$ .

PROOF. Set $C=A+B$ and $a=ann(C/A)$ . Since $A$ is reflexive, it follows
from Proposition 1.4 of [1] that either $\mathfrak{a}=R$ (in which case $A=C$), or else $\mathfrak{a}$

is contained in some minimal prime ideal of $R$ . If $\mathfrak{p}$ is any minimal prime
ideal, the equality $AR_{\mathfrak{p}}=BR_{\mathfrak{p}}$ gives $AR_{\mathfrak{p}}=CR_{\mathfrak{p}}$ so that $\mathfrak{a}c[\mathfrak{p}$ . Thus, $\mathfrak{a}=R$ and
therefore $A=C$ . Since the situation is symmetric in $A$ and $B$, it follows that
$A=B$.

Section 2. Orders.

A lattice subring of $\Sigma$ is called an order. An order is said to be maximal
if it is not contained in a properly larger order.

The general discussion on orders in the first section of [1] is formulated
for central simple algebras. Actually the proofs apply unchanged to the case
of separable algebras. In particular, this is so for Theorem 1.5 of [1]: an
order $\Lambda$ is maximal if, and only if, $\Lambda$ is reflexive and $\Lambda R_{\mathfrak{p}}$ is a maximal order
over $R_{\mathfrak{p}}$ , for every minimal prime ideal $\mathfrak{p}$ of $R$.

If $A$ is a lattice, the set $\mathfrak{O}_{\iota}(A)$ of all $ x\in\Sigma$ such that $xA\subset A$ is an order,
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called the left order of $A$ . The right order $\mathfrak{O}_{\gamma}(A)$ of $A$ is defined in a similar
fashion. The orders $\mathfrak{O}_{\iota}(A)$ and $\mathfrak{O}_{\gamma}(A)$ are also referred to as the associated
orders of $A$ .

As an immediate application of Proposition 1.1 we have:
THEOREM 2.1. The associated orders of a reflexive lattice are reflexive.
PROOF. The assertion follows immediately from Proposition 1.1 by taking

$A=B$ equal to the given lattice.
COROLLARY 2.2. If $A$ is a reflexive lattice and one of its associaled orders

is maximal, then the other one is also.
PROOF. Suppose that $\mathfrak{O}_{\iota}(A)$ is maximal. By the proposition above we

already known that $\mathfrak{O}_{r}(A)$ is reflexive. Hence, it is sufficient to show that
$\mathfrak{O}_{\gamma}(A)R_{\mathfrak{p}}$ is a maximal order over $R_{\mathfrak{p}}$ , for every minimal prime ideal $\mathfrak{p}$ of $R$ .
It is clear that $\mathfrak{O}_{\iota}(AR_{\mathfrak{p}})=\mathfrak{O}_{\iota}(A)R_{\mathfrak{p}}$ and $0.(AR_{\mathfrak{p}})=O(A)R_{\mathfrak{p}}$ . The maximality of
$\mathfrak{O}_{l}(A)$ over $R$ implies the maximality of $\mathfrak{O}_{\iota}(A)R_{\mathfrak{p}}$ over $R_{\mathfrak{p}}$ which, because $R_{\mathfrak{p}}$

is a Dedekind ring, implies the maximality of $\mathfrak{O}_{r}(AR_{\mathfrak{p}})$ over $R_{\mathfrak{p}}$ . Thus $\mathfrak{O}_{\gamma}(A)R_{\mathfrak{p}}$

is maximal over $R_{0}$ and hence $\mathfrak{O}_{r}(A)$ is a maximal order.
If $A$ is a lattice, the inverse $A^{-1}$ of $A$ is defined as the set of all $ x\in\Sigma$

for which $AxA\subset A$ . Equivalently, $A^{-1}$ is the set of all $ y\in\Sigma$ such that $ yA\subset$

$\mathfrak{O}_{\gamma}(A)$ or the set of all $ z\in\Sigma$ such that $Az\subset \mathfrak{O}_{\iota}(A)$ .
If $A$ is a lattice, set $\Lambda=\mathfrak{O}_{l}(A)$ . Then $A$ is naturally a left $\Lambda$ -module.

The inverse $A^{-1}$ may be identified with $Hom_{\Lambda}(A, \Lambda)$ as follows. If $z\in A^{-1}$ set
$f(a)=az$ for $a\in A$ . Then $ f(a)\in\Lambda$ so that $f$ defines a map from $A$ into $\Lambda$ ,

which is clearly $\Lambda$ -linear on the left. On the other hand, let $f\in Hom_{\Lambda}(A, \Lambda)$.
Then, $f$ extends uniquely to an element of $Hom_{\Sigma}(\Sigma, \Sigma)$ (where $\Sigma$ is considered
as a left $\Sigma$ -module). Such a homomorphism is given by right multiplication
by some $ z\in\Sigma$ . Since $ f(A)\subset\Lambda$ , it follows that $z\in A^{-1}$ .

THEOREM 2.3. Let $A$ be a lattice such that $\Lambda=\mathfrak{O}_{\iota}(A)$ is maximal. Then, $A$

is reflexive as an R-module if, and only if, $A$ is reflexive as a $\Lambda$ -module.
PROOF. Suppose first that $A$ is reflexive as an R-module. Then by Pro-

prosition 1.1, $A^{-1}$ is also a reflexive R-module. Furthermore, by Corollary 2.2,
$\mathfrak{O}_{r}(A)$ is also maximal. Clearly, $\mathfrak{O}_{l}(A^{-1})=\mathfrak{O}_{r}(A)$ and $\mathfrak{O},(A^{-1})=\mathfrak{O}_{\iota}(A)$ . Hence,
$(A^{-})^{-1}=Hom_{\Lambda}(A^{-1}, \Lambda)$ . If $\mathfrak{p}$ is any minimal prime ideal of $R$ , then $(A^{-1})R_{\mathfrak{p}}=$

$(AR_{\mathfrak{p}})^{-1}$ , with a similar statement for $(A^{-1})^{-1}$ . However, $R_{\mathfrak{p}}$ is a Dedekind ring,
so that $(A^{-1})^{-1}R_{\mathfrak{p}}=AR_{\mathfrak{p}}$ . Applying Proposition 1.3 shows that $(A^{-\iota})^{-1}=A$ , or
that $A$ is a reflexive $\Lambda$ -module.

On the other hand, suppose that $A$ is a reflexive $\Lambda$ -module. Namely,
$A=\{x\in\Sigma|A^{-1}x\subset\Lambda\}$ . Since $\Lambda$ is reflexive, because it is maximal, it follows
from Proposition 1.1 that $A$ is a reflexive R-module.

A lattice will be called proper if it is reflexive and its associated orders
are maximal.
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THEOREM 2.4. Let $A$ be a proper lattice. Then $A^{-1}$ is also proper, $(AA^{-1})^{**}=$

$\mathfrak{O}_{l}(A)$ and $(A^{-1}A)^{**}=\mathfrak{O}_{r}(A)$ . Finally, $(A^{-1})^{-1}=A$ .
PROOF. The statement that $A^{-1}$ is proper and that $(A^{-1})^{-1}=A$ is contained

in Theorem 2.3. To see that $(AA^{-1})^{**}=\mathfrak{O}_{l}(A)$ , let $\mathfrak{p}$ be a minimal prime ideal
of $R$ . Then, $A^{-1}R_{\mathfrak{p}}=(AR_{\mathfrak{p}})^{-1}$ , and $(AR_{\mathfrak{p}})(AR_{\mathfrak{p}})^{-1}=\mathfrak{O}_{\iota}(AR_{\mathfrak{p}})=\mathfrak{O}_{l}(A)R_{\mathfrak{p}}$ because $R_{\mathfrak{p}}$

is a Dedekind ring. Using Proposition 1.2 shows that $(AA^{-1})^{**}R_{\mathfrak{p}}=(AA^{-1})R_{\mathfrak{p}}=$

$\mathfrak{O}_{\iota}(A)R_{\mathfrak{p}}$ . Since this is so for every minimal prime ideal of $R$ , it follows from
$Proposition1.3that(AA^{-1})^{**}=\mathfrak{O}_{l}(A)$ . $Inthesamewaywefind(AA^{-1})^{**}=\mathfrak{O}_{\gamma}(A)$ .

Section 3. The group of a maximal order.
If $A$ and $B$ are lattices, we define the product $A\circ B$ as $(AB)^{**}$ . Clearly.

$A\circ B$ is a reflexive lattice. It is also clear that $\mathfrak{O}_{l}(A\circ B)\supset \mathfrak{O}_{\iota}(A)$ . Hence if $A$

is a proper lattice, so that $\mathfrak{O}_{l}(A)$ is a maximal order, then $\mathfrak{O}_{\iota}(A\circ B)$ must coin-
cide with $\mathfrak{O}_{l}(A)$ and therefore $A\circ B$ is also a proper lattice.

PROPOSITION 3.1. If $A,$ $B$ and $C$ are lattices, then $(A\circ B)\circ C=A\circ(B\circ C)=$

$(ABC)^{**}$ .
PROOF. Let $\mathfrak{p}$ be a minimal prime ideal of $R$ . Then, a repeated applica-

tion of Proposition 1.2 shows that $(A\circ B)\circ CR_{\mathfrak{p}}=(ABC)^{**}R_{\mathfrak{p}}=A\circ(B\circ C)R_{\mathfrak{p}}$ . Since
the three lattices $A\circ(B\circ C),$ $(A\circ B)\circ C$ and $(ABC)^{**}$ are all reflexive, the assertion
follows from Proposition 1.3.

Let $\Lambda$ be a maximal order, and let $G(\Lambda)$ be the set of all proper lattices
in $\Sigma$ having $\Lambda$ as both right and left associated orders. If $A$ and $B$ are in
$G(\Lambda)$ , then $A\circ B$ and $A^{-1}$ are also in $G(\Lambda)$ . Clearly $\Lambda\in G(\Lambda)$ .

THEOREM 3.2. $G(\Lambda)$ is an abelian group under the composition $A,B\rightarrow A\circ B$ .
PROOF. That $G(\Lambda)$ is a group follows from Theorem 2.4 and Proposition

3.1; the neutral element of $G(\Lambda)$ is clearly $\Lambda$ . To see that $G(\Lambda)$ is abelian,

let $A$ and $B$ be elements of $G(\Lambda)$ and let $\mathfrak{p}$ be any minimal prime ideal of $R$ .
Then, $(A\circ B)R_{\mathfrak{p}}=ABR_{\mathfrak{p}}=(AR_{\mathfrak{p}})(BR_{\mathfrak{p}})$ . Since $R_{\mathfrak{p}}$ is a Dedekind ring, we have
$(AR_{\mathfrak{p}})(BR_{D})=(BR_{\mathfrak{p}})(AR_{\mathfrak{p}})$ . Thus, $(A\circ B)R_{\mathfrak{p}}=(B\circ A)R_{\mathfrak{p}}$ and Proposition 1.3 then
shows that $AQB=B\circ A$ .

THEOREM 3.3. If $\Lambda$ and $\Gamma$ are maximal orders in $\Sigma$ , then $G(\Lambda)$ and $G(\Gamma)$

are naturally isomorphic.
PROOF. Let $\mathfrak{F}$ be the conductor of $\Gamma$ with respect to $\Lambda,$ $i$ . $e.,$ $\mathfrak{F}=\{x\in\Sigma|$

$x\Gamma\subset\Lambda\}$ . Then $\mathfrak{F}$ is a proper lattice whose associated left order is $\Lambda$ and
right order is $\Gamma$ . If $B\in G(\Gamma)$ , then $\mathfrak{F}\circ B\circ \mathfrak{F}^{-1}\in G(\Lambda)$ and the map $B\rightarrow \mathfrak{F}\circ B\circ \mathfrak{F}^{-1}$

is an isomorphism of $G(\Gamma)$ with $G(\Lambda)$ .
Let $\Delta$ be a third order. Then, defining the isomorphisms by means of the

appropriate conductors leads to the following diagram:
$G(\Gamma)\rightarrow G(\Lambda)$

$\backslash $ $\swarrow^{/}$

$G(\Delta)$
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The naturality of the isomorphisms between these various groups will be
proved when we show that the diagram is commutative.

Set $\mathfrak{F}_{1}=\{x|x\Lambda\subset\Delta\}$ and $\mathfrak{F}_{2}=\{x|x\Gamma\subset\Delta\}$ . Then, if $A\in G(\Gamma)$ we must
show that $\mathfrak{F}_{1}\circ \mathfrak{F}\circ A\circ \mathfrak{F}^{-1}\circ \mathfrak{F}_{1}^{-1}=\mathfrak{F}_{2}\circ A\circ \mathfrak{F}_{2}^{-1}$ . Now, $\mathfrak{F}_{2}^{-1}\circ \mathfrak{F}_{1}\circ \mathfrak{F}\in G(\Gamma)$ , so that be-
cause $G(\Gamma)$ is abelian, we have $\mathfrak{F}_{z^{-1}}\circ \mathfrak{F}_{1}\circ \mathfrak{F}\circ A\circ \mathfrak{F}^{-1}\circ \mathfrak{F}_{1}^{-1}\circ \mathfrak{F}_{2}=A$ from which the
assertion follows.

Let $\Lambda$ be a maximal order in $\Sigma$ and let $A$ be an element of $G(\Lambda)$ which
is contained in $\Lambda$ . Set $a=ann(\Lambda/A)$ . Then the ideal $\mathfrak{a}$ is contained in only
a finite number of minimal prime ideals of $R$ . If $\mathfrak{p}$ is a minimal prime ideal
which does not contain $\mathfrak{a}$ , then $AR_{P}=AR_{p}$ . Thus $AR_{\mathfrak{p}}\neq\Lambda R_{\mathfrak{p}}$ for only finitely
many [). Given any $C\in G(\Lambda),$ $C$ can be expressed in the form $A\circ B^{-1}$ with
both $A$ and $B$ in $G(\Lambda)$ and both contained in $\Lambda$ . Hence, $CR_{\mathfrak{p}}\neq\Lambda R_{\mathfrak{p}}$ for only
a finite set of $\mathfrak{p}$ .

The map $A\rightarrow AR_{p}$ defines a homomorphism from $G(\Lambda)$ into $G(\Lambda R_{\mathfrak{p}})$ . There
is therefore defined a homomorphism from $G(\Lambda)$ into the direct product
$\prod_{\mathfrak{p}}G(\Lambda R_{\mathfrak{p}})$ . The preceding remarks show that the image is contained in the

direct sum $\sum_{\mathfrak{p}}G(\Lambda R_{\mathfrak{p}})$ of the groups $G(\Lambda R_{\mathfrak{p}})$ .
THEOREM 3.4. The homomorphism $G(\Lambda)\rightarrow\sum_{\mathfrak{p}}G(\Lambda R_{\mathfrak{p}})$ is an isomorphism.

PROOF. Proposition 1.3 shows immediately that the homomorphism is a
monomorphism. We must prove that the mapping is onto.

Let $\mathfrak{p}$ be some minimal prime ideal, and let $1\psi$ be an element of $G(\Lambda R_{\mathfrak{p}})$

which is contained in $AR_{P}$ . Then $M$ contains some power of $\mathfrak{p}$ . Set $ A=M\cap\Lambda$ .
Then it is readily verified that $A$ is a lattice and that both of the associated
orders of $A$ coincide with $\Lambda$ . Furthermore, $AR_{\mathfrak{p}}=M$. Finally, let $q$ be a
minimal prime ideal of $R$ different from $\mathfrak{p}$ . Then, the fact that $A$ contains a
power of $\mathfrak{p}$ shows that $AR_{q}=\Lambda R_{\mathfrak{q}}$ . Now set $B=A^{**}$ . Then, $B\in G(\Lambda)$ and
$ BR_{\mathfrak{p}}=j\psi$ while $BR_{q}=\Lambda R_{\mathfrak{q}}$ for all $q\neq \mathfrak{p}$ . (These last two statements follow
from Proposition 1.2.) Every element of $G(\Lambda R_{\mathfrak{p}})$ has the form $M\circ N^{-1}$ with $M$

and $N$ contained in $\Lambda R_{\mathfrak{p}}$ . Hence, given any element $1\psi\in G(\Lambda R_{\mathfrak{p}})$ , there exists
an $A\in G(\Lambda)$ such that $ AR_{\mathfrak{p}}=1\psi$ and $AR_{q}=AR_{q}$ , for all $q\neq \mathfrak{p}$ . It follows imme-
diately that the map $G(\Lambda)\rightarrow\sum G(\Lambda R_{\mathfrak{p}})$ is an epimorphism.

COROLLARY 3.5. If $\Sigma$ is a central simple algebra over $K$ and $\Lambda$ is a maximal
order in $\Sigma$ , then $G(\Lambda)$ is a free abelian group whose generators are in one-to-one
correspondence $wit/l$ the minimal prime ideals of $R$ .

PROOF. In this case $G(\Lambda R_{\mathfrak{p}})$ is an infinite cyclic group, and the assertion
follows from the theorem.

Institute for Advanced Study
Princeton, New Jersey



376 O. GOLDMAN

References

[1] M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc., 97
(1960), 1-24.

[2] M. Deuring, Algebren, Springer, Berlin, 1935.
[3] B. L. van der Waerden, Modern Algebra, vol. II, New York, 1950.


	Quasi-equality in maximal ...
	Introduction.
	Section 1. Lattices.
	Section 2. Orders.
	THEOREM 2.4. ...

	Section 3. The group of ...
	References


