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G. Takeuti developed the theory of ordinal diagrams of order » (where #
is a positive integer) in [2], and generalized it to the theory of ordinal dia-
grams constructed from well-ordered sets 7, 4, and S in [3] It was necessary
to consider S in order to prove the accessibility for Od(Z, 4, S) (the system of
ordinal diagrams constructed from I, A and S) given in [3]. But S did
not serve to extend the system of ordinal diagrams. In fact, if we denote
0d(, A, S) and O(Z, A, S) with empty S by Od(Z, A) and O(, A) respectively, we
can embed Od(Z, A, S) (or O, A, S)) into Od({x}\JI, AJS) (or O({x}\JI, AJYS)),
where * is distinct form any element of I, A and S; the notation A\Y S means
the well-ordered set obtained from A and S by keeping the orders in them-
selves and setting the elements of A before the elements of S. The embed-
ding is defined as follows:

1. If a= A, then a* is a.

2. If « is of the form («,,s), then a* is (¥, a ¥, s).

3. If «a is of the form (G, ay, «,), then a* is (7,a,*, a,*).

4. If a is of the form «, # «,, then a* is «a,* 4§ a,*.

Now we can simplify the proof of the accessibility of Od(,4,S) in a
similar way as in § 2 of whether S is empty or not (cf. §2 of this paper).
In this paper, we shall construct a system Od(J), namely ‘ the system of ordinal
diagrams constructed from a well-ordered set /” (in §1), and prove that the
system is well-ordered for the given orderings in a similar way as in (in
§2). Then we shall show that the present system is a generalization of pre-
vious systems. In fact, Od(J, 4) is embedded into Od(/\J A) in §3. By the
way, we shall show that a formal theory of Od(Z, A) can be formalized in the
system developed in and is consistent.

The author wishes to express her heart-felt thanks to Prof. G. Takeuti for
his valuable advice and kind encouragement in the preparation of this paper.

§1. Ordinal diagrams constructed from 1.

Let I be a well-ordered set with the order <* and o be the first element
of I. In this section, we shall construct a kind of system of ordinal diagrams,
called ovdinal diagrams constructed from I and denoted by Od(Z). Though
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the word o.d. is used in and in to denote an element of ordinal dia-
grams developed there, we use it instead of ‘an element of Od(/)’ for simpli-
fication throughout this and the next sections.

1. Od(7) is defined recursively as follows:
1.1. If ;< 1, then ¢ is an o.d.
1.2. If « and # are o.d.’s, then («, ) is an o.d.
13. If @ and 4 are o.d.’s, then a%f is an o.d.

2. An o.d. « is called a ¢.o0.d. (connected ordinal diagram constructed from
I), if and only if the operation used in the final step of construction of « is
not #.

3. Let a be an o.d. We define components of a recursively as follows:
3.1. If a is a c.o0.d., then « has exactly one component which is « itself.
32. If a is an o.d. of the form «, # «,, then the components of a are
the components of «, and of «,.

4. Let a and B be o0.d.’s. We define a =f recursively as follows:

41. Let a=l Then a=2p, if # is an element of [ and equal to « in I

4.2. Let «a be of the form (a,, ;). Then a=p, if 8 is of the form (3, 5.)
and ¢, =p, and a,=45,.

4.3. Let « have %k components «,,--,a, (>1). Then a=4, if § has &-
components, and 3, ---, f; being these components, there exists a permutation
(my, -+ ,my) of (1, -+, k) such that «,=p,, for n=1,--- k.

44, pf=«a if a=45.

5. Let a be an o.d. The rank of « means the sum of the number of (,)
and # in «.

6. Let «, B and & be o.d’s. We define the relations #C, a (to read: B is a
E-section of ) and f <., B <. aand ‘index of a’ simultaneously as follows:

61. If a,f<1, then <, a and <~ a means g <*a.

6.2. Let one (or both) of & and B be not a c.o.d. and the components of
« and B be a;, -, a, and By, -+, B; respectively. B <.a holds if one of the
following conditions is satisfied:

6.2.1. There exists an a, (1=m=h) such that 8, <. «, holds for every
n(1=Zn=k).

6.22. >1, k=1 and f,=«, for some m (1 =m=h).

6.23. 2>1, k>1 and there exist an a,, 1=Z<m=%) and a 8, A<nu=k)
such that «,,=f, and

Bif B PnrBBrr® 8 B <e - fdp Eanuffa,.
B <« holds if one of 6.2.1-6.2.3 with co in place of & is fulfilled.
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6.3. If a=l, then #C . a never holds.

6.4. Let « be of the form («,, a,).

64.1. If £<,, then S, a if and only if fC;¢ «,.

64.2. If £=a, then fC; « if and only if 2 is «,.

6.43. If a,<, & then fC . a never holds.

6.5. Let a be of the form «;#a,. Then 8, « if and only if either ;¢ «a;
or §C¢ «a, holds.

6.6. & is called an index of «, if a has a &-section.

In the following we shall simply say ‘¢ is less (or greater) than »’ and
‘& is the minimum (or maximum)’ in place of ‘¢ is less (or greater) than 7
in the sense of <,” and ‘& is the minimum (or maximum) in the sense of
<,’, respectively.

6.7. Let « and A be c.o.d’s. If there exists an index  of a« and/or £
such that £ <, », then £* is defined to be the minimum of such indices; other-
wise, £* is defined to be oo. Then A <. «, if and only if one of the following
conditions is fulfilled:

6.7.1. There exists a £-section «, of a such that =, «,.

6.72. B,<:a for every &-section B, of f and B < 4+ a.

6.8. Let « and A be c.0.d,’s of the form («,, «,) and (f,, 5,) respectively.
B <. a if and only if one of the following conditions is fulfilled:

68.1. B, <, a,.

6.8.2. f,=«, and F, <,, a,.

69. Let a=7 and f be a c.0.d. of the form (B, f). a <. B if =, B,
A <. a if 8, <, .

Under these definitions the following propositions are easily proved.

PROPOSITION 1. = is an equivalence velation between o.d.s.

PROPOSITION 2. Let «a,,a,,0,,8. be o0.d’s. a,=f, and a,=pB, imply
a fa, =55,

PROPOSITION 3. Let ), ., 51, B be 0.d’s and v be an o.d. or oo. Then
ay =By, a=0, and o, <y &y imply B, <y B..

PROPOSITION 4. FEach of the rvelations <g where & is an o.d. or oo, defines
a lineav order between o0.d.’s.

PROPOSITION 5. Let aand B be 0.d’s. Then B <. (a,B) for every r such
that v =,«a.

§2. Accessibility of Od(J).

Let S be a system with a linear order <. An element s of S is called
“accessible in S (or accessible for <)’, if the subsystem of S consisting of
elements, which are not greater than s in the sense of <, is well-ordered. S
is called accessible, if the whole system is well-ordered by <.
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1. Let a and A be o.d’s. We define a relation f<=a«a (to read; £ is a wvalue
of a) as follows:

1.1. If ¢ =1, then a has no value, that is, f<«a never holds.

1.2. Let a be not a c.o.d. and have components «, -, «;. Then f=a,
if f=a,, for some m (1 =m k).

1.3. Let « be of the form (a(, «;). Then f<a, if § is a, or f<a, or
f<=a,.

2. Let a and 4 be o.d’s. § is called a (&, -+, &y)-section of «a, if the following
conditions are fulfilled:

2.1 150 6350 =0 e

2.2. There exists a series of 0.d’s a —=a,, «a,, -, a2, =f such that « is
the maximal component of a &;-section of a;_, in the sense of <., for every
k(=12 --,n).

3. Let £ be an o.d. ¢#o0 is called the successor of & and sometimes denoted as
E’. (It is clearly seen that no o.d. lies between & and {#o0 for <, where 7 is
an o.d. or c0). An o.d. £ is called a /. 0.d. (limit ordinal diagram constructed
from I), if every component of £ is different from o.

4. Let « be an o.d. and & be an o.d. accessible for <,, We define ‘a is a
&-fan’ and ‘« is £-accessible’ by transfinite induction on & for <, as follows:
4.1. An o.d., every value of which is accessible for <, is an o-fan.

4.2. « is f-accessible, if and only if « is a &-fan and accessible for <, in
the system of £-fans.

4.3. « is £#o-fan, if and only if «a is a &-fan and every &-section of «a is
&-accessible.

44. Let £ be a l.o.d. « is a &-fan, if and only if « is an 7-fan for every
7 satisfying 7 <, &.

Let « be an 0.d. « is called an co-fan, if « is a &-fan for every o.d. &
accessible for <,, and is called to be oo-accessible, if a is an oo-fan and acces-
sible for <. in the system of co-fans.

The following propositions are easily proved.

PROPOSITION 1. Let & and & be 0.d.’s. If every o.d. less than « in the
sense of <. is accessible for <g, them & is accessible for <.

PROPOSITION 2. Let a and & be o.d’s. If & is accessible for <, then every
o0.d. less than o in the sense of < is accessible for <.

PROPOSITION 3. Let ay, - ,a, and & be o.d.s. If a,, -, a, are accessible
for <g, then a,%---fa, is accessible for <e.

These propositions remain correct, if we replace ‘o.d. &’, ‘0.d.’s &, a4, -+~ , @,,”
and ‘accessible for <.’ by ‘o.d. £ accessible for <,’, ‘¢-fans a, a4, -+, &, and
¢ £-accessible’, respectively. We refer to thus replaced propositions as Propo-



350 A. Kixo

sitions 1%-3%,

PROPOSITION 4. Let & be an o.d. accessible for <,. If a is EFo-accessible,
then « is E-accessible.

PrOOF. « is a &-fan by the definition. We may assume that every &’-fan
B satisfying B <. « is &-accessible. We shall prove that every &-fan 8 such
that <. a is &’-fan and £-accessible by induction on the rank of 3. Let g
be a £-fan such that 2 <, @. If B hasa &-section 3, 8, is a &-fan and B, <, a.
Then B, is &-accessible by the hypothesis of induction. We see that B is a
£’-fan, whether A has a &-section or not. Then one of the following condi-
tions holds:

(1) B <g A

(2) There exists a £-section «, of a such that f=. «a,.

In the former case, § is £-accessible by our assumption. In the latter case,
since «, is £-accessible, £-accessibility of g8 follows from Proposition 1¥, q.e.d.

PROPOSITION 5. Let & be a 1. 0.d. accessible for <., and the following condi-
tion (C) be satisfied:

(C) For any 1,{ such that n<,{ <,&, every {-accessible E-fan is n-accessible.
Then ‘ a is E-accessible’ implies ‘ « is n-accessible’ for every 7 less than .

ProOF. Let the condition (C) be astisfied and « be é&-accessible. Let &,
be the successor of the greatest index less than £, We have only to prove
that « is 7-accessible for every 7 such that é,=, =<, &, We shall prove this
by transfinite induction for <, on «. We may assume that every £-fan such
that B <. a is {-accessible for every { less than £. For the proof we define
an auxiliary notion ‘7 is the n-th z-branch of g with respect to {, and {,’
recursively as follows:

51. If (=, 7<, {; and yr C, B,7r is the 1 st y-branch of 8 with respect
to ¢, and (..

5.2. Let y C, 0 and 0 be the n-th {-branch of # with respect to ¢, and {,.
If <, n<, ¢, then 7 is the n-th z-branch of . If { =, <, ¢, then 7 is
the n-+1-st »-branch of # with respect to {, and {,.

Let 7 satisfy &,=, 7<, &, and § be an n-fan and f <, «. We shall prove
that g is a &-fan and {-accessible of every ¢ such that £, <, { <, & by induction
on the number of branches of 8 with respect to &, and & Let A, be an arbi-
trary {,-branch of 8 (£, =, {, <, &). Using the hypothesis of induction, we see
that j, isa &é-fan. f, <. « holds by means of # <, a. Then g, is {,-accessible
by the hypothesis of transfinite induction for <,. Thus we may consider f
as a &-fan. B <, « holds by means of #<, a. Then j is {-accessible for every
{ less than & by the hypothesis of transfinite induction. From this our pro-
position follows by Proposition 1%, q.e.d.

By Propositions 4 and 5, we see easily
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PROPOSITION 6. Let & be an o.d. accessible for <, and the condition (C)
fold. Then for every 5 less than &, ‘ o is E-accessible’ implies ‘ « is n-accessible’.

PROPOSITION 7. The condition (C) holds for an avbitrary o.d. & accessible
for <,.

PrROOF. We prove this by transfinite induction on £. Suppose now the
proposition holds for every &, less than . If £ is a /.o.d., our assertion is
clear by the definition of &-fan. If £ ={ %0, our assertion holds for ¢ less
than ¢, by the hypothesis of induction and for {={, by Proposition 6.

From Propositions 6 and 7 follows

PROPOSITION 8. Let & be an o.d. accessible for <, a be E-accessible and
<o & Then a is n-accessible.

From follows

PROPOSITION 9. For any o.d’s 1, accessible for <, and 7 <, every (-
accessible co-fan is n-accessible.

ProprOSITION 10. If a is oco-accessible, then « is E-accessible for every o.d.
& accessible for <,.

Proor. Following the proof of Proposition 5, we can prove this by the
help of Proposition 9.

By transfinite induction over 7, we have

PROPOSITION 11. Every co-fan is co-accessible.

From Propositions 10 and 11, we see easily

PROPOSITION 12. Every oo-fan is &E-accessible for every & accessible for <,.

PROPOSITION 13. Every o-fan is &-accessible wheve & is an arbitrary o.d.
accessible for <, or £ is oo.

We see easily the following proposition.

PROPOSITION 14. Let a and B be c.0.d’s and & an o.d. If a<.p, then
a <« B or theve exists a (&, -+-, E,)-section By of B such that €=, &, and a=.. B,

Then we have

PRrROPOSITION 15. Every value of an o.d. « is less than «.

PROPOSITION 16. Let « be an o.d. and not an o-fan. Then there exists an
o-fan B such that f<,o and B is not accessible for <,.

Proor. We prove this by induction on the rank of @. By the hypothesis
of the proposition, there exists a value a, of a not accessible for <, We
have «, <, a by Proposition 15. If «, is an o-fan, we can take a,as 8. If «,
is not an o-fan, there exists an o-fan # such that # <, «, and £ is not accessible
for <, by the hypothesis of induction. Then A has the required property.

q.e.d.

PROPOSITION 17. Every o-fan is accessible for <,.

Proor. We prove this by transfinite induction for <, on the system of
o-fans (cf. Proposition 13). Let a be an o-fan. We may assume that every
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o-fan f# less than « is accessible for <,. Under this hypothesis and Proposi-
tion 16, we see easily that, if 7 <, a« then 7 is an o-fan. Then we have the
proposition by [Proposition 1l

PROPOSITION 18. FEwery o.d. is an o-fan.

PROPOSITION 19. Every o.d. is accessible for <.

THEOREM. FEvery o.d. is accessible for <, where & is an arbitvary o.d. or o.

Proor. It follows from Propositions 18, 19 and 13.

§ 3. Relations between Od(I, A) and Od(]).

In this section we shall show that Od(Z, I) is embedded into Od(J), where
J is a union of two sets isomorphic to I.

1. Let I be well-ordered, < be the well-ordering of 7, and the first element
of I be denoted by o.

We define 7 to be a set consisting of all the i and 7 where ;& I. <isa
well-ordering of [~ which is defined as follows:

1.1. If i<j, then i <j.

12. If i and j I, then i <.

1.3. If i<j, then ;< 7.

2. In the following some notations (e.g. &, oo) are used in both Od(Z,I) and
od().

Let a be an element of Od(J, ). «* is defined recursively as follows:

21. If a1, then a* is &.

22. If «a is of the form (i, a,, «,), then a* is (a*, (G, a,*)).

23. If a is of the form a,#«,, then a* is a,*#a,*.

We see easily the following propositions.

PROPOSITION 1. [If « is an element of Od(I, I), then a* is an element of Od(f)..

PROPOSITION 2. Let « and B be elements of Od(I,I), a* = p* if and only
if a=p

PROPOSITION 3. If i and « belong to I and Od(Z, I) respectively, then i < a*
where & is an arbitrary element of Od(f) or ©o.

Proor. We prove this by induction on the rank of a. If a <=1, then it
is clear by 1.2. If « is of the form (j, @, «,) then a* is (a*, (4, @.*)). By the
hypothesis of induction 7 <, «,*, whence follows 7 <. a*. Then i <.a* for every
&=, a*. Since a* contains no ¢-section such that j <, & <, a,*, this implies
1<e ¥ for j <, &<, a* Since i<; a,* holds by the hypothesis of induction,
1<; a* holds. From this we see easily the proposition.

PROPOSITION 4. Let « and B be elements of Od(I, ) and i . [* is an
i-section of o, if and onlv if B is an i-section of «.
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PROOF. We see easily the proposition by induction on the rank of « and
Proposition 3.

PROPOSITION 5. Let « and B be elements of Od(I, I). If a <; B, then a* <; B*
wheve i I or i is co.

ProoF. We shall prove this by double induction on the sum of ranks of
« and B and the number of indices greater than i in « and/or S.

First we shall prove the case ;=occ. We have only to prove a <.. § implies
«* <., B* under the following hypothesis of induction:

(H1) Let y and ¢ be any elements of Od(Z, ), and the sum of the ranks

of 7,0 be less than the sum of the ranks of « and 8. Then r <;d§ implies

7¥<,; 0% where j= 1 or j is oo.

To show this we separate the cases according to the forms of « and 4. Since
other cases are easily treated, we treat here only the case that « and g are
of the form (4, «,, ;) and (J, B,, 5,) respectively. If a,<, B, then «aF* <, B,*
by (H1), which implies a*<.p*. If «,=p#, then we have only to prove
@, a*) <a* (4, £,%) (by Proposition 2), which follows from (, «,*) <. (4, #,*¥) (by
Proposition 3). (@, a,*)<«(j, 5,*) follows from i< j, or i=j and «*<; f*
according as i1 <j, or ;=7 and «a; <; B,

Then we prove that a <; 8 implies a* <; §* for i =1 under (H1) and the
following hypothesis of induction:

(H2) «a <; B implies a* <; f* for every j such that the number of indices

greater than j in « and/or # is less than the number of indices greater

than 7/ in « and/or S.

If there exists an i-section §, of 4 such that a <; 3,, then §,* is an {-section
of B* and a* =, f,* by Proposition 4 and (H1). Let «,<; £ for every i-section
«, of a and « <; B where j is defined as follows: If there exists an index of
« and/or B greater than ¢, then j is defined to be the minimum of such indi-
ces ; othewise, j is defined to be co. Then a,* <; % for every i-section ay* of
a* and a* <; f* by Proposition 4 and (H2). From this follows a* <; §* by
Proposition 4.

From these propositions follows

THEOREM 1. Od(Z, 1) is embedded into Od(I).

We define a subsystem O(J) of Od(J) recursively as follows:

3.1. If il then i O{).

3.2. If iel and a = O(I), then (j, @) € O{).

33. If a€O0O() and < 0O(I), then a#B < O).
Then we have

COROLLARY 1. O(J, 1) is embedded into O().

Let 7 and A be well-ordered. We have the following theorem in the same
way as above.
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THEOREM 2. If I and A have no element in common, Od(I, A) is embedded
into Od(I\J A).

COROLLARY 2. If I and A have no element in common, O, A) is embedded
into O(I\J A).

§4. On a formal theory of Od(Z, A).

In [5], G. Takeuti proved the consistency of a logical system. We shall
consider,the following slight modification of this system: Let [(@), A(@), @ <*b
and ¢ <b be primitive recursive predicates, and <* and < well-orderings of
f and A, where I and A are {«|I(e)} and {a]|A(a)} respectively.

1. Every beginning sequence is of the form D— D or of the form @ =24,
F(a)— F(b) or a ‘mathematische Grundsequénz’ in Gentzen [1], or one of the
following forms:

La), Anla, b)—Gola, b, {x, y}(Aulx, Y) A x <*a));

I(a), Gula, b, {x, y}(A(x, V) A\ x <¥*a))— Anla, b);

A(@), B(a, b)— Hia, b, {x, y}(Bu(x, y) N x< a));

Al@), Hi(a, b, {%,y}(Bu(% ) A 5< @)= Bua, b);
where m,#=0,1,2,---, A4, A,, -+, By, By, --- are symbols for predicate and G,
and H, are arbitrary formulas satisfying the following conditions:

(@) Gula,b,a) and H,(a, b, «) do not contain A, Ansi, Amre = s Boy, By, Bay -+
and B,, By.1, Bny,, --+ respectively.

(b)) If Gula, b, @) or Ha,b,«) contains a formula of the form VYoF (@),
then F(B) contains no bound f-variable.

2. The following inference ‘induction’ is added:

F(@), I'>4, F(a+1)
FQO), I'>4, F@)
where « is contained in none of F(0), I' and 4, and ¢ is an arbitrary term.
3. The inference V left on f-variable
FV), I'—>4
YoF(p), I'— 4
is restricted by the condition that F(§) contains no bound f-variable.

Then we have the following

THEOREM. This system is consistent.

ProOF. Let J be IV A, < be a well-ordering of J defined as follows:

1. If i <*j4, then i<j.

2. If ieland a< A, then i<a.

3. If «<b, then a<b.

Then the proof is performed as in considering J as I.
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We see easily from the proof of §2, that the proof for accessibility of
Od(l, A) can be given in a similar way as in §2 of [2] We can develop a
formal theory of Od(Z, A) in a subsystem of the above system such that m=0,1
and #=0. Itis noticed that for the consistency-proof for this subsystem, we
have only to use {co}\JJ,\UJ, instead of J.. We shall not give an exact treat-
ment of the formal theory here, but show how to develop it. First we give
all the necessary concepts concerning the construction of Od(/, A) as the
mathematische Grundsequenzen in the same way as in [4] Let Ka), A(a),
a<*b,a <b, O(a), <G, a,b), C@G,a b) and <(a,b) be the formal counterparts of
‘acsl’,‘acs A’, ‘aislessthan b in I, ‘a isless than b in A’ ‘a =0d4d({, A)’,
‘a<i;b’, ‘ac;b’ and ‘a<b’, respectively. We use further the following
abbreviations :

J¥@) for VYo(Vx(I(x) AVy(y <*x—@[yD)—¢lxD)—¢lal);
D¥(a,a) for Vx(x<*ar als])+—J*a);
J(@ for Vo(Vx(A®) AVy(y <x—9lyD)— el ¢laD);
Da, @) for Vx(x<aw—a[x]) —J(a);
AG,a,a) for Yo(Va(alxlAVW(@LyIA<G;y,x)—elyD—elaD—¢laD:
AG,a) for AQG {x}0Wx),a);
O@) for O(@) AVx(<(x,a)— A(l, %)), where 1 stands for the formal
counterpart of the first element of I;
B(,a,a) for
VO 5(@) AVx(x <*i—a[x,a] NV (C(x;y, @) — A, {u} alx, ul, v));
f(z') for IG) ANi=0, where 0 stands for the formal counterpart of co.
Then the following sequences are also used as beginning sequences of our
system :
1.1, IG), C*G)— D*@, {2} (CHx) A x <*D)).
1.2, IG), D*(, {x}(C*(x) A x <*i))— C*().
1.3, A(@), C@)— D(a, {x}(C(%) A x < a)).
14. A(@), D(a, {(x}({Cx) A x < a))— C(a).
1.5. IG), FG, a)— B@, a,{x, y}(E(x, y) A\ x <*D)).
1.6. IG), BG, a,{x, y}(F(x, ) A\ x<*i)— F(@, a).

We can prove that the sequence O(a), T(i)—> A(i, @) is provable in our system.

This is done similarly as in [4], using the above proof of accessibility.

Tokyo University of Education
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