On ordinal diagrams

By Akiko Kino

(Received Jan. 23, 1961)
G. Takeuti developed the theory of ordinal diagrams of order n (where n is a positive integer) in [2], and generalized it to the theory of ordinal diagrams constructed from well-ordered sets I, A, and S in [3]. It was necessary to consider S in order to prove the accessibility for $\operatorname{Od}(I, A, S)$ (the system of ordinal diagrams constructed from I, A and S) given in [3]. But S did not serve to extend the system of ordinal diagrams. In fact, if we denote $\mathrm{Od}(I, A, S)$ and $\mathrm{O}(I, A, S)$ with empty S by $\operatorname{Od}(I, A)$ and $\mathrm{O}(I, A)$ respectively, we can embed $\operatorname{Od}(I, A, S)($ or $\mathrm{O}(I, A, S)$) into $\operatorname{Od}(\{*\} \cup I, A \cup S)($ or $\mathrm{O}(\{*\} \cup I, A \cup S)$), where $*$ is distinct form any element of I, A and S; the notation $A \cup S$ means the well-ordered set obtained from A and S by keeping the orders in themselves and setting the elements of A before the elements of S. The embedding is defined as follows:

1. If $\alpha \in A$, then α^{*} is α.
2. If α is of the form (α_{0}, s), then α^{*} is ($\left(, \alpha_{0}^{*}, s\right)$.
3. If α is of the form ($i, \alpha_{1}, \alpha_{2}$), then α^{*} is ($i, \alpha_{1}{ }^{*}, \alpha_{2}^{*}$).
4. If α is of the form $\alpha_{1} \# \alpha_{2}$, then α^{*} is $\alpha_{1}{ }^{*} \# \alpha_{2}{ }^{*}$.

Now we can simplify the proof of the accessibility of $\operatorname{Od}(I, A, S)$ in a similar way as in $\S 2$ of [2], whether S is empty or not (cf. $\S 2$ of this paper). In this paper, we shall construct a system $\operatorname{Od}(I)$, namely " the system of ordinal diagrams constructed from a well-ordered set I " (in § 1), and prove that the system is well-ordered for the given orderings in a similar way as in [2] (in $\S 2$). Then we shall show that the present system is a generalization of previous systems. In fact, $\operatorname{Od}(I, A)$ is embedded into $\operatorname{Od}(I \cup A)$ in $\S 3$. By the way, we shall show that a formal theory of $\operatorname{Od}(I, A)$ can be formalized in the system developed in [5] and is consistent.

The author wishes to express her heart-felt thanks to Prof. G. Takeuti for his valuable advice and kind encouragement in the preparation of this paper.

§ 1. Ordinal diagrams constructed from I.

Let I be a well-ordered set with the order $<^{*}$ and o be the first element of I. In this section, we shall construct a kind of system of ordinal diagrams, called ordinal diagrams constructed from I and denoted by $\operatorname{Od}(I)$. Though
the word o.d. is used in [2] and in [3] to denote an element of ordinal diagrams developed there, we use it instead of 'an element of $\operatorname{Od}(I)$ ' for simplification throughout this and the next sections.

1. $\operatorname{Od}(I)$ is defined recursively as follows:
1.1. If $i \in I$, then i is an o.d.
1.2. If α and β are o. d.'s, then (α, β) is an o.d.
1.3. If α and β are o. d.'s, then $\alpha \# \beta$ is an o.d.
2. An o.d. α is called a c.o.d. (connected ordinal diagram constructed from I), if and only if the operation used in the final step of construction of α is not \#.
3. Let α be an o.d. We define components of α recursively as follows:
3.1. If α is a c.o.d., then α has exactly one component which is α itself.
3.2. If α is an o. d. of the form $\alpha_{1} \# \alpha_{2}$, then the components of α are the components of α_{1} and of α_{2}.
4. Let α and β be o. d.'s. We define $\alpha=\beta$ recursively as follows:
4.1. Let $\alpha \in I$. Then $\alpha=\beta$, if β is an element of I and equal to α in I.
4.2. Let α be of the form (α_{0}, α_{1}). Then $\alpha=\beta$ if β is of the form (β_{0}, β_{1}) and $\alpha_{0}=\beta_{0}$ and $\alpha_{1}=\beta_{1}$.
4.3. Let α have k components $\alpha_{1}, \cdots, \alpha_{k}(k>1)$. Then $\alpha=\beta$, if β has k components, and $\beta_{1}, \cdots, \beta_{k}$ being these components, there exists a permutation (m_{1}, \cdots, m_{k}) of ($1, \cdots, k$) such that $\alpha_{n}=\beta_{m_{n}}$ for $n=1, \cdots, k$.
4.4. $\beta=\alpha$ if $\alpha=\beta$.
5. Let α be an o.d. The rank of α means the sum of the number of (,) and \# in α.
6. Let α, β and ξ be o. d.'s. We define the relations $\beta \subset_{\xi} \alpha$ (to read: β is a ξ-section of α) and $\beta<_{\xi} \alpha, \beta<_{\infty} \alpha$ and 'index of α ' simultaneously as follows:
6.1. If $\alpha, \beta \in I$, then $\beta<_{\xi} \alpha$ and $\beta<_{\infty} \alpha$ means $\beta<^{*} \alpha$.
6.2. Let one (or both) of α and β be not a c.o. d., and the components of α and β be $\alpha_{1}, \cdots, \alpha_{h}$ and $\beta_{1}, \cdots, \beta_{k}$ respectively. $\beta<_{\xi} \alpha$ holds if one of the following conditions is satisfied:
6.2.1. There exists an $\alpha_{m}(1 \leqq m \leqq h)$ such that $\beta_{n}<_{\xi} \alpha_{m}$ holds for every $n(1 \leqq n \leqq k)$.
6.2.2. $h>1, k=1$ and $\beta_{1}=\alpha_{m}$ for some $m(1 \leqq m \leqq h)$.
6.2.3. $h>1, k>1$ and there exist an $\alpha_{m}(1 \leqq m \leqq h)$ and a $\beta_{n}(1 \leqq n \leqq k)$ such that $\alpha_{m}=\beta_{n}$ and

$$
\beta_{1} \# \cdots \# \beta_{n-1} \# \beta_{n+1} \# \cdots \# \beta_{k}<_{\xi} \alpha_{1} \# \cdots \# \alpha_{m-1} \# \alpha_{m+1} \# \cdots \# \alpha_{h} .
$$

$\beta<\infty \alpha$ holds if one of 6.2.1-6.2.3 with ∞ in place of ξ is fulfilled.
6.3. If $\alpha \in I$, then $\beta \subset_{\xi} \alpha$ never holds.
6.4. Let α be of the form (α_{0}, α_{1}).
6.4.1. If $\xi<_{0} \alpha_{0}$, then $\beta \subset_{\xi} \alpha$ if and only if $\beta \subset_{\xi} \alpha_{1}$.
6.4.2. If $\xi=\alpha_{0}$, then $\beta \subset_{\xi} \alpha$ if and only if β is α_{1}.
6.4.3. If $\alpha_{0}<_{0} \xi$, then $\beta \subset_{\xi} \alpha$ never holds.
6.5. Let α be of the form $\alpha_{1} \# \alpha_{2}$. Then $\beta \subset_{\xi} \alpha$ if and only if either $\beta \subset_{\xi} \alpha_{1}$ or $\beta \subset_{\xi} \alpha_{2}$ holds.
6.6. ξ is called an index of α, if α has a ξ-section.

In the following we shall simply say ' ξ is less (or greater) than η ' and ' ξ is the minimum (or maximum)' in place of ' ξ is less (or greater) than η in the sense of ${<_{0}}^{\text {' }}$ and ' ξ is the minimum (or maximum) in the sense of $<_{0}$, respectively.
6.7. Let α and β be c.o.d's. If there exists an index η of α and/or β such that $\xi<_{o} \eta$, then ξ^{+}is defined to be the minimum of such indices; otherwise, ξ^{+}is defined to be ∞. Then $\beta<_{\xi} \alpha$, if and only if one of the following conditions is fulfilled:
6.7.1. There exists a ξ-section α_{0} of α such that $\beta \leqq_{\xi} \alpha_{0}$.
6.7.2. $\beta_{0}<\xi_{\xi} \alpha$ for every ξ-section β_{0} of β and $\beta<\xi^{+} \alpha$.
6.8. Let α and β be c.o.d,'s of the form (α_{0}, α_{1}) and (β_{0}, β_{1}) respectively. $\beta<_{\infty} \alpha$ if and only if one of the following conditions is fulfilled:
6.8.1. $\beta_{0}<_{0} \alpha_{0}$.
6.8.2. $\beta_{0}=\alpha_{0}$ and $\beta_{1}<_{\alpha_{0}} \alpha_{1}$.
6.9. Let $\alpha \in I$ and β be a c. o. d. of the form $\left(\beta_{0}, \beta_{1}\right) . \alpha<_{\infty} \beta$ if $\alpha \leqq_{0} \beta_{0}$, $\beta<_{\infty} \alpha$ if $\beta_{0}<_{0} \alpha$.

Under these definitions the following propositions are easily proved.
Proposition 1. = is an equivalence relation between o.d.'s.
Proposition 2. Let $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ be o. d.'s. $\alpha_{1}=\beta_{1}$ and $\alpha_{2}=\beta_{2}$ imply $\alpha_{1} \# \alpha_{2}=\beta_{1} \# \beta_{2}$.

Proposition 3. Let $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ be o.d.'s and γ be an o.d. or ∞. Then $\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}$ and $\alpha_{1}<_{r} \alpha_{2}$ imply $\beta_{1}<_{r} \beta_{2}$.

Proposition 4. Each of the relations $<_{\xi}$, where ξ is an o.d. or ∞, defines a linear order between o. d.'s.

Proposition 5. Let α and β be o.d.'s. Then $\beta<_{\xi}(\alpha, \beta)$ for every γ such that $\gamma \leqq{ }_{o} \alpha$.

§ 2. Accessibility of $\operatorname{Od}(I)$.

Let S be a system with a linear order $<$. An element s of S is called 'accessible in S (or accessible for $<$)', if the subsystem of S consisting of elements, which are not greater than s in the sense of $<$, is well-ordered. S is called accessible, if the whole system is well-ordered by $<$.

1. Let α and β be o.d.'s. We define a relation $\beta<\alpha$ (to read; β is a value of α) as follows :
1.1. If $\alpha \in I$, then α has no value, that is, $\beta<\alpha$ never holds.
1.2. Let α be not a c.o.d. and have components $\alpha_{1}, \cdots, \alpha_{k}$. Then $\beta \leqslant \alpha$, if $\beta<\alpha_{m}$ for some $m(1 \leqq m \leqq k)$.
1.3. Let α be of the form $\left(\alpha_{0}, \alpha_{1}\right)$. Then $\beta \leqslant \alpha$, if β is α_{0} or $\beta \leqslant \alpha_{0}$ or $\beta<\alpha_{1}$.
2. Let α and β be o. d.'s. β is called a (ξ_{1}, \cdots, ξ_{n})-section of α, if the following conditions are fulfilled:
2.1. $\xi_{1} \leqq_{o} \xi_{2} \leqq_{0} \cdots \leqq_{o} \xi_{n}$.
2.2. There exists a series of o. d.'s $\alpha=\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n}=\beta$ such that α_{k} is the maximal component of a ξ_{k}-section of α_{k-1} in the sense of $<_{\xi_{k}}$ for every $k(k=1,2, \cdots, n)$.
3. Let ξ be an o.d. $\xi \# 0$ is called the successor of ξ and sometimes denoted as ξ^{\prime}. (It is clearly seen that no o.d. lies between ξ and $\xi \# 0$ for $<_{\eta}$ where η is an o.d. or ∞). An o.d. ξ is called a l.o.d. (limit ordinal diagram constructed from I), if every component of ξ is different from o.
4. Let α be an o. d. and ξ be an o. d. accessible for $<_{0}$. We define ' α is a ξ-fan' and ' α is ξ-accessible' by transfinite induction on ξ for $<_{o}$ as follows:
4.1. An o. d., every value of which is accessible for $<_{0}$, is an o-fan.
4.2. α is ξ-accessible, if and only if α is a ξ-fan and accessible for $<_{o}$ in the system of ξ-fans.
4.3. α is $\xi \# 0$-fan, if and only if α is a ξ-fan and every ξ-section of α is ξ-accessible.
4.4. Let ξ be a 1.o.d. α is a ξ-fan, if and only if α is an η-fan for every η satisfying $\eta<_{0} \xi$.

Let α be an o.d. α is called an ∞-fan, if α is a ξ-fan for every o.d. ξ accessible for $<_{0}$, and is called to be ∞-accessible, if α is an ∞-fan and accessible for $<_{\infty}$ in the system of ∞-fans.

The following propositions are easily proved.
Proposition 1. Let α and ξ be o.d.'s. If every o.d. less than α in the sense of $<_{\xi}$ is accessible for $<_{\xi}$, then α is accessible for $<_{\xi}$.

Proposition 2. Let α and ξ be o. d.'s. If α is accessible for $<_{\xi}$, then every o.d. less than α in the sense of $<_{\xi}$ is accessible for $<_{\xi}$.

Proposition 3. Let $\alpha_{1}, \cdots, \alpha_{n}$ and ξ be o. d.'s. If $\alpha_{1}, \cdots, \alpha_{n}$ are accessible for $<_{\xi}$, then $\alpha_{1} \# \cdots \# \alpha_{n}$ is accessible for $<_{\xi}$.

These propositions remain correct, if we replace 'o.d. ξ ', 'o.d.'s $\alpha, \alpha_{1}, \cdots, \alpha_{n}$ ' and ' accessible for $<_{\xi}$ ' by 'o. d. ξ accessible for $<_{0}$ ', ' ξ-fans $\alpha, \alpha_{1}, \cdots, \alpha_{n}$ ' and ' ξ-accessible', respectively. We refer to thus replaced propositions as Propo-
sitions $1^{*}-3^{*}$.
Proposition 4. Let ξ be an o.d. accessible for $<_{0}$. If α is $\xi \# o$-accessible, then α is ξ-accessible.

Proof. α is a ξ-fan by the definition. We may assume that every ξ^{\prime}-fan β satisfying $\beta<\xi^{\prime} \alpha$ is ξ-accessible. We shall prove that every ξ-fan β such that $\beta<\xi<$ is ξ^{\prime}-fan and ξ-accessible by induction on the rank of β. Let β be a ξ-fan such that $\beta<_{\xi} \alpha$. If β has a ξ-section β_{0}, β_{0} is a ξ-fan and $\beta_{0}<_{\xi} \alpha$. Then β_{0} is ξ-accessible by the hypothesis of induction. We see that β is a ξ^{\prime}-fan, whether β has a ξ-section or not. Then one of the following conditions holds:
(1) $\beta<_{\xi^{\prime}} \alpha$.
(2) There exists a ξ-section α_{0} of α such that $\beta \leqq \xi \alpha_{0}$.

In the former case, β is ξ-accessible by our assumption. In the latter case, since α_{0} is ξ-accessible, ξ-accessibility of β follows from Proposition 1*, q.e.d.

Proposition 5. Let ξ be a l.o.d. accessible for $<_{0}$, and the following condition (C) be satisfied:
(C) For any η, ζ such that $\eta<_{0} \zeta<{ }_{0} \xi$, every ζ-accessible ξ-fan is η-accessible. Then ' α is ξ-accessible' implies ' α is η-accessible' for every η less than ξ.

Proof. Let the condition (C) be astisfied and α be ξ-accessible. Let ξ_{0} be the successor of the greatest index less than ξ. We have only to prove that α is η-accessible for every η such that $\xi_{0} \leqq_{0} \eta \leqq_{0} \xi$. We shall prove this by transfinite induction for $<_{\xi}$ on α. We may assume that every ξ-fan such that $\beta<_{\xi} \alpha$ is ζ-accessible for every ζ less than ξ. For the proof we define an auxiliary notion ' γ is the n-th η-branch of β with respect to ζ_{0} and ζ_{1}, recursively as follows:
5.1. If $\zeta_{0} \leqq{ }_{o} \eta<_{o} \zeta_{1}$ and $\gamma \subset_{\eta} \beta, \gamma$ is the 1 st η-branch of β with respect to ζ_{0} and ζ_{1}.
5.2. Let $\gamma \subset_{\eta} \delta$ and δ be the n-th ζ-branch of β with respect to ζ_{0} and ζ_{1}. If $\zeta_{0} \leqq{ }_{0} \eta<_{0} \zeta$, then γ is the n-th η-branch of β. If $\zeta \leqq{ }_{0} \eta<_{0} \zeta_{1}$ then γ is the $n+1$-st η-branch of β with respect to ζ_{0} and ζ_{1}.

Let η satisfy $\xi_{0} \leqq_{o} \eta<_{0} \xi$, and β be an η-fan and $\beta<_{\eta} \alpha$. We shall prove that β is a ξ-fan and ζ-accessible of every ζ such that $\xi_{0} \leqq \varliminf_{0} \zeta<_{0} \xi$ by induction on the number of branches of β with respect to ξ_{0} and ξ. Let β_{0} be an arbitrary ζ_{0}-branch of $\beta\left(\xi_{0} \leqq \zeta_{0} \zeta_{0}<_{0} \xi\right)$. Using the hypothesis of induction, we see that β_{0} is a ξ-fan. $\beta_{0}<_{\xi} \alpha$ holds by means of $\beta<_{\eta} \alpha$. Then β_{0} is ζ_{0}-accessible by the hypothesis of transfinite induction for $<_{\xi}$. Thus we may consider β as a ξ-fan. $\beta<_{\xi} \alpha$ holds by means of $\beta<_{\eta} \alpha$. Then β is ζ-accessible for every ζ less than ξ by the hypothesis of transfinite induction. From this our proposition follows by Proposition 1*.
q. e. d.

By Propositions 4 and 5, we see easily

Proposition 6. Let ξ be an o.d. accessible for $<_{o}$ and the condition (C) hold. Then for every η less than ξ, ' α is ξ-accessible' implies ' α is η-accessible'.

Proposition 7. The condition (C) holds for an arbitrary o.d. ξ accessible for $<_{0}$.

Proof. We prove this by transfinite induction on ξ. Suppose now the proposition holds for every ξ_{0} less than ξ. If ξ is a l. o. d., our assertion is clear by the definition of ξ-fan. If $\xi=\zeta_{0} \# 0$, our assertion holds for ζ less than ζ_{0} by the hypothesis of induction and for $\zeta=\zeta_{0}$ by Proposition 6 .

From Propositions 6 and 7 follows
Proposition 8. Let ξ be an o.d. accessible for $<_{0}, \alpha$ be ξ-accessible and $\eta<_{0} \xi$. Then α is η-accessible.

From Proposition 8 follows
Proposition 9. For any o.d.'s η, ζ accessible for $<_{0}$ and $\eta<_{0} \zeta$ every ζ accessible ∞-fan is η-accessible.

Proposition 10. If α is ∞-accessible, then α is ξ-accessible for every o.d. ξ accessible for $<_{0}$.

Proof. Following the proof of Proposition 5, we can prove this by the help of Proposition 9.

By transfinite induction over I, we have
Proposition 11. Every ∞-fan is ∞-accessible.
From Propositions 10 and 11, we see easily
Proposition 12. Every ∞-fan is ξ-accessible for every ξ accessible for $<_{0}$.
Proposition 13. Every o-fan is ξ-accessible where ξ is an arbitrary o.d. accessible for $<_{0}$ or ξ is ∞.

We see easily the following proposition.
Proposition 14. Let α and β be c.o.d.'s and ξ an o.d. If $\alpha<_{\xi} \beta$, then $\alpha<\infty \beta$ or there exists $a\left(\xi_{1}, \cdots, \xi_{n}\right)$-section β_{0} of β such that $\xi \leqq \xi_{1}$ and $\alpha \leqq \beta_{0}$.

Then we have
Proposition 15. Every value of an o.d. α is less than α.
Proposition 16. Let α be an o.d. and not an o-fan. Then there exists an o-fan β such that $\beta<_{0} \alpha$ and β is not accessible for $<_{0}$.

Proof. We prove this by induction on the rank of α. By the hypothesis of the proposition, there exists a value α_{0} of α not accessible for $<_{0}$. We have $\alpha_{0}<_{0} \alpha$ by Proposition 15. If α_{0} is an o-fan, we can take α_{0} as β. If α_{0} is not an o-fan, there exists an o-fan β such that $\beta<_{0} \alpha_{0}$ and β is not accessible for $<_{0}$ by the hypothesis of induction. Then β has the required property. q. e.d.

Proposition 17. Every o-fan is accessible for $<_{0}$.
Proof. We prove this by transfinite induction for $<_{0}$ on the system of o-fans (cf. Proposition 13). Let α be an o-fan. We may assume that every
o-fan β less than α is accessible for $<_{0}$. Under this hypothesis and Proposition 16, we see easily that, if $\gamma<_{0} \alpha$ then γ is an o-fan. Then we have the proposition by Proposition 1.

Proposition 18. Every o.d. is an o-fan.
Proposition 19. Every o.d. is accessible for $<_{0}$.
Theorem. Every o.d. is accessible for $<_{\xi}$, where ξ is an arbitrary o.d. or ∞. Proof. It follows from Propositions 18, 19 and 13.

§ 3. Relations between $\operatorname{Od}(I, A)$ and $\operatorname{Od}(I)$.

In this section we shall show that $\operatorname{Od}(I, I)$ is embedded into $\operatorname{Od}(J)$, where J is a union of two sets isomorphic to I.

1. Let I be well-ordered, $<$ be the well-ordering of I, and the first element of I be denoted by o.

We define \tilde{I} to be a set consisting of all the i and \tilde{i} where $i \in I . \quad \tilde{<}$ is a well-ordering of \tilde{I}, which is defined as follows:
1.1. If $i<j$, then $i \widetilde{<} j$.
1.2. If $i \in I$ and $j \in I$, then $i \tilde{<} \tilde{j}$.
1.3. If $i<j$, then $\tilde{i} \tilde{<} \tilde{j}$.
2. In the following some notations (e.g. $\#, \infty$) are used in both $\operatorname{Od}(I, I)$ and $\operatorname{Od}(\tilde{I})$.

Let α be an element of $\operatorname{Od}(I, I) . \alpha^{*}$ is defined recursively as follows:
2.1. If $\alpha \in I$, then α^{*} is $\widetilde{\alpha}$.
2.2. If α is of the form ($i, \alpha_{0}, \alpha_{1}$), then α^{*} is $\left(\alpha_{0}^{*},\left(i, \alpha_{1}{ }^{*}\right)\right)$.
2.3. If α is of the form $\alpha_{1} \# \alpha_{2}$, then α^{*} is $\alpha_{1}{ }^{*} \# \alpha_{2}{ }^{*}$.

We see easily the following propositions.
Proposition 1. If α is an element of $\operatorname{Od}(I, I)$, then α^{*} is an element of $\operatorname{Od}(\tilde{I})$.
Proposition 2. Let α and β be elements of $\operatorname{Od}(I, I), \alpha^{*}=\beta^{*}$ if and only if $\alpha=\beta$

Proposition 3. If i and α belong to I and $\operatorname{Od}(I, I)$ respectively, then $i<_{\xi} \alpha^{*}$ where ξ is an arbitrary element of $\operatorname{Od}(\tilde{I})$ or ∞.

Proof. We prove this by induction on the rank of α. If $\alpha \in I$, then it is clear by 1.2. If α is of the form ($j, \alpha_{1}, \alpha_{2}$) then α^{*} is $\left(\alpha_{1}{ }^{*},\left(j, \alpha_{2}{ }^{*}\right)\right.$). By the hypothesis of induction $i<_{0} \alpha_{1}{ }^{*}$, whence follows $i<_{\infty} \alpha^{*}$. Then $i<_{\xi} \alpha^{*}$ for every $\xi \geqq_{0} \alpha_{1}{ }^{*}$. Since α^{*} contains no ξ-section such that $\jmath<_{0} \xi<_{0} \alpha_{1}{ }^{*}$, this implies $i<_{\xi} \alpha^{*}$ for $j<_{0} \xi<_{0} \alpha_{1}{ }^{*}$. Since $i<_{j} \alpha_{2}{ }^{*}$ holds by the hypothesis of induction, $i<{ }_{j} \alpha^{*}$ holds. From this we see easily the proposition.

Proposition 4. Let α and β be elements of $\operatorname{Od}(I, I)$ and $i \in I . \quad \beta^{*}$ is an i-section of α^{*}, if and only if β is an i-section of α.

Proof. We see easily the proposition by induction on the rank of α and Proposition 3.

Proposition 5. Let α and β be elements of $\operatorname{Od}(I, I)$. If $\alpha<{ }_{i} \beta$, then $\alpha^{*}<_{i} \beta^{*}$ where $i \in I$ or i is ∞.

Proof. We shall prove this by double induction on the sum of ranks of α and β and the number of indices greater than i in α and/or β.

First we shall prove the case $i=\infty$. We have only to prove $\alpha<_{\infty} \beta$ implies $\alpha^{*}<_{\infty} \beta^{*}$ under the following hypothesis of induction:
(H1) Let γ and δ be any elements of $\operatorname{Od}(I, I)$, and the sum of the ranks of γ, δ be less than the sum of the ranks of α and β. Then $\gamma<_{j} \delta$ implies $\gamma^{*}<_{j} \delta^{*}$ where $j \in I$ or j is ∞.
To show this we separate the cases according to the forms of α and β. Since other cases are easily treated, we treat here only the case that α and β are of the form ($i, \alpha_{0}, \alpha_{1}$) and (j, β_{0}, β_{1}) respectively. If $\alpha_{0}<_{0} \beta_{0}$, then $\alpha_{0}{ }^{*}<_{0} \beta_{0}{ }^{*}$ by (H1), which implies $\alpha^{*}<_{\infty} \beta^{*}$. If $\alpha_{0}=\beta_{0}$, then we have only to prove (i, $\alpha_{1}{ }^{*}$) $\alpha_{0}^{*}\left(j, \beta_{1}{ }^{*}\right)$ (by Proposition 2), which follows from (i, $\left.\alpha_{1}{ }^{*}\right)<_{\infty}\left(j, \beta_{1}{ }^{*}\right)$ (by Proposition 3). (i, $\left.\alpha_{1}{ }^{*}\right)<_{\infty}\left(j, \beta_{1}{ }^{*}\right)$ follows from $i<j$, or $i=j$ and $\alpha_{1}{ }^{*}<_{i} \beta_{1}{ }^{*}$ according as $i<j$, or $i=j$ and $\alpha_{1}<_{i} \beta_{1}$.

Then we prove that $\alpha<_{i} \beta$ implies $\alpha^{*}<_{i} \beta^{*}$ for $i \in I$ under (H1) and the following hypothesis of induction:
(H2) $\alpha<_{j} \beta$ implies $\alpha^{*}<_{j} \beta^{*}$ for every j such that the number of indices greater than j in α and/or β is less than the number of indices greater than i in α and/or β.
If there exists an i-section β_{0} of β such that $\alpha \leqq \beta_{0}$, then $\beta_{0}{ }^{*}$ is an i-section of β^{*} and $\alpha^{*} \leqq_{i} \beta_{0}{ }^{*}$ by Proposition 4 and (H1). Let $\alpha_{0}<_{i} \beta$ for every i-section α_{0} of α and $\alpha<_{j} \beta$ where j is defined as follows: If there exists an index of α and/or β greater than i, then j is defined to be the minimum of such indices; othewise, j is defined to be ∞. Then $\alpha_{0}{ }^{*}<_{i} \beta^{*}$ for every i-section $\alpha_{0}{ }^{*}$ of α^{*} and $\alpha^{*}<_{j} \beta^{*}$ by Proposition 4 and (H2). From this follows $\alpha^{*}<_{i} \beta^{*}$ by Proposition 4.

From these propositions follows
Theorem 1. $\operatorname{Od}(I, I)$ is embedded into $\operatorname{Od}(\widetilde{I})$.
We define a subsystem $\mathrm{O}(I)$ of $\mathrm{Od}(I)$ recursively as follows:
3.1. If $i \in I$ then $i \in \mathrm{O}(I)$.
3.2. If $i \in I$ and $\alpha \in \mathrm{O}(I)$, then $(i, \alpha) \in \mathrm{O}(I)$.
3.3. If $\alpha \in \mathrm{O}(I)$ and $\beta \in \mathrm{O}(I)$, then $\alpha \# \beta \in \mathrm{O}(I)$.

Then we have
Corollary 1. $\mathrm{O}(I, I)$ is embedded into $\mathrm{O}(\tilde{I})$.
Let I and A be well-ordered. We have the following theorem in the same way as above.

Theorem 2. If I and A have no element in common, $\operatorname{Od}(I, A)$ is embedded ${ }^{\prime}$ into $\operatorname{Od}(I \cup A)$.

Corollary 2. If I and A have no element in common, $\mathrm{O}(I, A)$ is embedded into $\mathrm{O}(I \cup A)$.

§4. On a formal theory of $\operatorname{Od}(I, A)$.

In [5], G. Takeuti proved the consistency of a logical system. We shall consider, the following slight modification of this system: Let $I(\alpha), A(a), a<^{*} b$ and $a \ddot{<} b$ be primitive recursive predicates, and $<^{*}$ and $\ddot{<}$ well-orderings of I and A, where I and A are $\{a \mid I(a)\}$ and $\{a \mid A(a)\}$ respectively.

1. Every beginning sequence is of the form $D \rightarrow D$ or of the form $a=b_{\text {r }}$ $F(a) \rightarrow F(b)$ or a 'mathematische Grundsequènz' in Gentzen [1], or one of the following forms:

$$
\begin{aligned}
& I(a), A_{m}(a, b) \rightarrow G_{m}\left(a, b,\{x, y\}\left(A_{m}(x, y) \wedge x<^{*} a\right)\right) ; \\
& I(a), G_{m}\left(a, b,\{x, y\}\left(A_{m}(x, y) \wedge x<^{*} a\right)\right) \rightarrow A_{m}(a, b) ; \\
& A(a), B_{n}(a, b) \rightarrow H_{n}\left(a, b,\{x, y\}\left(B_{n}(x, y) \wedge x \ddot{<} a\right)\right) ; \\
& A(a), H_{n}\left(a, b,\{x, y\}\left(B_{n}(x, y) \wedge x \ddot{<} a\right)\right) \rightarrow B_{n}(a, b) ;
\end{aligned}
$$

where $m, n=0,1,2, \cdots, A_{0}, A_{1}, \cdots, B_{0}, B_{1}, \cdots$ are symbols for predicate and G_{m} and H_{n} are arbitrary formulas satisfying the following conditions:
(a) $G_{m}(a, b, \alpha)$ and $H_{n}(a, b, \alpha)$ do not contain $A_{m}, A_{m+1}, A_{m+2}, \cdots, B_{0}, B_{1}, B_{2}, \cdots$ and $B_{n}, B_{n+1}, B_{n+2}, \cdots$ respectively.
(b) If $G_{m}(a, b, \alpha)$ or $H_{n}(a, b, \alpha)$ contains a formula of the form $\forall \varphi F(\varphi)$, then $F(\beta)$ contains no bound f-variable.
2. The following inference 'induction' is added:

$$
\frac{F(a), \Gamma \rightarrow \Delta, F(a+1)}{F(0), \Gamma \rightarrow \Delta, F(t)}
$$

where a is contained in none of $F(0), \Gamma$ and Δ, and t is an arbitrary term.
3. The inference \forall left on f-variable

$$
\frac{F(V), \Gamma \rightarrow \Delta}{\forall \varphi F(\varphi), \Gamma \rightarrow \Delta}
$$

is restricted by the condition that $F(\beta)$ contains no bound f-variable.
Then we have the following
Theorem. This system is consistent.
Proof. Let J be $I \cup A, \prec$ be a well-ordering of J defined as follows:

1. If $i<^{*} j$, then $i<j$.
2. If $i \in I$ and $a \in A$, then $i<a$.
3. If $a \ddot{<} b$, then $a<b$.

Then the proof is performed as in [5] considering J as I.

We see easily from the proof of $\S 2$, that the proof for accessibility of $\mathrm{Od}(I, A)$ can be given in a similar way as in $\S 2$ of [2]. We can develop a formal theory of $\operatorname{Od}(I, A)$ in a subsystem of the above system such that $m=0,1$ and $n=0$. It is noticed that for the consistency-proof for this subsystem, wehave only to use $\{\infty\} \cup J_{0} \cup J_{1}$ instead of J_{∞}. We shall not give an exact treatment of the formal theory here, but show how to develop it. First we give all the necessary concepts concerning the construction of $\operatorname{Od}(I, A)$ as themathematische Grundsequenzen in the same way as in [4]. Let $I(a), A(a)$, $a<* b, a \ddot{<} b, O(a),<(i, a, b), \subset(i, a, b)$ and $\leqslant(a, b)$ be the formal counterparts of ' $a \in I$ ', ' $a \in A$ ', ' a is less than b in I ', ' a is less than b in A ', ' $a \in \operatorname{Od}(I, A)^{\prime}$ ', ' $a<_{i} b$ ', ' $a \subset_{i} b$ ' and ' $a<b$ ', respectively. We use further the following abbreviations:

$$
\begin{aligned}
& J^{*}(a) \text { for } \forall \varphi(\forall x(I(x) \wedge \forall y(y<* x \vdash \varphi[y]) \vdash \varphi[x]) \vdash \varphi[a]) ; \\
& D^{*}(a, \alpha) \text { for } \forall x(x<* a \vdash \alpha[x]) \vdash J^{*}(a) ; \\
& \ddot{J}(a) \text { for } \forall \varphi(\forall x(A(x) \wedge \forall y(y \ddot{<} x \vdash \varphi[y]) \vdash \varphi[x]) \vdash \varphi[a]) ; \\
& \ddot{D}(a, \alpha) \text { for } \forall x(x \ddot{<} a \vdash \alpha[x]) \vdash \ddot{J}(a) ; \\
& A(i, \alpha, a) \text { for } \forall \varphi(\forall x(\alpha[x] \wedge \forall y(\alpha[y] \wedge<(i ; y, x) \vdash \varphi[y]) \vdash \varphi[x]) \vdash \varphi[a]) ; \\
& A(i, a) \text { for } A(i,\{x\} O(x), a) ; \\
& \widetilde{O}(a) \text { for } O(a) \wedge \forall x(<(x, a) \vdash A(1, x)) \text {, where } 1 \text { stands for the formal } \\
& \text { counterpart of the first element of } I ; \\
& B(i, a, \alpha) \text { for } \\
& I(i) \wedge \widetilde{O}(a) \wedge \forall x(x<* i \vdash \alpha[x, a] \wedge \forall y(\subset(x ; y, a) \vdash A(x,\{u\} \alpha[x, u], y))) ; \\
& \widetilde{I}(i) \text { for } I(i) \wedge i=0, \text { where } 0 \text { stands for the formal counterpart of } \infty .
\end{aligned}
$$ Then the following sequences are also used as beginning sequences of our system:

1.1. $I(i), C^{*}(i) \rightarrow D^{*}\left(i,\{x\}\left(C^{*}(x) \wedge x<^{*} i\right)\right)$.
1.2. $I(i), D^{*}\left(i,\{x\}\left(C^{*}(x) \wedge x<^{*} i\right)\right) \rightarrow C^{*}(i)$.
1.3. $A(a), \ddot{C}(a) \rightarrow \ddot{D}(a,\{x\}(\ddot{C}(x) \wedge x \ddot{<} a))$.
1.4. $A(a), \ddot{D}(a,\{x\}(\ddot{C}(x) \wedge x \ddot{<} a)) \rightarrow \ddot{C}(a)$.
1.5. $I(i), F(i, a) \rightarrow B\left(i, a,\{x, y\}\left(F(x, y) \wedge x<^{*}\right)\right)$.
1.6. $I(i), B\left(i, a,\{x, y\}\left(F(x, y) \wedge x<^{*}\right)\right) \rightarrow F(i, a)$.

We can prove that the sequence $O(a), \tilde{I}(i) \rightarrow A(i, a)$ is provable in our system. This is done similarly as in [4], using the above proof of accessibility.

Tokyo University of Education

References

[1] G. Gentzen, Neue Fassung des Widerspruchsfreiheitsbeweises für die reinen Zahlentheorie, Forschung zur Logik und Grundlegung der exakten Wissenschaften, Neue Folge 4, Leipzig (1938), 19-44.
[2] G. Takeuti, Ordinal diagrams, J. Math. Soc. Japan, 9 (1957), 386-394.
[3] G. Takeuti, Ordinal diagrams II, J. Math. Soc. Japan, 12 (1960), 385-391.
[4] G. Takeuti, On the Formal Theory of the Ordinal Diagrams, Ann. Japan Assoc. Philos. Sci., 3 (1958), 151-170.
[5] G. Takeuti, On the inductive definition with quantifiers of second order, J. Math. Soc. Japan, 13 (1961), 333-341.

