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G. Takeuti developed the theory of ordinal diagrams of order $n$ (where $2l$

is a positive integer) in [2], and generalized it to the theory of ordinal dia-
grams constructed from well-ordered sets $I,$ $A$ , and $S$ in [3]. It was necessary
to consider $S$ in order to prove the accessibility for Od(I, $A,$ $S$) (the system of
ordinal diagrams constructed from $I,$ $A$ and S) given in [3]. But $S$ did
not serve to extend the system of ordinal diagrams. In fact, if we denote
$Od(LA, S)$ and $O(I, A, S)$ with empty $S$ by Od(I, $A$) and $O(I, A)$ respectively, we
can embed Od(I, $A,$ $S$) (or 0(I, $A,$ $S$)) into $Od(\{*\}UI, A\cup S)$ (or $O(\{*\}UI,$ A $US)$),
$where*is$ distinct form any element of $I,$ $A$ and $S$ ; the notation $A$ $US$ means
the well-ordered set obtained from $A$ and $S$ by keeping the orders in them-
selves and setting the elements of $A$ before the elements of S. The embed-
ding is defined as follows:

1. If $\alpha\in A$ , then $\alpha^{*}$ is $\alpha$ .
2. If $\alpha$ is of the form $(\alpha_{0}, s)$ , then $\alpha^{*}$ is $(*, \alpha_{0}^{*}, s)$ .
3. If $\alpha$ is of the form $(i, \alpha_{1}, \alpha_{2})$ , then $\alpha^{*}$ is $(i,\alpha_{1}^{*}, \alpha_{2}^{*})$ .
4. If $\alpha$ is of the form $\alpha_{1}\#\alpha_{2}$ , then $\alpha\#$ is $\alpha_{1^{*}}\#\alpha_{2^{*}}$ .
Now we can simplify the proof of the accessibility of Od(I, $A,$ $S$) in a

similar way as in \S 2 of [2], whether $S$ is empty or not (cf. \S 2 of this paper).

In this paper, we shall construct a system Od(I), namely “ the system of ordinal
diagrams constructed from a well-ordered set $l$

’ (in \S 1), and prove that the
system is well-ordered for the given orderings in a similar way as in [2] (in

\S 2). Then we shall show that the present system is a generalization of pre-
vious systems. In fact, $Od(LA)$ is embedded into Od(I $UA$) in \S 3. By the
way, we shall show that a formal theory of Od(I, $A$) can be formalized in the
system developed in [5] and is consistent.

The author wishes to express her heart-felt thanks to Prof. G. Takeuti for
his valuable advice and kind encouragement in the preparation of this paper.

\S 1. Ordinal diagrams constructed from $I$.
Let $I$ be a well-ordered set with the order $<*ando$ be the first element

of $I$. In this section, we shall construct a kind of system of ordinal diagrams,
called ordinal diagrams constructed from $I$ and denoted by Od(I). Though
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the word $0$ . $d$ . is used in [2] and in [3] to denote an element of ordinal dia-
grams developed there, we use it instead of ‘ an element of Od(I) ‘ for simpli-
fication throughout this and the next sections.

1. Od(I) is defined recursively as follows:
1.1. If $i\in I$, then $i$ is an $0$ . $d$ .
1.2. If $\alpha$ and $\beta$ are $0$ . $d$ . $s$ , then $(\alpha, \beta)$ is an $0$ . $d$ .
1.3. If $\alpha$ and $\beta$ are $0$ . $d$ . $s$ , then $\alpha\#\beta$ is an $0$ . $d$ .

2. An $0$ . $d$ . a is called a $c$ . $0$ . $d$. (connected ordinal diagram constructed from
$I)$, if and only if the operation used in the final step of construction of $\alpha$ is
not $\#$ .

3. Let $\alpha$ be an $0$ . $d$ . We define components of $\alpha$ recursiveiy as follows:
3.1. If $\alpha$ is a c. o. $d.$ , then $\alpha$ has exactly one component which is $\alpha$ itself.
3.2. If $\alpha$ is an o. d. of the form $\alpha_{1}\#\alpha_{2}$ , then the components of $\alpha$ are

the components of $\alpha_{1}$ and of $\alpha_{2}$ .
4. Let $\alpha$ and $\beta$ be $0$ . $d$ . $s$ . We define $\alpha=\beta$ recursively as follows:

4.1. Let $\alpha\in I$. Then $\alpha=\beta$ , if $\beta$ is an element of $I$ and equal to $\alpha$ in $I$.
4.2. Let $\alpha$ be of the form $(\alpha_{0}, \alpha_{1})$ . Then $\alpha=\beta$ if $\beta$ is of the form $(\beta_{0}, \beta_{1})$

and $\alpha_{0}=\beta_{0}$ and $\alpha_{1}=\beta_{1}$ .
4.3. Let $\alpha$ have $k$ components $\alpha_{1},$ $\cdots$ , $\alpha_{k}(k>1)$ . Then $\alpha=\beta$ , if $\beta$ has k-

components, and $\beta_{1},$ $\cdots$ , $\beta_{k}$ being these components, there exists a permutation
$(m_{1}, \cdots , m_{k})$ of (1, $\cdots$ , k) such that $\alpha_{n}=\beta_{m_{n}}$ for $n=1,$ $\cdots$ , $k$ .

4.4. $\beta=\alpha$ if $\alpha=\beta$ .

5. Let $\alpha$ be an $0$ . $d$ . The rank of $\alpha$ means the sum of the number of $(, )$

and $\#$ in $\alpha$ .

6. Let $\alpha,$ $\beta$ and $\xi$ be o. d.’s. We define the relations $\beta\subset\xi\alpha$ (to read: $\beta$ is a
$\xi$-section of $\alpha$) and $\beta<\xi\alpha,$ $\beta<_{\infty}\alpha$ and ‘ index of $\alpha$

‘ simultaneously as follows:
6.1. If $\alpha,$ $\beta\in I$, then $\beta<\xi\alpha$ and $\beta<_{\infty}\alpha$ means $\beta<^{*}\alpha$ .
6.2. Let one (or both) of $\alpha$ and $\beta$ be not a c.o. $d.$ , and the components of

$\alpha$ and $\beta$ be $\alpha_{1}$ , $\cdot$

$\alpha_{h}$ and $\beta_{1}$ , $\cdot$ .. $\beta_{k}$ respectively. $\beta<\xi\alpha$ holds if one of the
following conditions is satisfied:

6.2.1. There exists an $\alpha_{m}(1\leqq m\leqq h)$ such that $\beta_{n}<\xi\alpha_{m}$ holds for every
$n(1\leqq n\leqq k)$ .

6.2.2. $h>1,$ $k=1$ and $\beta_{1}=\alpha_{m}$ for some $m(1\leqq m\leqq h)$ .
6.2.3. $h>1,$ $k>1$ and there exist an $\alpha_{m}(1\leqq m\leqq h)$ and a $\beta_{n}(1\leqq n\leqq k)$

such that $\alpha_{m}=\beta_{n}$ and

$\beta_{1}\#\cdots\#\beta_{n-1}\#\beta_{n+1}\#\cdots\#\beta_{k}<_{\xi}\alpha_{1}\#\cdots\#\alpha_{m-1}\#\alpha_{m+1}\#\cdots\#\alpha_{h}$ .
$ p<_{\infty}\alpha$ holds if one of 6.2.1-6.2.3 with $\infty$ in place of $\xi$ is fulfilled.
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6.3. If $\alpha\in I$, then $\beta\subset\xi\alpha$ never holds.
6.4. Let $\alpha$ be of the form $(\alpha_{0}, \alpha_{1})$ .
6.4.1. If $\xi<_{o}\alpha_{0}$ , then $\beta\subset\epsilon\alpha$ if and only if $\beta\subset\xi\alpha_{1}$ .
6.4.2. If $\xi=\alpha_{0}$ , then $\beta\subset\xi\alpha$ if and only if $\beta$ is $\alpha_{1}$ .
6.4.3. If $\alpha_{0}<_{o}\xi$ , then $\beta\subset_{\xi}\alpha$ never holds.
6.5. Let $\alpha$ be of the form $a_{1}\#a_{2}$ . Then $\beta\subset\xi\alpha$ if and only if either $\beta\subset\xi\alpha_{I}$

or $\beta\subset\xi\alpha_{2}$ holds.
6.6. $\xi$ is called an index of $\alpha$ , if $\alpha$ has a $\xi$-section.
In the following we shall simply say ‘

$\xi$ is less (or greater) than $\eta$

’ and
‘

$\xi$ is the minimum (or maximum) ’ in place of ‘
$\xi$ is less (or greater) than $\eta$

in the sense of $<_{o}$ and ‘
$\xi$ is the minimum (or maximum) in the sense of

$<_{o}$ , respectively.
6.7. Let $\alpha$ and $\beta$ be c. o. d’s. If there exists an index $\eta$ of $\alpha and/or\beta$

such that $\xi<0\eta$ , then $\xi^{+}$ is defined to be the minimum of such indices; other-
wise, $\xi^{+}$ is defined to be $\infty$ . Then $\beta<\xi\alpha$ , if and only if one of the following
conditions is fulfilled:

6.7.1. There exists a $\xi$-section $\alpha_{0}$ of $\alpha$ such that $\beta\leqq\xi\alpha_{0}$ .
6.7.2. $\beta_{0}<\xi\alpha$ for every $\xi$-section $\beta_{0}$ of $\beta$ and $\beta<\xi^{+}\alpha$ .
6.8. Let $\alpha$ and $\beta$ be $c.0$ . $d,$ $s$ of the form $(\alpha_{0}, \alpha_{1})$ and $(\beta_{0}, \beta_{1})$ respectively.

$\beta<_{\infty}\alpha$ if and only if one of the following conditions is fulfilled:
6.8.1. $\beta_{0}<_{o}\alpha_{0}$ .
6.8.2. $\beta_{0}=\alpha_{0}$ and $\beta_{1}<_{a_{0}}\alpha_{1}$ .
6.9. Let $\alpha\in I$ and $\beta$ be a $c$ . $0$ . $d$ . of the form $(\beta_{0}, \beta_{1})$ . $\alpha<_{\infty}\beta$ if $\alpha\leqq_{0}\beta_{0r}$

$\beta<\infty\alpha$ if $\beta_{0}<0\alpha$ .
Under these definitions the following propositions are easily proved.
PROPOSITION 1. $=is$ an equivalence relation between $0$ . $d$. $s$ .
PROPOSITION 2. Let $\alpha_{1},\alpha_{2},\beta_{1},\beta_{2}$ be $0.d$. $s$ . $\alpha_{1}=\beta_{1}$ and $\alpha_{2}=\beta_{2}$ imply

$\alpha_{1}\#\alpha_{2}=\beta_{1}\#\beta_{2}$ .
PROPOSITION 3. Let $\alpha_{1},$ $\alpha_{2},$ $\beta_{1},$ $\beta_{2}$ be o.d.’s and $\gamma$ be an $0.d$ . or $\infty$ . Then

$\alpha_{1}=\beta_{1},$ $\alpha_{A}?=\beta_{2}$ and $\alpha_{1}<_{\gamma}\alpha_{2}$ imply $\beta_{1}<_{\gamma}\beta_{2}$ .
PROPOSITION 4. Each of the relations $<\xi$ ’ where $\xi$ is an $0$ . $d$. or $\infty$ , defines

a linear order between $0$ . $d$. $s$ .
PROPOSITION 5. Let $\alpha$ and $\beta$ be $0$ . $d$. $s$ . Then $\beta<\xi(\alpha_{J}\beta)$ for every $\gamma$ such

that $\gamma\leqq_{0}\alpha$ .

\S 2. Accessibility of $Od(I)$ .
Let $S$ be a system with a linear order $<$ . An element $s$ of $S$ is called

’ accessible in $S$ (or accessible for $<$ ), if the subsystem of $S$ consisting of
elements, which are not greater than $s$ in the sense of $<$ , is well-ordered. $S$

is called accessible, if the whole system is well-ordered by $<$ .
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1. Let $\alpha$ and $\beta$ be $0$ . $d$ . $s$ . We define a relation $\beta\leq\cong\alpha$ (to read; $\beta$ is a value
of $\alpha$) as follows:

1.1. If $\alpha\in I$, then $\alpha$ has no value, that is, $\beta\leq\alpha$ never holds.
1.2. Let $\alpha$ be not a c. o. $d$ . and have components $\alpha_{1}$ , $\cdot$ .

$\alpha_{k}$ . Then $\beta.\leq\alpha$,
if $\beta\leq\alpha_{m}$ for some $m(1\leqq m\leqq k)$ .

1.3. Let $\alpha$ be of the form $(\alpha_{0}, \alpha_{1})$ . Then $\beta\leq\alpha$ , if $\beta$ is $\alpha_{0}$ or $\beta\Leftarrow\alpha_{0}$ or
$\beta\leq\alpha_{1}$ .
2. Let $\alpha$ and $\beta$ be o. d.’s. $\beta$ is called a $(\xi_{1}, \xi_{n})$-section of $\alpha$ , if the following
conditions are fulfilled:

2.1. $\xi_{1}\leqq 0\xi_{2}\leqq 0$ $\leqq 0\xi_{n}$ .
2.2. There exists a series of o. d.’s $\alpha=\alpha_{0},$ $\alpha_{1}$ , , $\alpha_{n}=\beta$ such that $\alpha_{k}$ is

the maximal component of a $\xi_{k}$-section of $\alpha_{k-1}$ in the sense of $<\xi_{k}$ for every
$k(k=1,2, \cdots, n)$ .

3. Let $\xi$ be an $0$ . $d$ . $\xi\#0$ is called the successor of $\xi$ and sometimes denoted as
$\xi^{\prime}$ . (It is clearly seen that no $0$ . $d$ . lies between $\xi$ and $\xi\#0$ for $<_{\eta}$ where $\eta$ is
an $0$ . $d$ . or $\infty$). An $0$ . $d$ . $\xi$ is called a $l$. $0$ . $d$ . (limit ordinal diagram constructed
from $I$), if every component of $\xi$ is different from $0$ .

4. Let $\alpha$ be an $0$ . $d$ . and $\xi$ be an $0$ . $d$ . accessible for $<_{o}$ . We define ‘
$\alpha$ is a

$\xi$-fan ‘ and ‘
$\alpha$ is $\xi$-accessible ’ by transfinite induction on $\xi$ for $<_{o}$ as follows:

4.1. An $0$ . $d.$ , every value of which is accessible for $<_{o}$, is an o-fan.
4.2. $\alpha$ is $\xi$-accessible, if and only if $\alpha$ is a $\xi$-fan and accessible for $<_{o}$ in

the system of $\xi$-fans.
4.3. $\alpha$ is $\xi\#0$ -fan, if and only if $\alpha$ is a $\xi$-fan and every $\xi$-section of $\alpha$ is

$\xi$-accessible.
4.4. Let $\xi$ be a 1. $0$ . $d$ . $\alpha$ is a $\xi$-fan, if and only if $\alpha$ is an $\eta$ -fan for every

$\eta$ satisfying $\eta<_{o}\xi$ .
Let $\alpha$ be an $0$ . $d$ . $\alpha$ is called an $\infty$ -fan, if $\alpha$ is a $\xi$ -fan for every $0$ . $d$ . $\xi$

accessible for $<_{o}$ , and is called to be $\infty$ -accessible, if $\alpha$ is an $\infty$ -fan and acces-
sible for $<_{\infty}$ in the system of $\infty$ -fans.

The following propositions are easily proved.
PROPOSITION 1. Let $\alpha$ and $\xi$ be o. d.’s. If every $0$ . $d$. less than $\alpha$ in the

sense $of<_{\xi}$ is accessible $for<_{\xi}$ , then $\alpha$ is accessible $for<_{\xi}$ .
PROPOSITION 2. Let $\alpha$ and $\xi$ be $0$ . $d$. $s$ . If $\alpha$ is accessible $for<_{\xi}$ , then every

$o$ . $d$. less than $\alpha$ in the sense $of<_{\xi}$ is accessible $for<_{\xi}$ .
PROPOSITION 3. Let $\alpha_{1}$ , $\cdot$ .. , $\alpha_{n}$ and $\xi$ be o. d.’s. If $\alpha_{1}$ , $\cdot$ .. $\alpha_{n}$ are accessible

$for<_{\xi}$ , then $\alpha_{1}\#\cdots\#\alpha_{n}$ is accessible $for<_{\xi}$ .
These propositions remain correct, if we replace ’ $0.d$ . $\xi’$, ’ $0.d$ . $s\alpha,$ $\alpha_{1},$ $\cdots$ , $\alpha_{n}$

’

and ‘ accessible for $<_{\xi}$

‘ by ’
$0$ . $d$ . $\xi$ accessible for $<_{o}$ , ‘

$\xi$-fans $\alpha,$ $\alpha_{1},$
$\cdots$ , $\alpha_{n}$

’ and
‘

$\xi$-accessible ’, respectively. We refer to thus replaced propositions as Propo-
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sitions $1^{*}-3^{*}$ .
PROPOSITION 4. Let $\xi$ be an $0$ . $d$. accessible $for<_{o}$ . If $\alpha$ is $\xi\#0$ -accessible,

then $\alpha$ is $\xi$-accessible.
PROOF. $\alpha$ is a $\xi$-fan by the definition. We may assume that every $\xi$‘-fan

$\beta$ satisfying $\beta<_{\xi^{\prime}}\alpha$ is $\xi$-accessible. We shall prove that every $\xi$-fan $\beta$ such
that $\beta<_{\xi}\alpha$ is $\xi^{\prime}$ -fan and $\xi$-accessible by induction on the rank of $\beta$ . Let $\beta$

bea $\xi$ -fan such that $\beta<_{\xi}\alpha$ . If $\beta$ has a $\xi$ -section $\beta_{0},$ $\beta_{0}$ is a $\xi$-fan and $\beta_{0}<\xi\alpha$ .
Then $\beta_{0}$ is $\xi$-accessible by the hypothesis of induction. We see that $\beta$ is a
$\xi^{\prime}$ -fan, whether $\beta$ has a $\xi$-section or not. Then one of the following condi-
tions holds:
(1) $\beta<\xi’\alpha$ .
(2) There exists a $\xi$ -section $\alpha_{0}$ of $\alpha$ such that $\beta\leqq_{\xi}\alpha_{0}$ .
In the former case, $\beta$ is $\xi$-accessible by our assumption. In the latter case,
since $\alpha_{0}$ is $\xi$-accessible, $\xi$-accessibility of $\beta$ follows from Proposition 1*, $q$ . $e$ . $d$ .

PROPOSITION 5. Let $\xi$ be a $l$. $0$ . $d$. accessible $for<_{o}$ , and the following condi-
tion (C) be satisfied:

(C) For any $\eta,$
$\zeta$ such that $\eta<_{o}\zeta<_{o}\xi$ , every $\zeta$ -accessible $\xi$-fan is $\eta$ -accessible.

Then ’
$\alpha$ is $\xi$-accessible ‘ implies ‘

$\alpha$ is $\eta$ -accessible ’ for every $\eta$ less than $\xi$ .
PROOF. Let the condition (C) be astisfied and $\alpha$ be $\xi$-accessible. Let $\xi_{0}$

be the successor of the greatest index less than $\xi$ . We have only to prove
that $\alpha$ is $\eta$ -accessible for every $\eta$ such that $\xi_{0}\leqq_{0}\eta\leqq_{0}\xi$ . We shall prove this
by transfinite induction for $<_{\xi}$ on $\alpha$ . We may assume that every $\xi$-fan such
that $\beta<_{\xi}\alpha$ is $\zeta$ -accessible for every $\zeta$ less than $\xi$ . For the proof we define
an auxiliary notion ‘

$\gamma$ is the n-th $\eta$ -branch of $\beta$ with respect to $\zeta_{0}$ and $\zeta_{1}$

‘

recursively as follows:
5.1. If $\zeta_{0}\leqq_{0}\eta<_{o}\zeta_{1}$ and $\gamma\subset_{\eta}\beta,$

$\gamma$ is the 1 st $\eta$ -branch of $\beta$ with respect
to $\zeta_{0}$ and $\zeta_{1}$ .

5.2. Let $\gamma\subset_{\eta}\delta$ and $\delta$ be the n-th $\zeta$-branch of $\beta$ with respect to $\zeta_{0}$ and $\zeta_{1}$ .
If $\zeta_{0}\leqq_{0}\eta<_{o}\zeta$ , then $\gamma$ is the n-th $\eta$ -branch of $\beta$ . If $\zeta\leqq 0\eta<_{o}\zeta_{1}$ then $\gamma$ is
the $ n+1- st\eta$ -branch of $\beta$ with respect to $\zeta_{0}$ and $\zeta_{1}$ .

Let $\eta$ satisfy $\xi_{0}\leqq_{0}\eta<_{o}\xi$ , and $\beta$ be an $\eta$ -fan and $\beta<_{\eta}\alpha$ . We shall prove
that $\beta$ is a $\xi$-fan and $\zeta$ -accessible of every $\zeta$ such that $\xi_{0}\leqq 0\zeta<_{o}\xi$ by induction
on the number of branches of $\beta$ with respect to $\xi_{0}$ and $\xi$ . Let $\beta_{0}$ be an arbi-
trary $\zeta_{0}$ -branch of $\beta(\xi_{0}\leqq_{0}\zeta_{0}<_{o}\xi)$ . Using the hypothesis of induction, we see
that $\beta_{0}$ is a $\xi$-fan. $\beta_{0}<_{\xi}\alpha$ holds by means of $\beta<_{\eta}\alpha$ . Then $\beta_{0}$ is $\zeta_{0}$-accessible
by the hypothesis of transfinite induction for $<_{\xi}$ . Thus we may consider $\beta$

as a $\xi$-fan. $\beta<\xi\alpha$ holds by means of $\beta<\eta\alpha$ . Then $\beta$ is $\zeta$-accessible for every
$\zeta$ less than $\xi$ by the hypothesis of transfinite induction. From this our pro-
position follows by Proposition 1*. $q$ . $e$ . $d$ .

By Propositions 4 and 5, we see easily
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PROPOSITION 6. Let $\xi$ be an $0$ . $d$. accessible for $<_{o}$ and the condition (C)
$s^{7}\iota old$. Then for every $\eta$ less than $\xi$ , ’

$\alpha$ is $\xi$-accessible ‘ implies ‘
$\alpha$ is $\eta$ -accessible ’.

PROPOSITION 7. The condition (C) holds for an arbitrary $0.d$. $\xi$ accessible
$for<_{0}$ .

PROOF. We prove this by transfinite induction on $\xi$ . Suppose now the
proposition holds for every $\xi_{0}$ less than $\xi$. If $\xi$ is a $l.0$ . $d.$ , our assertion is
clear by the definition of $\xi$ -fan. If $\xi=\zeta_{0}\#0$ , our assertion holds for $\zeta$ less
\ddagger han $\zeta_{0}$ by the hypothesis of induction and for $\zeta=\zeta_{0}$ by Proposition 6.

From Propositions 6 and 7 follows
PROPOSITION 8. Let $\xi$ be an $0$ . $d$. accessible for $<_{o},$ $\alpha$ be $\xi$-accessible and

$\eta<_{o}\xi$ . Then $\alpha$ is $\eta$ -accessible.
From Proposition 8 follows
PROPOSITION 9. For any $0$ . $d$. $s\eta,$

$\zeta$ accessible for $<_{o}$ and $\eta<_{o}\zeta$ every $\zeta-$

accessible $\infty$ -fan is $\eta$ -accessible.
PROPOSITION 10. If $\alpha$ is $\infty$ -accessible, then $\alpha$ is $\xi$-accessible for every $0$ . $d$.

$\xi$ accessible $for<_{o}$ .
PROOF. Following the proof of Proposition 5, we can prove this by the

help of Proposition 9.
By transfinite induction over $I$, we have
PROPOSITION 11. Every $\infty$ -fan is $\infty$ -accessible.
From Propositions 10 and 11, we see easily
PROPOSITION 12. Every $\infty$ -fan is $\xi$-accessible for every $\xi$ accessible $for<_{o}$ .
PROPOSITION 13. Every o-fan is $\xi$-accessible where $\xi$ is an arbitrary $0$ . $d$.

accessible $for<_{o}$ or $\xi$ is $\infty$ .
We see easily the following proposition.
PROPOSITION 14. Let $\alpha$ and $\beta$ be c. o. d. s and $\xi$ an $0$ . $d$. If $\alpha<\xi\beta$, then

$\alpha<_{\infty}\beta$ or there exists a $(\xi_{1}, \cdots , \xi_{n})$-section $\beta_{0}$ of $\beta$ such that $\xi\leqq 0\xi_{1}$ and $\alpha\leqq_{\infty}\beta_{0}$ .
Then we have
PROPOSITION 15. Every value of an $0$ . $d$. $a$ is less tkan $\alpha$ .
PROPOSITION 16. Let $\alpha$ be an $0$ . $d$. and not an o-fan. Then there exists an

o-fan $\beta$ such that $\beta<_{o}\alpha$ and $\beta$ is not accessible $for<_{o}$ .
PROOF. We prove this by induction on the rank of $\alpha$ . By the hypothesis

of the proposition, there exists a value $\alpha_{0}$ of $\alpha$ not accessible for $<_{o}$ . We
have $\alpha_{0}<_{o}$ a by Proposition 15. If $\alpha_{0}$ is an o-fan, we can take $\alpha_{0}$ as $\beta$ . If $\alpha_{0}$

is not an o-fan, there exists an o-fan $\beta$ such that $\beta<_{o}\alpha_{0}$ and $\beta$ is not accessible
for $<_{0}$ by the hypothesis of induction. Then $\beta$ has the required property.

$q$ . $e$ . $d$ .
PROPOSITION 17. Every o-fan is accessible $for<_{o}$ .
PROOF. We prove this by transfinite induction for $<_{o}$ on the system of

o-fans (cf. Proposition 13). Let $\alpha$ be an o-fan. We may assume that every
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o-fan $\beta$ less than $\alpha$ is accessible for $<_{o}$ . Under this hypothesis and Proposi-
tion 16, we see easily that, if $\gamma<_{0}\alpha$ then $\gamma$ is an o-fan. Then we have the
proposition by Proposition 1.

PROPOSITION 18. Every $0$ . $d$. is an o-fan.
PROPOSITION 19. Every $0$ . $d$. is accessible $for<_{o}$ .
THEOREM. Every $0$ . $d$. is accessible $for<_{\xi}$ , where $\xi$ is an arbitrary $0$ . $d$. or $\infty$ .
PROOF. It follows from Propositions 18, 19 and 13.

\S 3. Relations between $Od(I, A)$ and $Od(I)$ .
In this section we shall show that Od(I, $I$) is embedded into $Od(J)$ , where

$J$ is a union of two sets isomorphic to $I$.
1. Let $I$ be well-ordered, $<$ be the well-ordering of $I$, and the first element
of $I$ be denoted by $0$ .

We define $ I\sim$ to be a set consisting of all the $i$ and $ i\sim$ where $i\in I$. $<\sim$ is a
well-ordering of $ I\sim$ which is defined as follows:

1.1. If $i<j$, then $ i<j\sim$ .
1.2. If $i\in I$ and $j\in I$, then $ i<j^{\sim}\sim$.
1.3. If $i<j$, then $ i<\tilde{j}\sim\sim$.

2. In the following some notations $(e. g. ’\dagger^{\prime}\dagger, \infty)$ are used in both Od(I, $I$) and
$Od(l^{\sim})$ .

Let $\alpha$ be an element of Od(I, $I$). $\alpha^{*}$ is defined recursively as follows:
2.1. If $\alpha\in I$, then $\alpha^{*}$ is $\tilde{\alpha}$ .
2.2. If $\alpha$ is of the form $(i, \alpha_{0}, a_{1})$ , then $\alpha^{*}$ is $(\alpha_{0}^{*}, (i, \alpha_{1^{*}})).$.
2.3. If $a$ is of the form $a_{1}\# a_{2}$ , then $a^{*}$ is $\alpha_{1}^{*}\#\alpha_{2}^{*}$ .
We see easily the following propositions.
PROPOSITION 1. If $\alpha$ is an elemenl of Od(I, $I$), then $a^{*}is$ an element of Od(I).

PROPOSITION 2. Let $\alpha$ and $\beta$ be elements of Od(I, $I$), $\alpha^{*}=\beta^{*}$ if and only
if $\alpha=\beta$

PROPOSITION 3. If $i$ and a belong to I and Od(I, $I$) respectively, then $i<\xi a^{*}$

where $\xi$ is an arbitrary element of Od(I) or $\infty$ .
PROOF. We prove this by induction on the rank of $\alpha$ . If $\alpha\in I$, then it

is clear by 1.2. If $\alpha$ is of the form $(j, \alpha_{1}, \alpha_{2})$ then $\alpha^{*}$ is $(\alpha_{1^{*}}, (j, a_{2}^{*}))$ . By the
hypothesis of induction $i<_{o}\alpha_{1^{*}}$ , whence follows $i<\infty a^{*}$ . Then $i<_{\xi}\alpha^{*}$ for every
$\xi\geqq\alpha$ . Since $\alpha^{*}$ contains no $\xi$-section such that $j<_{o}\xi<_{o}\alpha_{1^{*}}$ , this implies
$i<\xi\alpha^{*}$ for $j<_{o}\xi<\alpha^{*}$ . Since $i<ja_{2}^{*}$ holds by the hypothesis of induction,
$i<j\alpha^{*}$ holds. From this we see easily the proposition.

PROPOSITION 4. Let $\alpha$ and $\beta$ be elements of Od(I, $I$) and $i\in I$. $\beta^{*}$ is an
i-scction of $\alpha^{*}$ , if and $onl\backslash -$ if $\beta$ is an i-sectio $n$ of $\alpha$ .
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PROOF. We see easily the proposition by induction on the rank of $\alpha$ and
Proposition 3.

PROPOSITION 5. Let $a$ and $\beta$ be elements of Od(I, $I$ ). If $\alpha<i\beta$ , then $\alpha^{*}<i\beta^{*}$

where $i\in I$ or $i$ is $\infty$ .
PROOF. We shall prove this by double induction on the sum of ranks of

a and $\beta$ and the number of indices greater than $i$ in $\alpha and/or\beta$ .
First we shall prove the case $ i=\infty$ . We have only to prove $\alpha<_{\infty}\beta$ implies

$\alpha^{*}<_{\infty}\beta^{*}$ under the following hypothesis of induction:
(H1) Let $\gamma$ and $\delta$ be any elements of Od(I, $I$ ), and the sum of the ranks
of $\gamma,$

$\delta$ be less than the sum of the ranks of $\alpha$ and $\beta$ . Then $\gamma<j\delta$ implies
$\gamma^{*}<!\delta^{*}$ where $j\in I$ or $j$ is $\infty$ .

To show this we separate the cases according to the forms of $\alpha$ and $\beta$ . Since
other cases are easily treated, we treat here only the case that $\alpha$ and $\beta$ are
of the form $(i, \alpha_{0}, \alpha_{1})$ and $(j, \beta_{0}, \beta_{1})$ respectively. lf $\alpha_{0}<_{o}\beta_{0}$ , then $\alpha_{0}^{*}<0\beta_{0^{*}}$

by (H1), which implies $a^{*}<\infty\beta^{*}$ . If $\alpha_{0}=\beta_{0}$ , then we have only to prove
$(i, a_{1}^{*})<\alpha_{0}^{*}(j, \beta_{1^{*}})$ (by Proposition 2), which follows from $(i, a_{1^{*}})<_{\infty}(j, \beta_{1}^{*})$ (by

Proposition 3). $(i, a_{1^{*}})<_{\infty}(j, \beta_{1^{*}})$ follows from $i<j$ , or $i=j$ and $\alpha_{1}^{*}<_{i}\beta_{1^{*}}$

according as $i<j$, or $i=j$ and $\alpha_{1}<_{i}\beta_{1}$ .
Then we prove that $\alpha<i\beta$ implies $a^{*}<i\beta^{*}$ for $i\in I$ under (H1) and the

following hypothesis of induction:
(H2) $\alpha<j\beta$ implies $\alpha^{*}<f\beta^{*}$ for every $j$ such that the number of indices
greater than $j$ in $\alpha and/or\beta$ is less than the number of indices greater
than $i$ in $\alpha and/or\beta$ .
If there exists an i-section $\beta_{0}$ of $\beta$ such that $\alpha\leqq_{i}\beta_{0}$ , then $\beta_{0^{*}}$ is an i-section

of $\beta^{*}$ and $\alpha^{*}\leqq i\beta_{0^{*}}$ by Proposition 4 and (H1). Let $\alpha_{0}<i\beta$ for every i-section
$\alpha_{0}$ of $a$ and $\alpha<j\beta$ where $j$ is defined as follows: If there exists an index of
$\ell\iota and/or\beta$ greater than $i$ , then $j$ is defined to be the minimum of such indi-
ces; othewise, $j$ is defined to be $\infty$ . Then $a_{0^{*}}<i\beta^{*}$ for every i-section $\alpha_{0^{*}}$ of
$\alpha^{*}$ and $\alpha^{*}<_{j}\beta^{*}$ by Proposition 4 and (H2). From this follows $\alpha^{*}<\iota\beta^{\dot{\times}}$ by
Proposition 4.

From these propositions follows
THEOREM 1. Od(I, $I$ ) is embedded into Od(I).
We define a subsystem $O(I)$ of Od(I) recursively as follows:
3.1. If $i\in I$ then $i\in O(I)$ .
3.2. If $i\in I$ and $\alpha\in O(I)$, then $(i,\alpha)\in O(I)$ .
3.3. If $a\in O(I)$ and $\beta\in O(I)$ , then $\alpha\#\beta\in O(f)$ .

Then we have
COROLLARY 1. $O(I, I)$ is embedded into $O(I)\sim$ .
Let $I$ and $A$ be well-ordered. We have the following theorem in the same

way as above.
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THEOREM 2. If I and $A$ have no element in common, Od(I, $A$) is embedded’
inlo Od(I$UA$).

COROLLARY 2. If I and $A$ have no element in common, $O(I, A)$ is embedded
into $O(I\cup A)$ .

\S 4. On a formal theory of $Od(I, A)$ .
In [5], G. Takeuti proved the consistency of a logical system. We shall

consider,the following slight modification of this system: Let $I(a),$ $A(a),$ $a<^{*}b$

and $a<b$ be primitive recursive predicates, and $<*and<$ well-orderings of
$I$ and $A$ , where $I$ and $A$ are $\{a|I(a)\}$ and $\{a|A(a)\}$ respectively.

1. Every beginning sequence is of the form $D\rightarrow D$ or of the form $a=b_{r}$

$F(a)\rightarrow F(b)$ or a $t$ mathematische Grundsequenz ‘ in Gentzen [1], or one of the
following forms:

$I(a),$ $A_{m}(a, b)\rightarrow G_{m}(a, b, \{x,y\}(A_{m}(x,y)\Lambda x<^{*}a))$ ;
$I(a),$ $G_{m}$($a,$ $b,$ $\{x,y\}$ ($A_{m}(x,y)$ A $x<^{*}a)$) $\rightarrow A_{m}(a, b)$ ;
$A(a),$ $B_{n}(a, b)\rightarrow H_{n}$($a,$ $b,$ $\{x,$ $y\}$ ($B_{n}(x,y)$ A $x<a$));

$A(a),$ $H_{n}$($a,$ $b,$ $\{x,y\}$ ($B_{n}(x,y)$ A $x<a)$) $\rightarrow B_{n}(a, b)$ ;

where $m,$ $n=0,1,2,$ $\cdots$ , $A_{0},$ $A_{1},$ $\cdots$ , $B_{0},$ $B_{1},$ $\cdots$ are symbols for predicate and $G_{m}$

and $H_{n}$ are arbitrary formulas satisfying the following conditions:
(a) $G_{m}(a, b, \alpha)$ and $H_{n}(a, b, \alpha)$ do not contain $A_{m},$ $A_{m+1},$ $A_{m+2},$ $\cdots$ , $B_{0},$ $B_{1},$ $B_{2},$ $\cdots$

and $B_{n},$ $B_{n+1},$ $B_{n+2},$ $\cdots$ respectively.
(b) If $G_{m}(a, b, \alpha)$ or $H_{n}(a, b, a)$ contains a formula of the form $\forall\varphi F(\varphi)_{p}$

then $F(\beta)$ contains no bound $f$-variable.
2. The following inference ’ induction ’ is added:

$\frac{F(a),\Gamma\rightarrow\Delta,F(a+1)}{F(0),\Gamma\rightarrow\Delta,F(t)}$

where $a$ is contained in none of $F(O),$ $\Gamma$ and $\Delta$ , and $t$ is an arbitrary term.
3. The inference $\forall$ left on $f$-variable

$\frac{F(V),\Gamma\rightarrow\Delta}{\forall\varphi F(\varphi),\Gamma\rightarrow\Delta}$

is restricted by the condition that $F(\beta)$ contains no bound $f$-variable.
Then we have the following
THEOREM. This system is consistent.
PROOF. Let $J$ be $IUA,$ $\prec$ be a well-ordering of $J$ defined as follows:
1. If $i<^{*}j$ , then $i\prec j$ .
2. If $i\in I$ and $a\in A$, then $i\prec a$.
3. If $a<b$ , then $a\prec b$ .
Then the proof is performed as in [5] considering $J$ as $I$.
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We see easily from the proof of \S 2, that the proof for accessibility of
Od(I, $A$) can be given in a similar way as in \S 2 of [2]. We can develop a
formal theory of Od(I, $A$) in a subsystem of the above system such that $m=0,1$

and $n=0$ . It is noticed that for the consistency-proof for this subsystem, we
have only to use $\{\infty\}UJ_{0}UJ_{1}$ instead of $J_{\infty}$ . We shall not give an exact treat-
ment of the formal theory here, but show how to develop it. First we give
all the necessary concepts concerning the construction of $Od(I, A)$ as the $\cdot$

mathematische Grundsequenzen in the same way as in [4]. Let $I(a),$ $A(a)$.
$a<^{*}b,$ $a<b,$ $O(a),$ $<(i, a, b),$ $\subset(i, a, b)$ and $\leq(a, b)$ be the formal counterparts of
’ $a\in I’$, ‘ $a\in A$ , ’

$a$ is less than $b$ in $I’$, ‘
$a$ is less than $b$ in $A$ , ’ $a\in Od(LA)$ ,

$\psi a<_{i}b$ ’, ‘
$a\subset_{i}b$

’ and ‘
$a\Leftarrow b$ ’, respectively. We use further the following

abbreviations:
$I^{*}(a)$ for $\forall\varphi$ ( $\forall x$ ($I(x)$ A $\forall y(y<^{*}x\}-\varphi[y])\mapsto\varphi[x])-\varphi[a]$);
$D^{*}(a, \alpha)$ for $\forall x(x<^{*}a-\alpha[x])\mapsto J^{*}(a)$ ;
$j(a)$ for $\forall\varphi(\forall x(A(x)\wedge\forall y(y<x-\varphi[y])-\varphi[x])-\varphi[a])$ ;
$\ddot{D}(a, a)$ for $\forall x(x<a|-\alpha[x])\mapsto j\cdot(a)$ ;
$A(i,\alpha,a)$ for $\forall\varphi(\forall x(\alpha[x]\wedge\forall y(\alpha[y]\Lambda<(i;y,x)\mapsto\varphi[y])-\varphi[x])\mapsto\varphi[a])$ ;
$A(i, a)$ for $A(i, \{x\}O(x), a)$ ;
$\tilde{O}(a)$ for $o(a)\wedge\forall x(\leq(x, a)|-A(1, x))$ , where 1 stands for the formaS
counterpart of the first element of $I$ ;
$B(i, a, \alpha)$ for
$I(i)\wedge\tilde{O}(a)\wedge\forall x(x<^{*}i\leftarrow\alpha[x, a]\wedge\forall y(\subset(x;y, a)-A(x, \{u\}\alpha[x, u],y)))$ ;
$ I(i)\sim$ for $I(i)\wedge i=0$ , where $0$ stands for the formal counterpart of $\infty$ .

Then the following sequences are also used as beginning sequences of our
system:
1.1. $I(i),$ $C^{*}(i)\rightarrow D^{*}$($i,$ $\{x\}$ ($C^{*}(x)$ A $x<^{*}i$)).

1.2. $I(i),$ $D^{*}(i, \{x\}(C^{*}(x)\Lambda x<^{*}i))\rightarrow C^{*}(i)$ .
1.3. $A(a),\dot{C}(a)\rightarrow\ddot{D}(a, \{x\}(\ddot{C}(x)\wedge x<a))$ .
1.4. $A(a),\ddot{D}(a, \{x\}(\dot{C}(x)\wedge x<a))\rightarrow\ddot{C}(a)$ .
1.5. $I(i),$ $F(i, a)\rightarrow B(i, a, \{x, y\}(F(x, y)\Lambda x<^{*}i))$ .
1.6. $I(i),$ $B(i, a, \{x, y\}(F(x,y)\wedge x<^{*}i))\rightarrow F(i, a)$ .

We can prove that the sequence $O(a),$ $ I(i)\rightarrow A(i, a)\sim$ is provable in our $system_{\leftarrow}$

This is done similarly as in [4], using the above proof of accessibility.
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