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Remarks on the truth definition
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Let $S$ be a mathematical theory and suppose that there is given a sequence
$A_{0}(\ell t),$ $A_{1}(a),$ $A_{2}(a),$ $\cdots$ of all the formulae with a variable $a$ . We define $g(A_{i}(a))$

by $i$ . ($g$ is a symbol outside of S.)

Tarski’s truth theory ([4], [5]) shows that $S$ is inconsistent, if $S$ contains
two formulae $E(a)$ and $Tr(a)$ satisfying the following conditions:

$E(i),$ $ Tr(g(A_{t}(i)))\rightarrow$

(1) $i=0,1,2,$ $\cdots$

$\rightarrow E(i),$ $Tr(g(A_{i}(i)))$

(2) $A_{i}(a)\rightarrow Tr(i)$ $i=0,1,2,$ $\cdots$

(3) $Tr(i)\rightarrow A_{i}(a)$ $i=0,1,2,$ $\cdots$ .

( $\ln$ this paper, we use Gentzen’s sequence developed in [1].)

Contradiction follows even in the case that (2) and (3) are ascertained to be
satisfied only when thev do not actually contain the variable $a$ . In fact, such
sequences mean
(2) $A\rightarrow Tr(g(A))$

(3) $Tr(g(A))\rightarrow A$

for all formulae $A$ without free variable. Let $E(a)$ be the m-th formula
$A_{m}(a)$ , and consider the special case

$E(m),$ $ Tr(g(A_{m}(m))\rightarrow$

$\rightarrow E(m),$ $Tr(g(A_{m}(m)))$

of (1). Applying (2) and (3) to the formula $A_{m}(m)$ , we obtain

$E(m),$ $ A_{m}(m)\rightarrow$

and $\rightarrow E(m),$ $A_{m}(m)$ .
These two sequences imply a contradiction, since $E(m)$ is $A_{m}(m)$ .

Though (2) may be read “ if $A_{i}(a)$ holds, then $Tr(i)$ also holds ” and (3)

may be read in an analogous manner, no contradiction may be derived if these
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colloquial expressions are formulated not in the form of axioms but in the
schemata of inference:

(2) $\frac{\rightarrow A_{4}(a)}{\rightarrow Tr(i)}$ (3) $\frac{\rightarrow Tr(i)}{\rightarrow A_{i}(a)}$

In this paper we shall show that there are a great many consistent
systems each of which contains two formulae $E(a)$ and $Tr(a)$ , satisfies (1) and
admitts (2) and (3)‘.

Let $S_{0}$ be an arbitrary consistent system, which contains the theory of
natural numbers ([1]) and does not contain predicate $E(a)$ or $Tr(a)$ .

The system $S_{1}$ is called E-Tr-extension of $S_{0}$ , if $S_{1}$ is obtained from $S_{0}$ by
adding new predicates $E(a)$ and $Tr(a)$ , axioms (1) and inferences (2) , (3)

under the presupposition that a sequence $A_{0}(a),$ $A_{1}(a),$ $A_{2}(a),$ $\cdots$ of all the
formulae with a variable $a$ (which may contain new predicates $E$ and $Tr$) is
fixed and $g(A_{i}(a))$ is defined by $i$ .

THEOREM. If $S_{0}$ is consistent, then E-Tr-extension of $S_{0}$ is also consistent.
PROOF. First we shall prove the consistency of the system $S_{2}$ , which is

obtained from $S_{0}$ by adding (1) and the following inferences (4);

(4) $\frac{Tr(i_{1}),\cdot.\cdot.\cdot.,Tr(i_{n})\rightarrow Tr(i)}{Tr(i_{1}),Tr(i_{n})\rightarrow A_{i}(a)}$ and $\frac{Tr(i_{1}),.\cdot.\cdot.\cdot,Tr(i_{n}),Tr(i)\rightarrow}{Tr(i_{1}),.Tr(i_{n}),A_{i}(a)\rightarrow}$

where $i,$ $i_{1},$
$\cdots,$

$i_{n}$ are integers and $i$ is different from $i_{1},$
$\cdots,$

$i_{n}$ .
To prove this, we have only to prove that any sequence of the form

$Tr(i_{1}),$ $\cdots$ , $Tr(i_{n})\rightarrow Tr(i)$ ( $i\neq i_{1}$ and $\cdots$ and $i\neq i_{n}$)

cannot be provable from (1) in $S_{0}$ , which is easily proved by substitution of
$a\neq i$ for $Tr(a)$ .

Now we shall prove the following lemma.
LEMMA. Let $S_{3}$ be a consistent extension of $S_{2}$ and $A_{i_{0}}(a)$ be provable in $S_{3}$ .

Then $Tr(i_{0})$ is consistent with $S_{3}$ .
PROOF. We have only to prove that $Tr(i_{0}),$ $\Gamma\rightarrow\Delta$ is provable in $S_{3}$ , if

$\Gamma\rightarrow\Delta$ is provable $from\rightarrow Tr(i_{0})$ and $S_{3}$ . If $\Gamma\rightarrow\Delta$ is a beginning sequence of
$S_{2}$ or $\rightarrow Tr(i_{0})$ , then the lemma is clear. Here we have only to prove the
lemma under the hypothesis that $Tr(i_{0}),$ $\Pi\rightarrow\Lambda$ is provable in $S_{3}$ for any upper
sequence $\Pi\rightarrow\Lambda$ of $\Gamma\rightarrow\Delta$ . We must treat many cases but every case is trivial
and the lemma is proved.

In virtue of this lemma, we see that (2) holds in the maximal consistent
extension of $S_{2}$ and that the theorem holds.

Using the results in [2] or [3], we see easily the following corollary.
$CoROLLARY$ . If $S$ is consistent, then there exists a consistent extension $\tilde{S}$ of

$S$, in which (1), (2), (3) hold.
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