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Introduction.

One often asks whether a given property $q$ is preserved by a given class
of group-extensions (E), provided that 9 is possessed by all the kernels and
the factor groups of (E). For example, the problem to find a group $R$, any
extension $H$ of which by a nilpotent group is likewise nilpotent, has a trivial
answer. But if we allow as $H$ only normal (or arbitrary, etc.) subgroups of a
fixed group $G$ , the problem becomes closely related to the structure of $G$ , and
the solutions of it may serve as a sort of measure relative to that property of
groups. In this connection, a theorem of Gasch\"utz [3] is quite interesting,
which states that the Frattini subgroup $\Phi(G)$ of a finite group $G$ satisfies the
condition of our problem. But $\Phi(G)$ is not in general maximal among the solu-
tions, as the characteristic subgroup $\Delta(G)(\supset\Phi(G))$ introduced in that paper of
Gasch\"utz is also one of solutions. Since larger solution is more interesting in
such a problem, one naturally asks for the largest. Unfortunately the largest
solution does not always exist. A standard method to make its substitute is
to form the intersection of all maximal solutions, a procedure followed for ex-
ample by Baer [2] to define the weak hypercenter. The nature of the present
problem however allows us a different approach: We require of $R^{\sigma}$ to possess
the same property in $G^{\sigma}$ as $R$ in $G$ for every homomorphism $\sigma:G\rightarrow G^{\sigma}$ . Then
we can prove that there necessarily exists the largest one among $R’ s$ . The
requirement is certainly satisfied by $\Phi(G)$ and $\Delta(G)$ . Moreover, our method is
favorable in hat it goes well with the induction-arguments.

We can treat similarly several problems of the same type ( $e$ . $g$ . concerning
abelian subgroups instead of nilpotent, etc.), and obtain thus a series of charac-
teristic subgroups of a finite group. Some of them may be explicitly deter-
mined; for example, the hypercenter may be interpreted as the largest solu-
tion of the problme concerning the nilpotency and allowing as $H$ any subgroup
of $G$ .

Notations

$|G|$ order of a finite group $G$ .
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$G_{p}$ a p-Sylow subgroup of $G$ .
$G^{p}$ a p-Sylow complement of $G$ (if any) $=$ a subgroup such that $|G|=$

$|G_{p}|\cdot|G^{p}|$ .
$G^{\prime}$ commutator subgroup of $G$ .
$Z(G)$ center of $G$ .
$H(G)$ hypercenter of $G=the$ final term of the ascending central chain of $G$ .
$F(G)$ Wendt-Fitting subgroup of $G=the$ largest nilpotent normal subgroup

of $G$ .
$\Phi(G)$ Fattini subgroup of $G=the$ intersection of all maximal subgroups of $G$ .
$N_{G}(H)$ normalizer of $H$ in $G$ .
$\sigma$ a homomorphism of $G$ into some group. The identity automorphism

of $G$ is denoted by 1.
$X\in 9$ An object $X$ possesses a property $\mathscr{L}$.
$9_{1}^{)}\prec 9_{2})$ If $X\in 9_{1}$ , then $X\in 9_{2}^{)}$

\S 1. Definition and general properties of $R(G)$ .

Let $Q$ be a property of a pair $G\supset H$ consisting of a group $G$ and its sub-
group $H$, subject to the conditions:

$Q1$ . Let $G\supset H\supset K$. If $(G\supset K)\in Q$ , then $(H\supset K)\in Q$ .
$Q2$ . Let $\sigma$ be a homomorphic mapping of $G$ . If $(G\supset H)\in Q$ , then ($ G^{\sigma}\supset H^{\sigma}\rangle$

$\in Q$ ; and conversely if $(G^{\sigma}\supset H_{1})\in Q$ , then $(G\supset H_{1}^{\sigma-1})\in Q$ .
Notice that $Q2$ contains the following statement
$Q2^{\prime}$ . If $(G\supset H)\in Q$ and if $N$ is a normal subgroup of $G$ , then $(G\supset NH)\in Q$ .
If such a property $Q$ is given, and if $(G\supset H)\in Q$ , we often say that $H$ is

a $Q$-subgroup of $G$ .
Examples. $(G\supset H)\in Q_{0}$ $H$ is a subgroup of $G$ .

$(G\supset H)\in Q_{n}$ $H$ is a normal subgroup of $G$ .
$(G\supset H)\in Q_{sn}$ $H$ is a subnormal $(=nachinvariant)$ subgroup of

$G,$ $i$ . $e$ . a term of some composition series of $G$ .
Let such a property $Q$ be given. We then look at a property 9 of groups

subject to
$P1$ . If $G\in 9$) then $H\in 9$) for any $Q$-subgroup $H$ of $G$ .
$P2$ . If $G\in \mathscr{L}$, then any homomorphic image $G^{\sigma}\in 9$.
From among a number of examples we pick up only a few:
$G\in g_{c}$ $G$ is cyclic.
$G\in \mathscr{L}P_{a}$ $G$ is abelian.
$G\in\Omega_{n})$ $G$ is nilpotent.
$G\in 9_{n(p)})$ $G$ admits a normal $p$-Sylow complement.
$G\in 9_{f})$ $G$ is finite.
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In these examples $Q$ may be fairly arbitrary. (For $\Omega_{n(p)}^{)}$ , see Thompson [7].)

If $(G\supset H)\in Q$ and $H\in 9$, we say that $H$ is a (9) $Q$)-subgroup of $G$ . For
example, a (9) $Q_{n}$)-subgroup is nothing but a nilpotent normal subgroup.

Now we say that $R$ possesses the property $\Re(G;\mathscr{L}, Q)$ , if the following two
conditions are satisfied:

$R1$ . $R$ is a normal subgroup of $G$ .
$R2$ . Let any homomorphism $\sigma:G\rightarrow G^{\sigma}$ be given. If $H$ is a $Q$-subgroup of

$G^{\sigma}$ containing $R^{\sigma}$ and such that $H/R^{\sigma}\in 9$, then $H\in 9$.
If we replace $R2$ by the weaker condition
$R2^{\prime}$ . If $H$ is a $Q$-subgroup of $G$ containing $R$ and such that $H/R\in 9$, then

$H\in\Omega)$

we say that $R\in R^{\prime}(G;B, Q)$ .
$R(G;9, Q)$ (or $R^{\prime}(G;9,$ $Q)$ ) will be written sometimes simply as $R(G)$ (or

$9i^{\prime}(G))$ , when no confusion is feared.
It is clear that $R\in\Re(G)$ if and only if $R^{\sigma}\in R^{\prime}(G^{\sigma})$ for every homomorphism

$\sigma:G\rightarrow G^{\sigma}$ .
LEMMA 1. i) If $R\in R(G)$ , then $R^{\sigma}\in\Re(G^{\sigma})$ .
ii) If $R\in B\mathfrak{i}(G)$ and if $R_{1}$ is a normal subgroup of $G$ contained in $R$ , then

$R_{1}\in\Re(G)$ .
iii) Let $N$ be a normal subgroup of $G$ contained in R. Then $R\in\Re(G)$ if

and only if $R/N\in 9i(G/N)$ and $N\in R(G)$ .
iv) If $R_{1},$ $R_{2}\in R(G)$ , then $R_{1}R_{2}\in\ovalbox{\tt\small REJECT}(G)$ .
PROOF. i) is clear from the definition.
ii) Let $H$ be a $Q$-subgroup of $G^{\sigma}$ containing $R_{1}^{\sigma}$ and such that $H/R_{1}^{\sigma}\in q$.

Then $R^{a}H$ is a $Q$-subgroup of $G^{\sigma}$ (by Q2’) such that $R^{\sigma}H/R^{\sigma}\in 9$ (by P2).
$HenceR^{\sigma}H\in 9$. $SinceHisaQ- subgroupofR^{\sigma}H(byQ1),$ $wehaveH\in 9(byP1)$ .

iii) Assume $R/N\in\Re(G/N)$ . Let $H$ be a $Q$-subgroup of $G^{\sigma}$ containing $R^{\sigma}$

and such that $H/R^{\sigma}\in 9$. Applying the natural epimorphism $G^{\sigma}\rightarrow G^{\sigma}/N^{\sigma}$ , we
see that $H/N^{\sigma}$ is a $Q$-subgroup of $G^{\sigma}/N^{\sigma}$ and that $(H/N^{\sigma})/(R^{\sigma}/N^{\sigma})\in 9$. Since
$R^{\sigma}/N^{\sigma}$ is the image of $R/N$ by the epimorphism $G/N\rightarrow G^{\sigma}/N^{\sigma}$ induced by $\sigma$ ,

we must have $H/N^{\sigma}\in 9$) Assume further $N\in R(G)$ , then we have $H\in q$,
which proves $R\in R(G)$ . The converse is a special case of i) and ii).

iv) Let $\sigma$ be the natural epimorphism $G\rightarrow G/R_{2}$ . Then we have $R_{1}R_{2}/R_{2}$

$=R_{1}^{\sigma}\in R(G/R_{2})$ by i). Hence also $R_{1}R_{2}\in 9i(G)$ by iii).

THEOREM 1. Let $Q$ and $\mathscr{L}$ be given, subject to the above conditions. Then
any finite group $G$ has a characteristic subgroup $R=R(G;\mathscr{L}, Q)$ such that $ R\in$

$R(G)$ if and only if $R$ is a normal subgroup of $G$ contained in $R$ .
Indeed, Lemma 1 shows that the join $R=\cup R$ of all subgroups $R\in\Re(G)$

satisfies the condition $s$ of Theorem.
REMARK. $R$ is a characteristic subgroup even for an infinite group $G$ , but
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may happen $R\not\in 9\mathfrak{i}(G)$ in this case. For instance, $R\in R(G)$ states for $Q=Q_{0}$ ,
$9=9_{f}$ that $R$ is a finite normal subgroup of $G$ . Therefore, $R(G;9_{f}, Q_{0})$ of an
abelian group $G$ is the torsion subgroup of $G$ which may $b\circ.infinit_{\vee}^{\mathfrak{Q}}$ .

From now on, we consider only finite groups. By Lemma 1 we have im-
mediately

PROPOSITION 1. i) $R(G)^{\sigma}\subset R(G^{\sigma})$ for any $\sigma:G\rightarrow G^{\sigma}$.
ii) If $N$ is a normal subgroup of $G$ contained in $R(G)$ , then $R(G)/N=R(G/N)$ .
We denote by $M=\mathbb{J}I(G;9, Q)$ the intersection of all maximal $(9, Q)$-sub-

groups of $G$ . This is obviously a characteristic subgroup of $G$ .
PROPOSITION 2. If $R$ possesses the property $R^{\prime}$ , then $R\subset M$. In particular,

$R\subset M$.
PROOF. Let $R\in\Re^{\prime}$ and let $M$ be a maximal $(9, Q)$-subgroup. Then we see

$R1\psi/R\in q)$ and $(G\supset RM)\in Q$ . Hence $RM\in 9$. By the maximality of $M$ we
have $ Rl\psi=j\psi$, viz. $ R\subset l\psi$.

In the following, we impose a further condition on $\mathscr{Z}$ namely:
$P3$ . If $G_{1},$ $G_{2}\in 9$ and $(|G_{1} , |G_{2}|)=1$ , then $G_{1}\times G_{2}\in Q$)

This condition is clearly satisfied by our examples above given and by
many others.

PROPOSITION 3. Let $(|G_{1} , |G_{2}|)=1$ . Then we have $R(G_{1}\times G_{2})=R(G_{1})\times R(G_{2})$ .
PROOF. Put $G=G_{1}\times G_{2}$ . Any subgroup of $G$ is of type $H_{1}\times H_{2}(H_{1}\subset G_{1}$ ,

$H_{2}\subset G_{2})$ . Let $R_{1}\in\ovalbox{\tt\small REJECT}^{\prime}(G_{1})$ and assume that $H_{1}\times H_{2}$ is a $Q$-subgroup of $G$ con-
taining $R_{1}$ and such that $(H_{1}\times H_{2})/R_{1}\in 9$. By the projection $G\rightarrow G_{1}$ , we see
that $H_{1}$ is a $Q$-subgroup of $G_{1}$ such that $H_{1}/R_{1}\in 9$) Hence we have $H_{1}\in Q$)

On the other hand, the projection $G\rightarrow G_{2}$ shows that $H_{2}\in 9$. Hence we have
$H_{1}\times H_{2}\in 9$ by P3. Thus $R_{1}\in\Re^{\prime}(G)$ . Since these arguments hold in any homo-
morphic image of $G$ , we see $R(G_{I})\subset R(G)$ . Similarly we have $R(G_{2})\subset R(G)$ .
On the other hand, Prop. 1 i) shows that $G_{i}$-component of $R(G)$ is contained
in $R(G_{i})(i=1,2)$ , whence $R(G)\subset R(G_{1})\times R(G_{2})$ . Combining these two facts we
obtain the desired equality.

By this proposition, the study of $R$ of a nilpotent group is reduced to that
of $p$-groups.

\S 2. The position of $R(G)$ .
2.1. In the following, we study $R(G;9, Q)$ mainly in the cases $\mathcal{G}i=\Omega_{c}^{)},$ $\mathscr{L}_{a}$ ,

$9_{n}$ and $Q=Q_{0},$ $Q_{n},$ $Q_{sn}$ . We shall use simplified notations such as $R_{c,0}=R(9_{c}, Q_{0})$ ,
$R_{n.n}=R(9_{n})Q_{n})$ , and similarly for M-groups, etc.

If $9\prec 9_{n},$ $R(9, Q)$ is nilpotent. Hence the problem of the determination of
$R$ is reduced to that of $p$-Sylow subgroups $R_{p}$ .

PROPOSITION 4. If $\mathscr{L}\prec\Omega_{n}$
)

$R(G;\mathscr{L}, Q_{0})_{p}$ contains $R(G_{p} ; 9, Q_{0})\cap Z(G)$ .
PROOF. Put $R=R(G_{p} ; 9, Q_{0})\cap Z(G)$ . This is a normal subgroup of $G$ (and
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a fortiori of $G_{p}$). Since $R(aG_{p}a^{-1})=aR(G_{p})a^{-1}(a\in G)$ by Prop. 1 i), $R\subset R(G_{p^{\prime}})$

for every $p$-Sylow subgroup $G_{p^{\prime}}$ of $G$ . Now let $G^{\sigma}\supset H\supset R^{\sigma}$ and let $H/R^{\sigma}\in 9$)

Since $R^{d}$ is central in $G^{\sigma}$ , and since $9\prec g_{n}$) $H$ is nilpotent. Hence $H$ is the
direct product of $H_{p}$ and $H^{p}$ . $H^{p}$ is a $\Phi group$ , as it is a homomorphic image
of $H/R^{\sigma}$. Similarly, the $p$-group $H_{p}/R^{\sigma}$ is a $\mathscr{Z}group$ . Since there is a $p$-Sylow
subgroup $G_{p^{\prime}}$ of $G$ such that $(G_{p^{\prime}})^{\sigma}\supset H_{p}$ , it follows that $H_{p}$ itself is a $\mathscr{Z}group$

by the above remark $R\subset R(G_{p^{\prime}})$ . Hence $H=H_{p}\times H^{p}\in 9$. This shows $ R\subset$

$R(G)$ , or equivalently $R\subset R(G)_{p}$ , as $R$ is a $p$-group.
Concerning $M$, we have
LEMMA 2. If $\mathscr{L}\prec 9_{n}$

)
$M(G;\mathscr{L}, Q_{0})_{p}$ is contained in $M(G_{p};\mathscr{L}, Q_{0})$ .

PROOF. Any maximal $\mathscr{Z}subgroupH$ of $G_{p}$ is contained in some maximal
$\mathscr{X}subgroupK$ of $G$ , and it is then clear that $H=G_{p}\cap K$ Since $\Omega^{)}\prec \mathscr{L}P_{n},$ $M=$

$M(G;\mathscr{L}, Q_{0})$ is nilpotent, and $M_{p}$ is contained in every $p$-Sylow subgroup $G_{p}$ .
Hence $M_{p}\subset G_{p}\cap M\subset G_{p}\cap K=H$ for every $H$ This shows $M_{p}\subset M(G_{p})$ .

LEMMA 3. If $9_{c}\prec 9\prec 9_{c\iota},$ $M(G;9, Q_{0})$ is contained in $Z(G)$ . In particular
$M_{c\iota,0}(G)=Z(G)$ .

PROOF. Every element $a$ of $G$ is contained in some maximal $\mathscr{Z}subgroup$

$M$. Since $M$ is abelian and contains $1\psi=1\psi(G;9, Q_{0})$ we see immediately $ M\subset$

$Z$. Conversely, any maximal abelian subgroup $1\psi$ contains $Z$, since $ZM$ is still
$ab\circ.lian$ , and must coincide with $JM$. Hence $M_{a,0}\supset Z$.

We now determine the position of $R_{c,0}$ as follows.
THEOREM 2. For any group $G$ , we have $R_{c,0}(G)=Jf_{c,0}(G)=\prod_{p}(R_{c.0}(G_{p})\cap Z)$ ;

and for a non-cyclic p-group $G_{p},$ $R_{c,0}(G_{p})$ reduces to 1, excepting the case of a
generalized quaternion group, in which $R_{c,0}(G_{p})$ coincides with the unique subgroup

of order 2.
PROOF. It is clear that $M(Q)$ coincides with the unique subgroup of order

2, say $R$ , for a generalized quaternion group $Q$ , and that $M(G_{p})=1$ for any
other non-cyclic $p$-group $G_{p}$ . Moreover, the verification of $R\subset R_{c,0}(Q)$ is also
easy. For a general $G$ , we have to show merely $M_{p}\subset R(G_{p})\cap Z$, in virtue of
Props. 2 and 4, and this last fact follows immediately from Lemmas 2 and 3.

The position of $R_{a,0}$ is determined only for nilpotent groups. The result
reads:

THEOREM 3. For a non-abelian p-group $G$ , we have $R_{a,0}(G)=1$ .
PROOF by the induction on $|G|$ . Let $N\neq 1$ be a normal subgroup of $G$

such that $G/N$ is non-abelian. Then $R(G/N)=1$ by the induction assumption.
Hence $R\subset N$ by Prop. 1. It follows that if $R\neq 1$ then $|R|=p$. Furthermore,
if we assume that a certain normal subgroup $N$ does not contain $R$ , then $G/N$

must be abelian. Hence the commutator group $G^{\prime}$ does not contain $R$ , and is
a minimal normal subgroup of $G$ . Hence $G^{\prime}$ is central, and is of order $p$. But
then, the central subgroup $G^{\prime}R$ contains a further normal subgroup $N$ of order
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$p$ other than $G^{\prime}$ and $R$ , and $G/N$ is not abelian. This is a contradiction. $H$ence
all normal subgroups of $G$ contain $R$ . Now, let $H$ be a minimal non-abelian
normal subgroup of G. $H$ contains an abelian normal subgroup $A$ of $G$ such
that $(H:A)=p$ , and is generated by $A$ and an element $c\not\in A$ . The inner auto-
morphism by $c$ induces an automorphism $\gamma$ of order $p$ of $A:cac^{-1}=a^{\gamma}(a\in A)$ ,
and the center $Z(H)$ coincides with the set of $\gamma$ -invariant elements of $A$ . Since
$Z(H)$ is normal in $G$ , it contains $R$ . Put $Y=\{a;a\in A, a^{r-1}\in Z(H)\}$ . $Y$ is a
normal subgroup of $G$ , since it is the intersection of $A$ and the second center
of $H$ Further $Y$ contains properly $Z(Ii)$ , since $\gamma$ induces on $A/Z(H)$ an auto-
morphism of order $p$ or 1. Hence there exists a normal subgroup $K$ of $G$ such
that $Y\supset K\supset Z(H)$ and that $(K:Z(H))=p$. The mapping $a\rightarrow a^{r-1}$ yields an
isomorphism of $K/Z(H)$ on the group $K^{r-1}$ of order $p$ . If we notice that
$x^{-1}cxc^{-1}\in A$ for all $x\in G$ , we see immediately that $K^{\gamma-1}$ is normal in $G$ . Hence
$K^{\gamma-1}$ must coincide with $R$ . Now let $L$ be the group generated by $K$ and $c$.
Then $L$ is certainly non-abelian. But we see that the commutator group of $L$

coincides with $K^{r-1}=R$ . This contradicts the property of R. $q$ . $e.d$ .
On the contrary, we can construct non-abelian $p$-groups $G$ admitting a sub-

group $R\neq 1$ such that $R\in R_{\alpha,0}^{\prime}(G)$ . A simple construction due to referee is
as follows: $G=A\times B$ , where $A$ is abelian and $B$ is non-abelian. It is then clear
$A\in\Re_{a,0}^{\prime}(G)$ . More interesting is the following example which treats essen-
tially the same type of groups as appeared in the above proof.

EXAMPLE. Let $A$ be an abelian group of type $(p,p^{n-2})(n\geqq 4)$ generated by
$z$ and $a$ of respective ordars $p$ and $p^{n-2}$ . Let $\gamma$ be an automorphism of $A$ de-
fined by $a^{\gamma}=za,$ $z^{\gamma}=z$ . Then $\gamma$ is of order $p$ , and the set of $\gamma$ -invariant ele-
ments of $A$ is $Z=(z)\times(a^{p})$ . Now, let $G$ be generated by $A$ and an element $c$

with the defining relations $c^{p}\in Z$ and $cx=x^{\gamma}c$ for $x\in A$ . We shall show $(a^{p})$

$\in\Re_{a,0}^{\prime}(G)$ . Since $ca=zac,$ $(a^{p})$ is a central subgroup of $G$ and $G/(a^{p})$ is not
abelian. Hence it suffices for our purpose to show that any proper subgroup
of $G$ is abelian. Thus, let $M$ be a maximal subgroup other than $A$, then $ A\cap l\psi$

is a subgroup of $A$ of index $p$ and containing $z=cac^{-1}a^{-1}$ . But then $A\cap M$

must coincide with $Z$. Since $Z$ is the center, 1M is certainly abelian.
By Theorem 3, $R_{a,0}(G_{p})=G_{p}$ or 1 according to $G_{p}$ is abelian or not. Combin-

ing Prop. 2, Prop. 4 and Lemma 3, we have immediately

PROPOSITION 5. If all Sylow subgroups of $G$ are abelian, we have $R_{a,0}(G)=$

$M_{a,0}(G)=Z(G)$ . For general $G$ , we only have $R_{a.0}(G)\subset M_{a,0}(G)=Z(G)$ .
REMARK. The center $Z(G)$ coincides with the hypercenter $H(G)$ for such

a group G. (A proof for this fact in case $G$ is solvable is given in Taunt [6].)

In fact we shall obtain the equality $R_{a,0}(G)=M_{a,0}(G)=Z(G)=H(G)$ , if we use
Prop. 6 which follows instead of Prop. 4.

We proceed to the study of $R_{n,0}$ . Let $c(p)$ be the characteristic subgroup
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of $G$ consisting of elements commuting with every $p$-prime-order element of $G$ .
Since the q-Sylow subgroup of $C(p)$ is central in $C(p)$ for $q\neq p,$ $C(p)$ is nilpo-
tent. Hence $C(p)_{p}$ is likewise a characteristic subgroup of $G$ , and consists of
all $P$-power-order elements commuting with every $p$-prime-order element of $G$ .
Clearly $C(p)\supset z$. Hence the following proposition covers Prop. 4.

PROPOSITION 6. If $\mathscr{L}\prec \mathscr{L}_{n}$ , then $R(G;\mathscr{X}Q_{0})_{p}$ contains $R(G_{p} ; \mathscr{L}, Q_{0})\cap C(p)_{p}$ .
PROOF. Put $R=R(G_{p} ; 9, Q_{0})\cap C(p)_{p}$ . Then $R$ is a normal subgroup of $G$ ,

since the normalizer of $R$ contains $G_{p}$ and all $p$-prime-order elements of $G$ . Let
$G^{\sigma}\supset H\supset R^{\sigma}$ , and let $H/R^{\sigma}\in 9$) Since $R^{\sigma}$ is a $p$-group and $H/R^{\sigma}$ is nilpotent,
$H_{p}$ is normal in $H$ Hence it admits a complement $H^{p}$ . Let $x$ be an arbitrarily
fixed element of $H_{p}$ , and put $xyx^{-1}=z_{y}\cdot y$ for every $y\in H^{p}$ . Then $z_{y}\in R^{\sigma}$. Since
any $p$-prime-order element of $G^{\sigma}$ is the image by $\sigma$ of a $p$-prime-order element
of $G$ , every element of $R^{\sigma}$ commutes with every element of $H^{p}$ . Hence the
mapping $y\rightarrow z_{\nu}$ yields a homomorphism $H^{p}\rightarrow R^{\sigma}$ . Since $(|H^{p}|, |R^{\sigma}|)=1$ , we
must have $xy=xy$ . It follows that $H=H_{p}\times H^{p}$ . The rest of the proof is com-
pletely the same as in Prop. 4.

THEOREM 4. $R_{n,0}(G)=M_{n,0}(G)=\Pi C(p)_{p}=H(G)$ (hypercenter).

PROOF. By Prop. 6, $C(p)_{p}\subset R_{p},$
$an^{p}d$ by Prop. 2, $R_{p}\subset M_{p}$ , where $R=R_{n,0}(G)$

and $M=M_{n,0}(G)$ . Now, every q-Sylow subgroup $G_{q}$ for $q\neq p$ is contained in
some maximal nilpotent subgroup, which contains necessarily $M$, and a fortiori
$M_{p}$ . Hence every element of $M_{p}$ commutes with every element of $G_{q},$ $q\neq p$.
This shows $M_{p}\subset C(p)_{p}$ . Thus the equality of first three groups of Theorem
is shown. Since $H(G)$ is the last term of the ascending central chain of $G$ , it
possesses the property $R_{n,0}^{\prime}$ . Now, let a subgroup $R$ of $G$ possess the property
$R^{r_{n,0}}$ . Then, since $R_{p}G_{q}/R_{p}$ is nilpotent, $R_{p}G_{q}$ is also nilpotent. Hence every
element of $R_{p}$ commutes with every element of $G_{q},$ $q\neq p$ , and we see $R_{p}\subset C(p)_{p}$ .
Hence $R\subset\prod_{p}C(p)_{p}$ . We refer to Baer [1] Th. 1 for the final step $C(p)_{p}\subset H(G)$ .

REMARK. The equality of the last three groups of Theorem 4 is shown
in Baer [1].

In the proof of the Theorem, we observe
$C_{oROLLARY}$ . If $R$ possesses the property $\Re_{n,0}^{\prime}(G)$ , then also the property $9_{n,0}(G)$ .
2.2. It follows from Gasch\"utz [3, Satz 10 and Satz 3], that $R_{n,n}$ contains

$\Phi$ . $R_{n,n}$ contains also $H=R_{n,0}$ , since $R(G;9, Q_{1})\supset R(G;9, Q_{2})$ whenever $Q_{1}\prec Q_{2}$ .
Now, Baer [2] introduced a notion of the weak hypercenter $H_{\omega}$ , and likewise
proved that $H_{\omega}$ is a characteristic subgroup contained in $F$ and containing $\Phi$

and $H$ and further that any weakly hypercentral subgroup possesses the pro-
perty $9t_{n.n}^{\prime}$ (but not necessarily $R_{n,n}$). Hence we may say that $R_{n,n}$ and $H_{\omega}$

are considerably near to each other, and it will be an interesting $prob1t_{\vee}^{1}m$ to
study more closely the relationship between them. Note also that $ F/\Phi$ is the
direct product of elementary abelian groups (Gasch\"utz [3, Satz 13]).
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Now, Gasch\"utz [3] introduced a characteristic subgroup $\Delta(G)$ as the inter-
section of all non-normal maximal subgroups of $G$ . As a refinement of inclu-
sion $ R_{n,n}\supset\Phi$ , we shall prove

PROPOSITION 7. $R_{n,n}(G)$ contains $\Delta(G)$ .
A proof for this assertion is obtained using some results of Gasch\"utz as

follows: Both $R_{n,n}$ and $\Delta$ contain $\Phi$ . According to Prop. 1, we may therefore
assume that $G$ is $\Phi$-free. But in this case, $\Delta$ coincides with the center (Gasch\"utz
[3, Satz 15]) and hence is contained in $R_{n,n}$ . Now, we shall give here
another proof which is independent of Gasch\"utz’s results, and thus including
a direct proof of Satz 16 (and of Satz 10) of [3]. By the definition of $\Delta$ , it
follows immediately that $\Delta(G)^{\sigma}\subset\Delta(G^{\sigma})$ for any homomorphism $G\rightarrow G^{\sigma}$. Hence
we may argue by induction, and have merely to prove $\Delta\in R_{n,n}^{\prime}$ . Thus, let $H$

be a normal subgroup of $G$ containing $\Delta$ and such that $ H/\Delta$ is nilpotent. Since
$\Delta H_{p}$ is normal in $G$ , we have $G=\Delta H_{p}\cdot N_{G}(H_{I)})=\Delta N_{G}(H_{p})$ . If $N_{G}(H_{p})\neq G$ , then
there exists a maximal subgroup $1\psi$ containing $N_{G}(H_{p})$ , and $1\psi$ must be normal
in $G$ (since $j\psi]\supset\Delta$ ). $H\cap M$ is a proper normal subgroup of $H$ and contains
$N_{H}(H_{p})=H_{\cap}N_{G}(H_{p})$ . But this is impossible as is well known.

Since any nilpotent subnormal subgroup is contained in a nilpotent normal
subgroup (It\^o [5]), we see readily $R_{n,sn}(G)=R_{n,n}(G)$ . (See also Inagaki [4].)

In general, we have
PROPOSITION 8. If $9_{c}\prec 9\prec \mathscr{X}$ , we have $R(G;9, Q_{sn})\subset R_{n,n}(G)$ .
PROOF. Put $R=R(G;q, Q_{sn})$ . Let $H$ be a normal subgroup of $G^{\sigma}$ contain-

ing $R^{\sigma}$ and such that $H/R^{\sigma}$ is nilpotent. Then every subgroup of $H$ contain-
ing $R^{\sigma}$ is subnormal in $G^{\sigma}$ . In particular $R^{\sigma}\{h\}$ is subnormal for every $h\in H$

Since $R^{\sigma}\{h\}/R^{\sigma}\in P_{c}\prec 9,$ $R^{\sigma}\{h\}$ itself is a 9-group, and a fortiori nilpotent.
Hence $\{h\}$ is subnormal in $R^{\sigma}\{h\}$ , and hence in $H$ $h$ being arbitrary, $H$ must
be nilpotent.

Tokyo University of Education
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