On certain characteristic subgroups of a finite group

By Akira HATTORI

(Received May 23, 1960) (Revised July 14, 1960)

Introduction.

One often asks whether a given property \mathcal{P} is preserved by a given class of group-extensions (E), provided that \mathcal{P} is possessed by all the kernels and the factor groups of (E). For example, the problem to find a group R, any extension H of which by a nilpotent group is likewise nilpotent, has a trivial answer. But if we allow as H only normal (or arbitrary, etc.) subgroups of a fixed group G, the problem becomes closely related to the structure of G, and the solutions of it may serve as a sort of measure relative to that property of groups. In this connection, a theorem of Gaschütz [3] is quite interesting, which states that the Frattini subgroup $\Phi(G)$ of a finite group G satisfies the condition of our problem. But $\Phi(G)$ is not in general maximal among the solutions, as the characteristic subgroup $\Delta(G)(\supset \Phi(G))$ introduced in that paper of Gaschütz is also one of solutions. Since larger solution is more interesting in such a problem, one naturally asks for the largest. Unfortunately the largest solution does not always exist. A standard method to make its substitute is to form the intersection of all maximal solutions, a procedure followed for example by Baer [2] to define the weak hypercenter. The nature of the present problem however allows us a different approach: We require of R^{σ} to possess the same property in G^{σ} as R in G for every homomorphism $\sigma: G \to G^{\sigma}$. Then we can prove that there necessarily exists the largest one among R's. The requirement is certainly satisfied by $\Phi(G)$ and $\Delta(G)$. Moreover, our method is favorable in hat it goes well with the induction-arguments.

We can treat similarly several problems of the same type (e.g. concerning abelian subgroups instead of nilpotent, etc.), and obtain thus a series of characteristic subgroups of a finite group. Some of them may be explicitly determined; for example, the hypercenter may be interpreted as the largest solution of the problem concerning the nilpotency and allowing as H any subgroup of G.

Notations

|G| order of a finite group G.

A. HATTORI

- G_p a *p*-Sylow subgroup of *G*.
- G^p a *p*-Sylow complement of *G* (if any) = a subgroup such that $|G| = |G_p| \cdot |G^p|$.
- G' commutator subgroup of G.
- $\mathbf{Z}(G)$ center of G.
- H(G) hypercenter of G = the final term of the ascending central chain of G.
- F(G) Wendt-Fitting subgroup of G = the largest nilpotent normal subgroup of G.
- $\Phi(G)$ Fattini subgroup of G = the intersection of all maximal subgroups of G.
- $N_G(H)$ normalizer of H in G.
- σ a homomorphism of G into some group. The identity automorphism of G is denoted by 1.
- $X \in \mathcal{P}$ An object X possesses a property \mathcal{P} .
- $\mathcal{G}_1 \prec \mathcal{G}_2$ If $X \in \mathcal{G}_1$, then $X \in \mathcal{G}_2$.

§1. Definition and general properties of R(G).

Let Q be a property of a pair $G \supset H$ consisting of a group G and its subgroup H, subject to the conditions:

Q1. Let $G \supset H \supset K$. If $(G \supset K) \in Q$, then $(H \supset K) \in Q$.

Q 2. Let σ be a homomorphic mapping of G. If $(G \supset H) \in Q$, then $(G^{\sigma} \supset H^{\sigma}) \in Q$; and conversely if $(G^{\sigma} \supset H_{i}) \in Q$, then $(G \supset H_{i}^{\sigma^{-1}}) \in Q$.

Notice that Q 2 contains the following statement

Q 2'. If $(G \supset H) \in Q$ and if N is a normal subgroup of G, then $(G \supset NH) \in Q$. If such a property Q is given, and if $(G \supset H) \in Q$, we often say that H is a Q-subgroup of G.

Examples. $(G \supset H) \in Q_0$ H is a subgroup of G.

 $(G \supset H) \in Q_n$ H is a normal subgroup of G.

 $(G \supset H) \in Q_{sn}$ H is a subnormal (= nachinvariant) subgroup of G, i.e. a term of some composition series of G.

Let such a property $\mathcal Q$ be given. We then look at a property $\mathcal P$ of groups subject to

P1. If $G \in \mathcal{P}$, then $H \in \mathcal{P}$ for any \mathcal{Q} -subgroup H of G.

P2. If $G \in \mathcal{P}$, then any homomorphic image $G' \in \mathcal{P}$.

From among a number of examples we pick up only a few:

 $G \in \mathcal{G}_c$ G is cyclic.

 $G \in \mathcal{P}_a$ G is abelian.

 $G \in \mathcal{Q}_n$ G is nilpotent.

 $G \in \mathcal{P}_{n(p)}$ G admits a normal p-Sylow complement.

 $G \in \mathcal{Q}_f$ G is finite.

86

In these examples Q may be fairly arbitrary. (For $\mathcal{P}_{n(p)}$, see Thompson [7].) If $(G \supset H) \in Q$ and $H \in \mathcal{P}$, we say that H is a (\mathcal{P}, Q) -subgroup of G. For example, a (\mathcal{P}_n, Q_n) -subgroup is nothing but a nilpotent normal subgroup.

Now we say that R possesses the property $\mathcal{R}(G; \mathcal{D}, Q)$, if the following two conditions are satisfied:

R 1. R is a normal subgroup of G.

R 2. Let any homomorphism $\sigma: G \to G^{\sigma}$ be given. If *H* is a *Q*-subgroup of G^{σ} containing R^{σ} and such that $H/R^{\sigma} \in \mathcal{P}$, then $H \in \mathcal{P}$.

If we replace R 2 by the weaker condition

R 2'. If *H* is a *Q*-subgroup of *G* containing *R* and such that $H/R \in \mathcal{P}$, then $H \in \mathcal{P}$.

we say that $R \in \mathcal{R}'(G; \mathcal{Q}, Q)$.

 $\mathscr{R}(G; \mathscr{D}, Q)$ (or $\mathscr{R}'(G; \mathscr{D}, Q)$) will be written sometimes simply as $\mathscr{R}(G)$ (or $\mathscr{R}'(G)$), when no confusion is feared.

It is clear that $R \in \mathcal{R}(G)$ if and only if $R^{\sigma} \in R'(G^{\sigma})$ for every homomorphism $\sigma: G \to G^{\sigma}$.

LEMMA 1. i) If $R \in \mathcal{R}(G)$, then $R^{\sigma} \in \mathcal{R}(G^{\sigma})$.

ii) If $R \in \mathcal{R}(G)$ and if R_1 is a normal subgroup of G contained in R, then $R_1 \in \mathcal{R}(G)$.

iii) Let N be a normal subgroup of G contained in R. Then $R \in \mathcal{R}(G)$ if and only if $R/N \in \mathcal{R}(G/N)$ and $N \in \mathcal{R}(G)$.

iv) If $R_1, R_2 \in \mathcal{R}(G)$, then $R_1R_2 \in \mathcal{R}(G)$.

PROOF. i) is clear from the definition.

ii) Let *H* be a *Q*-subgroup of G^{σ} containing R_1^{σ} and such that $H/R_1^{\sigma} \in \mathcal{P}$. Then $R^{\sigma}H$ is a *Q*-subgroup of G^{σ} (by Q 2') such that $R^{\sigma}H/R^{\sigma} \in \mathcal{P}$ (by P 2). Hence $R^{\sigma}H \in \mathcal{P}$. Since *H* is a *Q*-subgroup of $R^{\sigma}H$ (by Q 1), we have $H \in \mathcal{P}$ (by P 1).

iii) Assume $R/N \in \mathcal{R}(G/N)$. Let H be a Q-subgroup of G^{σ} containing R^{σ} and such that $H/R^{\sigma} \in \mathcal{P}$. Applying the natural epimorphism $G^{\sigma} \to G^{\sigma}/N^{\sigma}$, we see that H/N^{σ} is a Q-subgroup of G^{σ}/N^{σ} and that $(H/N^{\sigma})/(R^{\sigma}/N^{\sigma}) \in \mathcal{P}$. Since R^{σ}/N^{σ} is the image of R/N by the epimorphism $G/N \to G^{\sigma}/N^{\sigma}$ induced by σ , we must have $H/N^{\sigma} \in \mathcal{P}$. Assume further $N \in \mathcal{R}(G)$, then we have $H \in \mathcal{P}$, which proves $R \in \mathcal{R}(G)$. The converse is a special case of i) and ii).

iv) Let σ be the natural epimorphism $G \to G/R_2$. Then we have $R_1R_2/R_2 = R_1^{\sigma} \in \mathcal{R}(G/R_2)$ by i). Hence also $R_1R_2 \in \mathcal{R}(G)$ by iii).

THEOREM 1. Let Q and \mathcal{P} be given, subject to the above conditions. Then any finite group G has a characteristic subgroup $\mathbf{R} = \mathbf{R}(G; \mathcal{P}, Q)$ such that $R \in \mathcal{R}(G)$ if and only if R is a normal subgroup of G contained in \mathbf{R} .

Indeed, Lemma 1 shows that the join $\mathbf{R} = \bigcup R$ of all subgroups $R \in \mathfrak{R}(G)$ satisfies the conditions of Theorem.

REMARK. R is a characteristic subgroup even for an infinite group G, but

may happen $\mathbf{R} \notin \mathcal{R}(G)$ in this case. For instance, $R \in \mathcal{R}(G)$ states for $\mathcal{Q} = \mathcal{Q}_0$, $\mathcal{P} = \mathcal{P}_f$ that R is a finite normal subgroup of G. Therefore, $\mathbf{R}(G; \mathcal{P}_f, \mathcal{Q}_0)$ of an abelian group G is the torsion subgroup of G which may be infinite.

From now on, we consider only finite groups. By Lemma 1 we have immediately

PROPOSITION 1. i) $\mathbf{R}(G)^{\sigma} \subset \mathbf{R}(G^{\sigma})$ for any $\sigma: G \to G^{\sigma}$.

ii) If N is a normal subgroup of G contained in $\mathbf{R}(G)$, then $\mathbf{R}(G)/N = \mathbf{R}(G/N)$.

We denote by $M = M(G; \mathcal{P}, Q)$ the intersection of all maximal (\mathcal{P}, Q) -subgroups of G. This is obviously a characteristic subgroup of G.

PROPOSITION 2. If R possesses the property \mathcal{R}' , then $R \subset M$. In particular, $R \subset M$.

PROOF. Let $R \in \mathcal{R}'$ and let M be a maximal $(\mathcal{P}, \mathcal{Q})$ -subgroup. Then we see $RM/R \in \mathcal{P}$ and $(G \supset RM) \in \mathcal{Q}$. Hence $RM \in \mathcal{P}$. By the maximality of M we have RM = M, viz. $R \subset M$.

In the following, we impose a further condition on \mathcal{P} , namely:

P 3. If $G_1, G_2 \in \mathcal{P}$ and $(|G_1|, |G_2|) = 1$, then $G_1 \times G_2 \in \mathcal{P}$.

This condition is clearly satisfied by our examples above given and by many others.

PROPOSITION 3. Let $(|G_1|, |G_2|) = 1$. Then we have $\mathbf{R}(G_1 \times G_2) = \mathbf{R}(G_1) \times \mathbf{R}(G_2)$. PROOF. Put $G = G_1 \times G_2$. Any subgroup of G is of type $H_1 \times H_2$ $(H_1 \subset G_1, H_2 \subset G_2)$. Let $R_1 \in \mathcal{R}'(G_1)$ and assume that $H_1 \times H_2$ is a Q-subgroup of G containing R_1 and such that $(H_1 \times H_2)/R_1 \in \mathcal{P}$. By the projection $G \to G_1$, we see that H_1 is a Q-subgroup of G_1 such that $H_1/R_1 \in \mathcal{P}$. Hence we have $H_1 \in \mathcal{P}$. On the other hand, the projection $G \to G_2$ shows that $H_2 \in \mathcal{P}$. Hence we have $H_1 \in \mathcal{P}$. $H_1 \times H_2 \in \mathcal{P}$ by P3. Thus $R_1 \in \mathcal{R}'(G)$. Since these arguments hold in any homomorphic image of G, we see $\mathbf{R}(G_1) \subset \mathbf{R}(G)$. Similarly we have $\mathbf{R}(G_2) \subset \mathbf{R}(G)$. On the other hand, Prop. 1 i) shows that G_i -component of $\mathbf{R}(G)$ is contained in $\mathbf{R}(G_i)$ (i = 1, 2), whence $\mathbf{R}(G) \subset \mathbf{R}(G_1) \times \mathbf{R}(G_2)$. Combining these two facts we obtain the desired equality.

By this proposition, the study of R of a nilpotent group is reduced to that of p-groups.

§ 2. The position of R(G).

2.1. In the following, we study $\mathbf{R}(G; \mathcal{P}, Q)$ mainly in the cases $\mathcal{P} = \mathcal{P}_c, \mathcal{P}_a$, \mathcal{P}_n and $Q = Q_0, Q_n, Q_{sn}$. We shall use simplified notations such as $\mathbf{R}_{c,0} = \mathbf{R}(\mathcal{P}_c, Q_0)$, $\mathbf{R}_{n,n} = \mathbf{R}(\mathcal{P}_n, Q_n)$, and similarly for *M*-groups, etc.

If $\mathscr{D} \prec \mathscr{D}_n$, $R(\mathscr{D}, \mathscr{Q})$ is nilpotent. Hence the problem of the determination of R is reduced to that of *p*-Sylow subgroups R_p .

Proposition 4. If $\mathcal{P} \prec \mathcal{P}_n$, $\mathbf{R}(G; \mathcal{P}, \mathcal{Q}_0)_p$ contains $\mathbf{R}(G_p; \mathcal{P}, \mathcal{Q}_0) \cap \mathbf{Z}(G)$.

PROOF. Put $R = \mathbf{R}(G_p; \mathcal{Q}, \mathcal{Q}_0) \cap \mathbf{Z}(G)$. This is a normal subgroup of G (and

a fortiori of G_p). Since $\mathbf{R}(aG_pa^{-1}) = a\mathbf{R}(G_p)a^{-1}$ $(a \in G)$ by Prop. 1 i), $R \subset \mathbf{R}(G_p')$ for every *p*-Sylow subgroup G_p' of *G*. Now let $G^{\sigma} \supset H \supset R^{\sigma}$ and let $H/R^{\sigma} \in \mathcal{P}$. Since R^{σ} is central in G^{σ} , and since $\mathcal{P} \prec \mathcal{P}_n$, *H* is nilpotent. Hence *H* is the direct product of H_p and H^p . H^p is a \mathcal{P} -group, as it is a homomorphic image of H/R^{σ} . Similarly, the *p*-group H_p/R^{σ} is a \mathcal{P} -group. Since there is a *p*-Sylow subgroup G_p' of *G* such that $(G_p')^{\sigma} \supset H_p$, it follows that H_p itself is a \mathcal{P} -group by the above remark $R \subset \mathbf{R}(G_p')$. Hence $H = H_p \times H^p \in \mathcal{P}$. This shows $R \subset$ $\mathbf{R}(G)$, or equivalently $R \subset \mathbf{R}(G)_p$, as *R* is a *p*-group.

Concerning M, we have

LEMMA 2. If $\mathcal{Q} \prec \mathcal{Q}_n$, $M(G; \mathcal{Q}, Q_0)_p$ is contained in $M(G_p; \mathcal{Q}, Q_0)$.

PROOF. Any maximal \mathcal{P} -subgroup H of G_p is contained in some maximal \mathcal{P} -subgroup K of G, and it is then clear that $H = G_p \cap K$. Since $\mathcal{P} \prec \mathcal{P}_n$, $M = M(G; \mathcal{P}, \mathcal{Q}_0)$ is nilpotent, and M_p is contained in every p-Sylow subgroup G_p . Hence $M_p \subset G_p \cap M \subset G_p \cap K = H$ for every H. This shows $M_p \subset M(G_p)$.

LEMMA 3. If $\mathcal{P}_{c} \prec \mathcal{P} \prec \mathcal{P}_{a}$, $M(G; \mathcal{P}, \mathcal{Q}_{0})$ is contained in Z(G). In particular $M_{a,0}(G) = Z(G)$.

PROOF. Every element a of G is contained in some maximal \mathcal{P} -subgroup M. Since M is abelian and contains $M = M(G; \mathcal{P}, \mathcal{Q}_0)$ we see immediately $M \subset \mathbb{Z}$. Conversely, any maximal abelian subgroup M contains \mathbb{Z} , since $\mathbb{Z}M$ is still abelian, and must coincide with M. Hence $M_{a,0} \supset \mathbb{Z}$.

We now determine the position of $R_{c,0}$ as follows.

THEOREM 2. For any group G, we have $\mathbf{R}_{c,0}(G) = \mathbf{M}_{c,0}(G) = \prod_p (\mathbf{R}_{c,0}(G_p) \cap \mathbf{Z});$ and for a non-cyclic p-group G_p , $\mathbf{R}_{c,0}(G_p)$ reduces to 1, excepting the case of a generalized quaternion group, in which $\mathbf{R}_{c,0}(G_p)$ coincides with the unique subgroup of order 2.

PROOF. It is clear that M(Q) coincides with the unique subgroup of order 2, say R, for a generalized quaternion group Q, and that $M(G_p) = 1$ for any other non-cyclic *p*-group G_p . Moreover, the verification of $R \subset \mathbf{R}_{c,0}(Q)$ is also easy. For a general G, we have to show merely $M_p \subset \mathbf{R}(G_p) \cap \mathbf{Z}$, in virtue of Props. 2 and 4, and this last fact follows immediately from Lemmas 2 and 3.

The position of $R_{a,0}$ is determined only for nilpotent groups. The result reads:

THEOREM 3. For a non-abelian p-group G, we have $\mathbf{R}_{a,0}(G) = 1$.

PROOF by the induction on |G|. Let $N \neq 1$ be a normal subgroup of G such that G/N is non-abelian. Then $\mathbf{R}(G/N) = 1$ by the induction assumption. Hence $\mathbf{R} \subset N$ by Prop. 1. It follows that if $\mathbf{R} \neq 1$ then $|\mathbf{R}| = p$. Furthermore, if we assume that a certain normal subgroup N does not contain \mathbf{R} , then G/N must be abelian. Hence the commutator group G' does not contain \mathbf{R} , and is a minimal normal subgroup of G. Hence G' is central, and is of order p. But then, the central subgroup $G'\mathbf{R}$ contains a further normal subgroup N of order

A. HATTORI

p other than G' and R, and G/N is not abelian. This is a contradiction. Hence all normal subgroups of G contain R. Now, let H be a minimal non-abelian normal subgroup of G. H contains an abelian normal subgroup A of G such that (H: A) = p, and is generated by A and an element $c \in A$. The inner automorphism by c induces an automorphism γ of order p of $A: cac^{-1} = a^{\gamma}$ ($a \in A$), and the center $\mathbf{Z}(H)$ coincides with the set of γ -invariant elements of A. Since Z(H) is normal in G, it contains **R**. Put $Y = \{a : a \in A, a^{r-1} \in Z(H)\}$. Y is a normal subgroup of G, since it is the intersection of A and the second center of H. Further Y contains properly $\mathbf{Z}(H)$, since γ induces on $A/\mathbf{Z}(H)$ an automorphism of order p or 1. Hence there exists a normal subgroup K of G such that $Y \supset K \supset \mathbf{Z}(H)$ and that $(K: \mathbf{Z}(H)) = p$. The mapping $a \to a^{r-1}$ yields an isomorphism of $K/\mathbb{Z}(H)$ on the group K^{r-1} of order p. If we notice that $x^{-1}cxc^{-1} \in A$ for all $x \in G$, we see immediately that $K^{\gamma-1}$ is normal in G. Hence K^{r-1} must coincide with **R**. Now let L be the group generated by K and c. Then L is certainly non-abelian. But we see that the commutator group of Lcoincides with $K^{r-1} = \mathbf{R}$. This contradicts the property of \mathbf{R} . q. e. d.

On the contrary, we can construct non-abelian *p*-groups *G* admitting a subgroup $R \neq 1$ such that $R \in \mathcal{R'}_{a,0}(G)$. A simple construction due to referee is as follows: $G = A \times B$, where *A* is abelian and *B* is non-abelian. It is then clear $A \in \mathcal{R'}_{a,0}(G)$. More interesting is the following example which treats essentially the same type of groups as appeared in the above proof.

EXAMPLE. Let A be an abelian group of type (p, p^{n-2}) $(n \ge 4)$ generated by z and a of respective orders p and p^{n-2} . Let r be an automorphism of A defined by $a^r = za$, $z^r = z$. Then r is of order p, and the set of r-invariant elements of A is $Z = (z) \times (a^p)$. Now, let G be generated by A and an element c with the defining relations $c^p \in Z$ and $cx = x^r c$ for $x \in A$. We shall show $(a^p) \in \mathcal{R}'_{a,0}(G)$. Since ca = zac, (a^p) is a central subgroup of G and $G/(a^p)$ is not abelian. Hence it suffices for our purpose to show that any proper subgroup of G is abelian. Thus, let M be a maximal subgroup other than A, then $A \cap M$ is a subgroup of A of index p and containing $z = cac^{-1}a^{-1}$. But then $A \cap M$ must coincide with Z. Since Z is the center, M is certainly abelian.

By Theorem 3, $\mathbf{R}_{a,0}(G_p) = G_p$ or 1 according to G_p is abelian or not. Combining Prop. 2, Prop. 4 and Lemma 3, we have immediately

PROPOSITION 5. If all Sylow subgroups of G are abelian, we have $\mathbf{R}_{a,0}(G) = \mathbf{M}_{a,0}(G) = \mathbf{Z}(G)$. For general G, we only have $\mathbf{R}_{a,0}(G) \subset \mathbf{M}_{a,0}(G) = \mathbf{Z}(G)$.

REMARK. The center Z(G) coincides with the hypercenter H(G) for such a group G. (A proof for this fact in case G is solvable is given in Taunt [6].) In fact we shall obtain the equality $R_{a,0}(G) = M_{a,0}(G) = Z(G) = H(G)$, if we use Prop. 6 which follows instead of Prop. 4.

We proceed to the study of $R_{n,0}$. Let C(p) be the characteristic subgroup

of *G* consisting of elements commuting with every *p*-prime-order element of *G*. Since the *q*-Sylow subgroup of C(p) is central in C(p) for $q \neq p$, C(p) is nilpotent. Hence $C(p)_p$ is likewise a characteristic subgroup of *G*, and consists of all *p*-power-order elements commuting with every *p*-prime-order element of *G*. Clearly $C(p) \supset \mathbf{Z}$. Hence the following proposition covers Prop. 4.

PROPOSITION 6. If $\mathcal{P} \prec \mathcal{P}_n$, then $\mathbf{R}(G; \mathcal{P}, \mathcal{Q}_0)_p$ contains $\mathbf{R}(G_p; \mathcal{P}, \mathcal{Q}_0) \cap C(p)_p$.

PROOF. Put $R = \mathbf{R}(G_p; \mathcal{P}, Q_0) \cap C(p)_p$. Then R is a normal subgroup of G, since the normalizer of R contains G_p and all p-prime-order elements of G. Let $G^{\sigma} \supset H \supset R^{\sigma}$, and let $H/R^{\sigma} \in \mathcal{P}$. Since R^{σ} is a p-group and H/R^{σ} is nilpotent, H_p is normal in H. Hence it admits a complement H^p . Let x be an arbitrarily fixed element of H_p , and put $xyx^{-1} = z_y \cdot y$ for every $y \in H^p$. Then $z_y \in R^{\sigma}$. Since any p-prime-order element of G^{σ} is the image by σ of a p-prime-order element of G, every element of R^{σ} commutes with every element of H^p . Hence the mapping $y \rightarrow z_y$ yields a homomorphism $H^p \rightarrow R^{\sigma}$. Since $(|H^p|, |R^{\sigma}|) = 1$, we must have xy = xy. It follows that $H = H_p \times H^p$. The rest of the proof is completely the same as in Prop. 4.

THEOREM 4. $R_{n,0}(G) = M_{n,0}(G) = \prod_{n} C(p)_p = H(G)$ (hypercenter).

PROOF. By Prop. 6, $C(p)_p \subset \mathbf{R}_p$, and by Prop. 2, $\mathbf{R}_p \subset \mathbf{M}_p$, where $\mathbf{R} = \mathbf{R}_{n,0}(G)$ and $\mathbf{M} = \mathbf{M}_{n,0}(G)$. Now, every q-Sylow subgroup G_q for $q \neq p$ is contained in some maximal nilpotent subgroup, which contains necessarily \mathbf{M} , and a fortiori \mathbf{M}_p . Hence every element of \mathbf{M}_p commutes with every element of G_q , $q \neq p$. This shows $\mathbf{M}_p \subset C(p)_p$. Thus the equality of first three groups of Theorem is shown. Since $\mathbf{H}(G)$ is the last term of the ascending central chain of G, it possesses the property $R'_{n,0}$. Now, let a subgroup R of G possess the property $R'_{n,0}$. Then, since $R_p G_q/R_p$ is nilpotent, $R_p G_q$ is also nilpotent. Hence every element of R_p commutes with every element of G_q , $q \neq p$, and we see $R_p \subset C(p)_p$. Hence $R \subset \prod_p C(p)_p$. We refer to Baer [1] Th. 1 for the final step $C(p)_p \subset \mathbf{H}(G)$.

REMARK. The equality of the last three groups of Theorem 4 is shown in Baer [1].

In the proof of the Theorem, we observe

COROLLARY. If R possesses the property $\mathcal{R}'_{n,0}(G)$, then also the property $\mathcal{R}_{n,0}(G)$.

2.2. It follows from Gaschütz [3, Satz 10 and Satz 3], that $\mathbf{R}_{n,n}$ contains $\boldsymbol{\Phi}$. $\mathbf{R}_{n,n}$ contains also $\mathbf{H} = \mathbf{R}_{n,0}$, since $\mathbf{R}(G; \mathcal{P}, \mathcal{Q}_1) \supset \mathbf{R}(G; \mathcal{P}, \mathcal{Q}_2)$ whenever $\mathcal{Q}_1 \prec \mathcal{Q}_2$. Now, Baer [2] introduced a notion of the weak hypercenter H_{ω} , and likewise proved that H_{ω} is a characteristic subgroup contained in \mathbf{F} and containing $\boldsymbol{\Phi}$ and \mathbf{H} and further that any weakly hypercentral subgroup possesses the property $\mathcal{R}'_{n,n}$ (but not necessarily $\mathcal{R}_{n,n}$). Hence we may say that $\mathbf{R}_{n,n}$ and H_{ω} are considerably near to each other, and it will be an interesting problem to study more closely the relationship between them. Note also that $\mathbf{F}/\boldsymbol{\Phi}$ is the direct product of elementary abelian groups (Gaschütz [3, Satz 13]). Now, Gaschütz [3] introduced a characteristic subgroup $\Delta(G)$ as the intersection of all non-normal maximal subgroups of G. As a refinement of inclusion $\mathbf{R}_{n,n} \supset \Phi$, we shall prove

PROPOSITION 7. $\mathbf{R}_{n,n}(G)$ contains $\Delta(G)$.

A proof for this assertion is obtained using some results of Gaschütz as follows: Both $\mathbf{R}_{n,n}$ and Δ contain Φ . According to Prop. 1, we may therefore assume that G is Φ -free. But in this case, Δ coincides with the center (Gaschütz [3, Satz 15]) and hence is contained in $\mathbf{R}_{n,n}$. Now, we shall give here another proof which is independent of Gaschütz's results, and thus including a direct proof of Satz 16 (and of Satz 10) of [3]. By the definition of Δ , it follows immediately that $\Delta(G)^{\sigma} \subset \Delta(G^{\sigma})$ for any homomorphism $G \to G^{\sigma}$. Hence we may argue by induction, and have merely to prove $\Delta \in \mathcal{R}'_{n,n}$. Thus, let Hbe a normal subgroup of G containing Δ and such that H/Δ is nilpotent. Since ΔH_p is normal in G, we have $G = \Delta H_p \cdot N_G(H_p) = \Delta N_G(H_p)$. If $N_G(H_p) \neq G$, then there exists a maximal subgroup M containing $N_G(H_p)$, and M must be normal in G (since $M \oplus \Delta$). $H \cap M$ is a proper normal subgroup of H and contains $N_H(H_p) = H \cap N_G(H_p)$. But this is impossible as is well known.

Since any nilpotent subnormal subgroup is contained in a nilpotent normal subgroup (Itô [5]), we see readily $R_{n,sn}(G) = R_{n,n}(G)$. (See also Inagaki [4].)

In general, we have

PROPOSITION 8. If $\mathcal{P}_{c} \prec \mathcal{P} \prec \mathcal{P}_{n}$, we have $R(G; \mathcal{P}, Q_{sn}) \subset R_{n,n}(G)$.

PROOF. Put $R = \mathbf{R}(G; \mathcal{D}, Q_{sn})$. Let H be a normal subgroup of G^{σ} containing R^{σ} and such that H/R^{σ} is nilpotent. Then every subgroup of H containing R^{σ} is subnormal in G^{σ} . In particular $R^{\sigma}\{h\}$ is subnormal for every $h \in H$. Since $R^{\sigma}\{h\}/R^{\sigma} \in \mathcal{P}_{c} \prec \mathcal{P}, R^{\sigma}\{h\}$ itself is a \mathcal{P} -group, and *a fortiori* nilpotent. Hence $\{h\}$ is subnormal in $R^{\sigma}\{h\}$, and hence in H. h being arbitrary, H must be nilpotent.

Tokyo University of Education

References

- [1] R. Baer, Group elements of prime power index, Trans. Amer. Math. Soc., 75 (1953), 20-47.
- [2] R. Baer, Nilpotent characteristic subgroups of finite groups, Amer. J. Math., 75 (1953), 633-664.
- [3] W. Gaschütz, Über die Ø-Untergruppe endlicher Gruppen, Math. Z., 58 (1953), 160-170.
- [4] N. Inagaki, On some generalizations of a theorem of Gaschütz on finite groups, forthcoming.
- [5] N. Itô, Über die Frattini-Gruppe einer endlichen Gruppe, Proc. Japan Acad., 31 (1955), 327-328.
- [6] D.R. Taunt, On A-groups, Proc. Cambridge Phil. Soc., 45 (1949), 24-42.

- [7] J.G. Thompson, Normal p-complements for finite groups, Math. Z., 72 (1960), 332-354.
- [8] H. Wielandt, Eine Verallgemeinerung der invarianten Untergruppen, Math. Z., 45 (1939), 209-244.
- [9] H. Zassenhaus, Lehrbuch der Gruppentheorie, 1937.