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Hitherto the concept of differentials is introduced usually as the dual no-
tion of the derivations. For instance the differentials belonging to a function
field $K/k$ are the dual elements of the k-derivations of $K$ into itself. If $V$ is
a differentiable manifold the local differentials at a point of $V$ are nothing
other than the elements of the dual space of the space of tangent vectors at
the point. Recently P. Cartier introduced in $[$4 $]$ the notion of differentials
without referring to the special module of derivations. His theory was used
to settle the problem of separability in the extension of fields and the theory
of simple points. We shall present here a more general version of the theory
of differentials in a commutative R-algebra. In \S 1 we list the notations and
terminologies which will be used throughout the rest of the paper. In \S 2 we
shall prove some properties of differentials in a commutative algebra. Among
others we shall introduce the notion of the quasi-separability for an R-algebra2)
S. When $R$ is a field and $S$ is a finite R-module the quasi-separability coincides
with the separability of $S/R$. In \S 3 we shall give a theorem by which we can
determine the structure of the module of differentials. \S 4 is devoted to the
proof of the following theorem. Let $P$ be a point of an algebraic variety $V$

which is defined over $k$ , and let $R$ be the quotient ring of $P$ in $V/k$ . Then
under suitable conditions it will be shown that $P$ is a simple point of $V$ if and
only if the module of k-differentials $D_{k}(R)$ is a free module. We shall study
in \S 5 the contribution of our theory to the theory of ramifications. We shall
introduce there the notion of d-different. Quasi-separability and unramifiedness
will be shown to be equivalent under some additional assumptions. On the
other hand we have another kind of different which is called the homological
different in [2]. We can easily prove that the homological different is con-
tained in the d-different and in some occasions they have the same radical.
But the precise relation between them is yet unknown. The relation between
the d-different and the differential index defined in our previous paper [7] will
be discussed in the last paragraph. They give rise to the same results in the
case where we are studying the covering of algebraic curves. But in the case

1) The numbers in the bracket refer to the bibliography at the end of the paper.
2) For the precise definitions see \S 1.
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of higher dimensional varieties the matter is not so simple. The study of
their relation suggests us to introduce a series of differents associated with the
differentials of higher degree. We shall show in some special case that there
exists a non-increasing sequence of differents beginning from the d-different
and terminating in the different defined by the differential index. It is now
conjectured that the d-different has some geometric meaning related to the
differential forms of degree 1, but nothing is yet known about it.

\S 1. Notations and terminologies

All rings considered in this paper are assumed to be commutative and con-
tain the unity which will be denoted by 1. Let $S$ and $R$ be two rings. We
shall say that $S$ is an R-algebra if $R$ is an operator domain of $S$ and (i) there
exists an R-homomorphism $f$ from $R$ into $S$ such that $f(1)=1$ ; (ii) each element
$r$ of $R$ operates on $S$ by the rule $rs=f(r)s$ where $s$ is in $S$ and the right hand
side is the multiplication in S. Let $\mathfrak{a}$ be an ideal of $S$, then we shall call the
ideal $f^{-1}(tI\cap f(R))$ the contraction of $\mathfrak{a}$ and will be denoted simply by $\mathfrak{a}\cap R$ . In
this case $R/(\mathfrak{a}\cap R)$ can be considered as a subring of $S/\mathfrak{a}$ in an obvious way.
Let $x$ be an element of $R$ , we denote usually the element $f(x)$ in $S$ by the same
letter $x$ if there is no danger of confusion. Let $S$ and $R$ be two R-algebra with
the ring homomorphism $f:R\rightarrow S$ and $g:R\rightarrow T$. A ring homomorphism $\pi$ from
$S$ into $T$ will be called an R-algebra homomorphism if we have $g=\pi\circ f$.

Let $S$ be an R-algebra, an R-derivation of $S$ into an S-module $V$ is an R-
linear map from $S$ into $V$ such that $D(xy)=xD(y)+yD(x)$ for $x$ and $y$ in S. $D$

is an R-derivation of $S$ if, and only if, $D$ is zero on $f(R)$ . We shall denote by
$D_{R}(S)$ the module of R-diJferentials in $S,$ $i$ . $e$ . the S-module satisfying the follow-
ing conditions:

(1) There is an R-derivation $d_{R}$ from $S$ into $D_{R}(S)(d_{R}$ will be called the
differential operater over $R$).

(2) $D_{R}(S)$ is generated by $\{d_{R}x, x\in S\}$ over S.
(3) For any R-derivation $D$ of $S$ into an S-module $V$, there exists an S-

linear map $h$ from $D_{R}(S)$ into $Vs\llcorner^{\rceil}ch$ that $D=hd_{R}$ .
It is known that for a $g_{\sim}^{i}ven$ R-algebra $S$, there exists a unique $D_{R}(S)$ , up

to an S-isomorphism. Let $\varphi$ be the homomorphism from $S\otimes_{R}S$ into $S$ defined
by $\varphi(\sum_{l}a_{i}\otimes b_{i})=\sum_{i}a_{i}b_{i}$ . The kernel $I$ of $\varphi$ is generated by the element of

the form $\{1\otimes x-x\otimes 1\}$ . We make $S\otimes_{R}S$ into an S-module by the rule $ a(b\otimes c\rangle$

$=ab\otimes c$ . Then $S\otimes S=S\otimes 1+I$ (direct sum) as an S-module. Let $\mathfrak{R}$ be the
submodule of $S\otimes S$ generated by the elements of the form $\{1\otimes ab-a\otimes b-b$

$\otimes a\}$ , then $D_{R}(S)$ is given by the difference module $(S\otimes S)/\mathfrak{R}$ and the differ-
ential $d_{R}a(a\in S)$ is defined as the class of $1\otimes amod R$. Since $\mathfrak{R}=S\otimes 1+I^{2}$
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(direct sum) as S-module, we have $D_{R}(S)$ is isomorphic to $I/I^{2}$ (cf. [4, Expos\’e 13]).
In the following we shall have occasions to consider several R-algebras $S$,

$T,$ $\cdots$ at the same time. To distinguish the differential operaters in $D_{R}(S)$ ,
$D_{R}(T),$ $\cdots$ we shall use the symbols $d_{R}^{s},$ $d_{R}^{r},$ $\cdots$ . Thus for the same element $x$,
$d_{R}^{s}x$ and $d_{R}^{T}x$ may have different meaning. We shall sometimes omit the sub-
script $R$ if there is no danger of confusion. Let $a_{1},$

$\cdots$ , $a_{s}$ be elements of $S$,
then the differentials $da_{i},$

$\cdots,$
$da_{s}$ will be called linearly independent if $\lambda_{1}da_{1}+\cdots$

$+\lambda_{s}da_{s}=0(\lambda_{i}\in S)$ implies necessarily $\lambda_{1}=\cdots=\lambda_{s}=0$ . Differentials $da_{1},$ $\cdots$ , $da_{s}$

are linearly independent if there exist $s$ R-derivations $D_{i}$ ($i=1,$ $\cdots$ , s) of $S$ such
that $D_{i}(a_{j})=\delta_{ij}$ .

\S 2. Module of $R$-differentials

Let $S$ be an R-algebra with the ring homomorphism $f:R\rightarrow S$, and let $T$ be
an S-algebra with the ring homomorphism $g:S\rightarrow T$. Then $T$ is an R-algebra
with the ring homomorphism $h=g\cdot f:R\rightarrow T$. Let $x$ be an element of $S$, then
$d_{R}^{T}x$ stand for the R-differential $dg(x)$ in $D_{R}(T)$ . Then $Dx=d_{R}^{T}x$ is an R-deriva-
tion of $S$ into a T-module $D_{R}(T)$ , hence there exists an $S$ homomorphism
$\alpha:D_{R}(S)\rightarrow D_{R}(T)$ such that

$Dx=d_{R}^{T}x=\alpha\cdot d_{R}^{s}x$ for $x\in S$ .
From this we can define a homomorphism $\varphi_{R;S.T}$ : $T\otimes_{S}D_{R}(S)\rightarrow D_{R}(T)$ by
$\varphi_{R}s.\tau(\sum t_{i}\otimes d_{R}^{s}x_{i})=\sum_{i}t_{i}d_{R}^{T}x_{i}$ , where $t_{i}\in T$, and $x_{i}\in S$. Let $N_{R;S.T}$ and $D_{S,T}$ be
the kernel and cokernel of $\varphi_{R;S.T}$ respectively, then we have an exact sequence

(A)
$0\rightarrow N_{R;S.T}\rightarrow T\otimes_{s}D_{R}(S)\rightarrow D_{R}(T)\rightarrow^{j}D_{s,\tau}\rightarrow 0$ .

We shall show that $D_{S.T}$ is isomorphic to $D_{s}(T)$ . To prove this it is sufficient
to show that $D_{S,T}$ has the universal mapping property with respect to the dif-
ferential operator $\tilde{\alpha}=jd_{R}^{T}$. Let $D$ be an S-derivation of $T$ into a T-module $V$.
Then $D$ is, a fortiori, an R-derivation of $T$ into $V$, and there exists a T-homo-
morphism $\beta:D_{s}(T)\rightarrow V$ such that $Dx=\beta d^{T}x$ for $x\in T$. Since $D$ is an S-deri-
vation, $Dx=0$ holds for $x$ in $S,$ $i$ . $e$ . $\beta$ vanishes on the image of $\varphi_{R;S.T}$ . Tak-
ing the quotient we get a homomorphism $\tilde{\beta}$ from $D_{S,T}$ into $V$, and $Dx=\beta d^{T}x$

$=\tilde{\beta}\cdot\tilde{\alpha}x$ which proves that $D_{S_{*}T}$ has the property (3). Since it is easily seen
that $D_{s,\tau}$ satisfies the properties (1) and (2), the uniqueness property of the
module of differentials implies that $D_{s,r}$ is isomorphic to $D_{s}(T)$ . The above
results will be formulated in the

PROPOSITION 1. Let $S$ be an R-algebra and let $T$ be an S-algebra. Then $D_{s}(T)$

is isomorphic to the difference module $D_{R}(T)/TD(S)$ , where $D(S)$ is a submodule
of $D_{R}(T)$ generated by the elements $\{d_{R}^{T}s, s\in S\}$ . Moreover if $D_{R}(S)$ is zero, $D_{s}(T)$

is isomorphic to $D_{R}(T)$ .
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$T_{HEORElv1}1$ . Let $S$ be an R-algebra and let $Tbe$ an S-algebra. Then any R-
derivation of $S$ into a T-module $V$ can be extended to an R-derivation of $T$ into
$V$ if, and only if, (i) $\varphi_{R,S.T}$ is injective and (ii) $T\otimes D_{R}(S)$ is the direct summand
of $D_{R}(T)$ (as a T-module)3). Moreover if it is known that $D_{R}(S)$ is a finite mod-
ule, then $we’ ll$ have (i) and (ii) if any R-derivation of $S$ into a finite T-module
can be extended to an R-derivation of $T$.

PROOF. Let $z=\sum_{l}t_{i}\otimes d^{s}x_{i}b^{a}$. such that $\varphi_{R;S.T}(z)=0,$ $i$ . $e$ . $\sum_{i}t_{i}d^{T}x_{\dot{t}}=0$ . (We

omit the subscript $R$ for the sake of simplicity.) Since $D:x\rightarrow 1\otimes d^{s}x$ is an R-
derivation of $S$ into a (finite) T-module $T\otimes_{S}D_{R}(S)$ , it can be extended to an
R-derivation of $T$ into $T\otimes D_{R}(S)$ . We shall denote this extension by the same
letter $D$ . Let $\alpha$ be a T-homomorphism $D_{R}(T)\rightarrow T\otimes_{S}D_{R}(S)$ such that $Dx=$

$\alpha d^{T}x$ for $x$ in $T$. From $\sum_{i}t_{i}d^{T}x_{i}=0$ , follows $0=\alpha(\sum_{l}t_{i}d^{T}x_{i})=\sum_{i}t_{i}\alpha d^{T}x_{i}=\sum_{t}t_{i}Dx_{i}$

$=\sum_{i}t_{i}(1\otimes d^{S}x_{i})=\sum_{i}t_{i}\otimes d^{s}x_{i}sinc_{\vee}^{\circ}x’ s$ are in S. Thus $\varphi_{R,S.T}$ is injective. More-

over we see that $\alpha\varphi_{R;S.T}=1$ from the definitions. Hence the exact sequence

$0\rightarrow T\otimes D_{R}(S)^{\varphi_{R:S.T}}\rightarrow D_{R}(T)\rightarrow D_{s.\tau}\rightarrow 0$

splits and we get the condition (ii).

Conversely assume that $\varphi_{R,S,T}$ is injective and $T\otimes D_{R}(S)$ is a direct sum-
mand of $D_{R}(T)$ . Let $D$ be an R-derivation of $S$ into a T-module $V$. Then
there exists an S-homomorphism $\alpha$ from $D_{R}(S)$ into $V$ such that $D=\alpha d^{s}$. Let
$\alpha_{0}$ be the T-homomorphism from $T\otimes D_{R}(S)$ into $V$ which is induced in a natu-
ral way by $\alpha,$

$i$ . $e$ . $\alpha_{0}(t\otimes d^{s}x)=t\alpha(d^{S}x)$ . Since $T\otimes D_{R}(S)$ is the direct summand
of $D_{R}(T),$ $\alpha_{0}$ can be extended at least in one way to a T-homomorphism $\tilde{\alpha}_{0}$

from $D_{R}(T)$ into $V$. Then the derivation $\tilde{D}=\tilde{\alpha}_{0}d^{T}x$ will be the extension of
$D$ . In fact if $x$ is an element of $S$, we have

$\tilde{D}x=\tilde{\alpha}_{0}d^{T}x=\alpha_{0}(1\otimes d^{S}x)=\alpha d^{S}x=Dx$ .
COROLLARY 1. If $T$ is a field, then any derivation of $S$ into a T-module can

be extended to an R-derivation of $T$ if, and only if, the kernel $N$ of $\varphi_{R;S.T}$ is zero.
In the above situation $D_{s}(T)=0$ , if the extension of the derivation (if ex-

ists) is unique, hence we have the
COROLLARY 2. The homomorphism $\varphi_{R:S.T}$ is an isomorphism if, and only if,

any derivation of $S$ can be extended in a unique way to the derivation of $T$.
If $T$ is not a field, the vanishing of the kernel $\varphi_{R;S,T}$ does not necessarily

imply that the extension is always possible.
EXAMPLE. Let $R$ be a field of characteristic $\neq 2$ , and let $S=R[X^{2}]$ and

$T=R[X]$ . The correspondence $1\otimes d(X^{2})\rightarrow 2XdX$ gives clearly an isomorphism
of $T\otimes D_{R}(S)$ into $D_{R}(T)$ . On the other hand let $D$ be a derivation of $S$ into

3) The necessity of the condition (ii) is pointed out by H. Sato.
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$T$ defined by $\partial/\partial(X^{2})$ . This derivation cannot be extended to the derivation
of $T$ into $T$ since $D(X^{2})=2XD(X)=1$ .

PROPOSITION 2. Let $S$ be an R-algebra and let $U$ be a multiplicatively closed
set in S. Assume that $U$ does not contain any zero divisor. Then we have an
isomorphism $D_{R}(S_{U})\cong S_{U}\otimes D_{R}(S)$ .

PROOF. By the above Cor. 2 it is sufficient to show that any R-derivation
of $S$ into an $S_{U}$-module $V$ can be extended in a unique way to an R-derivation
of $S_{U}$ into $V$. But it is seen immediately that $D(1/u)=-(1/u^{2})Du$ is the unique
extension of the given derivation $D$ of S.

The examle mentioned before is a special case of the following proposition,
in which $\varphi_{R;S,T}$ would be injective though the extension of the derivation might
be impossible.

PROPOSITION 3. Let $S$ be a domain with the quotient field $K$ and $L$ be a
separable extension of K. Let $T$ be a subring of $L$ such that $L$ is the quotient
field of T. Then if $D_{R}(S)$ is a free module over $S$, the homomorphism $\varphi_{R;S,T}$ is
an injective map.

PROOF. Let us consider the following commutative diagram

$0\rightarrow N\rightarrow T\otimes_{S}D_{R}(S)\rightarrow D_{R}(T)\varphi_{R;S,T}$

$0\rightarrow L\otimes_{K}D_{R}(K)\rightarrow D_{R}I^{\varphi_{\varphi_{R;K,L}}}\downarrow_{(L)}$

where $\varphi_{R;K,L}$ is injective since any derivation of $K$ can be extended to the
derivation of $L$ . Let $z$ be an element of $T\otimes_{S}D_{R}(S)$ such that $\varphi_{RS,T}(z)=0$ .
From the above diagram we see that $\varphi(z)=0$ . Let $z=\sum_{i}t_{i}\otimes d^{s}s_{i}$ , where $\{d^{S}s_{i}\}$

is a free base of $D_{R}(S)$ . By Prop. 2, $D_{R}(K)=K\otimes_{S}D_{R}(S)$ , hence $D_{R}(K)$ is also
a free module with the base $\{d^{K}s_{i}\}$ . From the general property of tensor pro-
duct, $L\otimes_{K}D_{R}(K)$ is also a free module with the base $\{1\otimes d^{K}s_{i}\}$ . Hence if $\varphi(z)$

$=\sum_{i}t_{i}\otimes d^{K}s_{i}=0$ , we have $t_{i}=0$ for all $i,$ $i$ . $e$ . $z=0$ . Thus the proof is complete.

PROPOSITION 4. Let $S$ be an R-algebra and assume that $S$ is the direct sum
of two ideals $A$ and B. Then $D_{R}(S)=D_{R}(A)+D_{R}(B)$ (direct sum), and $A$ annihi-
lates $D_{R}(B)$ and $B$ annihilates $D_{R}(A)$ .

PROOF. Since $S$ is the direct sum of $A$ and $B$, we have $S\otimes_{R}S=A\otimes_{R}A+$

$B\otimes_{R}B+A\otimes_{R}B+B\otimes_{R}A$ (direct sum). Let $\mathfrak{R}_{s},$ $\mathfrak{R}_{A}$ and $\mathfrak{R}_{B}$ be respectively the
relation deals of $S\otimes S,$ $A\otimes A$ and $B\otimes B$ defining the modules of differentials.
Then it is easily seen that $\mathfrak{R}_{S}=\mathfrak{R}_{A}+\mathfrak{R}_{B}+A\otimes B+B\otimes A$ . Let $a$ and $b$ be ele-
ments of $A$ and $B$ respectively, then $\varphi_{s}(a\otimes b)=ab=0$ . Hence $a\otimes b$ is in $I_{s}$

for any elements $a$ in $A$ and $b$ in $B$. From this we can see that $a\otimes b=$

$(a\otimes e_{B})(e_{A}\otimes b)$ is contained in $I_{s}^{2}$ where $e_{A}$ and $e_{B}$ are units of $A$ and $B$ respec-
tively. Thus we get the equality $\mathfrak{R}_{s}=\mathfrak{R}_{A}+\mathfrak{R}_{B}+A\otimes B+B\otimes A$ . From this
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we can see that $D_{R}(S)=(S\otimes S)/\mathfrak{R}_{S}=(A\otimes A)/\mathfrak{R}_{A}+(B\otimes B)/\mathfrak{R}_{B}=D_{R}(A)+D_{R}(B)$ .
$adb=0$ follows from the fact that $a\otimes b$ is contained in $I_{s}^{2}$ .

DEFINITION 1. Let $S$ be an R-algebra, we shall say that $S$ is a quasi-separable
R-algebra if we have $D_{R}(S)=0$ .

The following propositions are immediate consequences of the exact se-
quence (A).

PROPOSITION 5. If $S$ is a quasi-separable R-algebra and if $T$ is a quasi-sepa-
rable S-algebra, then $T$ is a quasi-separyble R-algebra. On the other hand if $T$ is
a quasi-separable R-algebra, then $T$ is a quasi-separable S-algebra.

PROPOSITION 6. Let $A$ be an arbilrary ring and let $\mathfrak{a}$ be an ideal of $A$ , then
$A/\mathfrak{a}$ is a quasi-separable A-algebra.

The following proposition is a direct consequence of the definitions and
Prop. 6.

PROPOSITION 7. Let $S$ be a quasi-separable R-algebra and let $\mathfrak{M}$ be an ideal
of S. Let $\mathfrak{m}$ be an ideal of $R$ such that $\mathfrak{m}\subseteqq \mathfrak{M}\cap R$. Then $S/\mathfrak{M}$ is a quasi-sepa-
rable (R/m)-algebra.

PROOF. Let $\pi_{S}$ : $S\rightarrow S/\mathfrak{M}$ and $\pi_{R}$ : $R\rightarrow R/\mathfrak{m}$ be respectively the natural homo-
morphism. Then there exists a homomorphism $f:R/\mathfrak{m}\rightarrow S/\mathfrak{M}$ such that $\pi_{S}\cdot f$

$=\tilde{f}\cdot\pi_{R}$ . Then $S/\mathfrak{M}$ is a quasi-separable R-algebra and hence it is quasi-sepa-
rable over $(R/\mathfrak{m})$ with the ring homomorphism $\tilde{f}$ by Prop. 5.

PROPOSITION 8. Let $S$ be a quasi-separable R-algebra and let $U$ be a multi-
plicatively closed set in S. Let $V$ be the set $U_{\cap}R$ then the quotient ring $S_{U}$ is
quasi-separable over $R$ and $R_{V}$ respectively.

This is an immediate consequence of the successive applications of Prop.
7, Prop. 2 and Prop. 5.

Next we shall consider the generalization of Prop. 2 in the case where $U$

is an arbitrary multiplicatively closed set in $S$ such that $U$ does not contain $ 0\rangle$

but contains 1. Let $S$ be an R-algebra and let $\mathfrak{a}$ be an ideal of S. Then ap-
plying the functor $\otimes_{S}D_{R}(S)$ to the exact sequence

$0\rightarrow \mathfrak{a}\rightarrow S\rightarrow S/\mathfrak{a}\rightarrow 0$

we see easily that $(S/\mathfrak{a})\otimes_{S}D_{R}(S)$ is isomorphic to the difference module $D_{R}(S)/$

$\mathfrak{a}D_{R}(S)$ . Now we can define an S-homomorphism $\rho$ from $\mathfrak{a}/\mathfrak{a}^{2}$ in $ D_{R}(S)/\mathfrak{a}D_{R}(S\rangle$

by the rule
$\rho$(class of $a$) $=class$ of $da$, $a\in \mathfrak{a}$ .

We shall show the following
PROPOSITION 9. Using the notations as above

(kernel of $\varphi_{RiS,S/\alpha}$) $=$ ($Image$ of $\rho$)
$i$. $e$ . the sequence

$\mathfrak{a}/\mathfrak{a}^{2}\rightarrow(S_{/^{\prime}}\mathfrak{a})\otimes_{S}D_{R}(S)\rightarrow D_{R}(S/(\iota)\rightarrow 0$
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is exact.4)

PROOF. For the sake of simplicity we shall use the notation $d$ for $d_{R}^{s}$ and
$ff_{-}^{-}$ for $d_{R}^{(s/\mathfrak{a})}$ . We shall also denote the class of elements $xmod \mathfrak{a}$ by $\overline{x}$. Then
the map $h=\varphi_{R;s.s/a}$ is given by the rule

$h(\sum_{i}\overline{t}_{i}\otimes dx_{i})=\sum_{i}\overline{t}_{i}d^{*}\overline{x}_{i}$ .

Hence $D(\mathfrak{a})=$ {S-module generated by the differentials $da,$ $a\in \mathfrak{a}$ } and $\mathfrak{a}D_{R}(S)$

are contained in the kernel of $h$ . Thus the homomorphism $h$ induces the homo-
morphism $\tilde{h}$ of $D_{R}(S)/D(\mathfrak{a})+\mathfrak{a}D_{R}(S)$ into $D_{R}(S/a)$ . We shall show that $\tilde{h}$ is an
isomorphism. Let $\delta$ be the map from $S/\mathfrak{a}$ into $D_{R}(S)/D(\mathfrak{a})+\mathfrak{a}D_{R}(S)$ defined by
the following way. Let $\overline{a}$ be an element of $S/\mathfrak{a}$ and let $a$ be one of its repre-
sentative, then

$\delta(\overline{a})=$ {the class of $damod D(\mathfrak{a})+\mathfrak{a}D(S)$ }.

It is not difficult to verify that the map $\delta$ gives actually an R-derivation of
$S/\mathfrak{a}$ into $(S/\mathfrak{a})\otimes D_{R}(S)$ . Then there exists an $(S/\mathfrak{a})$-homomorphism $\tau$ from $D_{R}(S/t1)$

into $(S/\mathfrak{a})\otimes D_{R}(S)$ such that $\delta=\tau d^{*}$ . Let $x$ be an arbitrary element of $S$, then
$\tilde{h}\tau d^{*}(\overline{x})=\tilde{h}\delta(\overline{x})=\tilde{h}$ (class of $dx$) $=h(dx)=d^{*}X$. From this we see that $\tilde{h}\tau=iden-$

tity map. Similarly $\tau\tilde{h}$(class of $adx$) $=\tau(\overline{a}d^{*}\overline{x})=\overline{a}\tau d^{*}(\overline{x})=\overline{a}\delta(\overline{x})=$ {class of $adx$ }
and we see that $\tau h=identity$ . Thus $h$ is an isomorphism. On the other hand
it is seen at once that the image of $\rho$ is equal to the class of $t1D_{R}(S)+D(\mathfrak{a})$

mod a $D_{R}(S)$ . The final assertion follows from the isomorphism theorem.
PROPOSITION 10. Let $S$ be an R-algebra and let $U$ be a multiplicatively closed

set in $S$, then we have $D_{R}(S_{U})\cong S_{U}\otimes D_{R}(S)$ .
PROOF. Let tt be the ideal of $S$ generated by the elements $x$ such that $xu$

$=0$ for some element $u$ in $U$. Let $S^{*}=S/\mathfrak{n}$ , then $S_{U}=S_{U}^{*}*$ by definition where
$U^{*}$ is the image of $U$ under the natural homomorphism $S\rightarrow S^{*}$ . By Prop. 9
we have an exact sequence

$\mathfrak{n}/n^{2}\rightarrow S^{*}\otimes_{S}D_{R}(S)\rightarrow D_{R}(S^{*})\rightarrow 0$ .
Applying the exact functor $\otimes S_{U^{*}}^{*}(=\otimes S_{U})$ we get

$(\mathfrak{n}/\mathfrak{n}^{2})\otimes_{s*}S_{U^{*}}^{*}\rightarrow S_{U^{*}}^{*}\otimes_{S}D_{R}(S)\rightarrow D_{R}(S^{*})\otimes S_{U^{*}}^{*}\rightarrow 0$ .
Since $U^{*}$ does not contain any zero divisor, $D_{R}(S^{*})\otimes S_{U^{*}}^{*}$ is isomorphic to $D_{R}(S_{U^{*}}^{*})$

(Prop. 2)) and $(\mathfrak{n}/\mathfrak{n}^{2})\otimes S_{U^{*}}^{*}=0$ which completes the proof.
PROPOSITION 11. Let $S$ and $T$ be R-algebras and assume that $S$ is $q\iota\prime asi-$

separable over $R$ , then $S\otimes_{R}T$ is a quasi-separable T-algebra.
PROOF. Let us put $Y=S\otimes_{R}T$, then we have an exact sequence

$Y\otimes_{T}D_{R}(T)\rightarrow D_{R}(Y)\rightarrow^{h}D_{T}(Y)\rightarrow 0$ ,

4) The special case of this exact sequence is given in a more precise form in Ex-
pos\’e 17 in [4].
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$\rho$

$Y\otimes_{S}D_{R}(S)\rightarrow D_{R}(Y)\rightarrow D_{S}(Y)\rightarrow 0$ .
By our assumption we have $D_{R}(S)=0$ , hence $D_{R}(Y)$ and $D_{s}(Y)$ are isomorphic
by the isomorphism $\rho$ defined by

$\rho d_{R}^{Y}(y)=d_{s}^{Y}(y)$ , $y\in Y$ .
Let $y$ be an arbitrary element of $Y$ and set $y=\sum_{i}s_{i}\otimes t_{i}$ where $s_{i}\in S,$ $t_{i}\in T$.
Then

$d_{T}^{Y}(y)=hd_{R}^{Y}(y)=h\rho^{-1}d_{s}^{Y}(\sum_{\mathfrak{i}}s_{i}\otimes t_{i})=h\rho^{-1}\sum_{i}(s_{i}\otimes 1)d_{s}^{Y}(1\otimes t_{i})$

$=\sum_{i}(s_{i}\otimes 1)h\rho^{-1}d_{s}^{Y}(1\otimes t_{i})=\sum_{i}(s_{i}\otimes 1)hd_{R}^{Y}(1\otimes t_{i})$

$=\sum_{t}(s_{i}\otimes 1)d_{T}^{Y}(1\otimes t_{i})=0$ .

This proves the assertion.
The following proposition is immediate.
PROPOSITION 12. Let $k$ be a field and let $L$ be the perfect closure of $k$ , or a

separable extension of $k$ , then $D_{k}(L)=0$ .
Let $S$ be an R-algebra. If $S$ is a field and $R$ is a subfield of $S$ such that

$[S:R]<\infty$ , then it is easily seen that $D_{R}(S)$ is equal to zero if, and only if,
$S$ is a separable extension of $R$ . We can prove a generalization of this results
in the following

$p_{ROPOSITION}13$ . Let $S$ be an algebra over a field $R$ and assume that $S$ is of
finite rank over R. Then $D_{R}(S)=0$ if, and only if, $S$ is a separable algebra’
over $R$.

PROOF. Assume first that $S$ is a separable R-algebra. Then $S$ is the direct
sum of the fields $K_{i}$ where $K_{i}’ s$ are separable extensions of $R$ . Hence $D_{R}(S)=$

$D_{R}(K_{1})+\cdots+D_{R}(K_{h})=0$ (Prop. 4).

Conversely assume that $D_{R}(S)=C$ , and let $S^{e}=S\otimes_{R}$S. Then we have an
exact sequence of $S^{e}$-modules

$\varphi$

$0\rightarrow I\rightarrow S^{e}\rightarrow S\rightarrow 0$ .
Since $S$ is of finite rank over $R$ and $R$ is a field, the ideal $I$ has finite gener-
ators. By our assumption $D_{R}(S)=I/I^{2}=0$ , we see that $I=I^{2}$ . From this we
can conclude that $S$ is $S^{e}$-projective ([2, Th. 2.5]). Hence $S$ is a separable R-
algebra ([5, Th. 7.10]).

The following Proposition gives a sufficient condition for $S$ to be a quasi-
separable R-algebra.

PROPOSITION 14 Let $S$ be an R-algebra and assume that $S$ is $S^{e}$-projective,

5) When $R$ is a field, $S$ is called a separable R-algebra if $S\otimes_{R}K$ is semi-simple
for any extension $K$ of $R$ (cf. [1]).

6) This result is stronger than the analogous one in [2].
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then $S$ is quasi-separable over $R$ .
PROOF. Assume that $S$ is $S^{e}$-projective, then there exists an element $z$ in

$S\otimes S$ such that $zI=Iz$ and $\varphi(z)=1$ ( $[5$ , IX, Th. 7.7]). If $z=\sum_{i}a_{i}\otimes b_{i}$ , then

$\sum_{i}a_{i}b_{i}=1$ . Let $x$ be an arbitrary element of S. Since $z(1\otimes x)=z(x\otimes 1)$ , we
get the relation

$\Sigma a_{i}\otimes b_{i}x=\sum_{i}a_{i}x\otimes b_{i}$ .

Hence $0=\sum_{i}a_{i}\otimes b_{i}x-\sum_{i}a_{i}x\otimes b_{i}$

$=\sum_{i}a_{i}(1\otimes b_{i}x-x\otimes b_{i})$

$\equiv\sum_{:}a_{i}(b_{i}\otimes x)=(\sum_{i}a_{i}b_{i})\Theta^{\chi}=1\otimes x$
$(mod \mathfrak{R})$

$i$ . $e$ . $1\otimes x\equiv 0$ (mod R). Since $\mathfrak{R}=S\otimes 1+I^{2}$ we see that $1\otimes x-x\otimes 1\equiv 0(mod I^{2})$ .
Since $I$ is generated by $\{1\otimes x-x\otimes 1\}$ , the above argument shows that $I=I^{2}$ ,
hence $D_{R}(S)=0$ .

\S 3. The structure of $D_{R}(S)$

The following proposition is proved elsewhere (cf. [4]), but for the sake
of convenience of readers we shall write down the proof.

PROPOSITION 15. Let $R$ be a ring and let $\Lambda$ be an index set, and let $\{X_{\lambda}, \lambda\in\Lambda\}$

be a set of indeterminates. Let $A$ be a polynomial ring in $\{X_{\lambda}\}$ with coefficients
in R. Then $D_{R}(A)$ is a free module with the base $\{dX_{\lambda}\}$ .

PROOF. Let us introduce a new set of $indeterminates\{Y_{\lambda}\}$ with the same
index set $\Lambda$ . Then $A\otimes_{R}A$ is isomorphic to the polynomial ring in two sets of
indeterminates $\{X_{\lambda}\}$ and $\{Y_{\lambda}\}$ . The homomorphism $\varphi$ from $A\otimes_{R}A$ into $A$ de-
fined in \S 1 is given by the substitution of $X_{\lambda}$ in the place of $Y_{\lambda}$ . Let us put
$Z_{\lambda}=X_{\lambda}-Y_{\lambda}$ and let us represent the elements of $A\otimes A$ as polynomials in $X_{\lambda}$

and $Z_{\lambda}$ . The kernal $I$ of $\varphi$ is given as the set of polynomials of degree $\geqq 1$

in $Z_{\lambda}$ and $I^{2}$ is given as the set of polynomials of degree $\geqq 2$ in $Z’ s$ . Since
$D_{R}(A)$ is isomorphic (as a A-module) to $I/I^{2}$ , we see immediately that $D_{R}(A)$

is ismorphic to the module of homogeneous elements of degree 1 in $Z’ s$ . By
definition $Z_{\lambda}=dX_{\lambda}$ and they are linearly independent over $A$ . Thus the proof
is complete.

Let $S$ be a ring containing a ring $R$ and $\{z_{\lambda}, \lambda\in\Lambda\}$ be a set of generators
of $S$ over $R$. Let $\{Z_{\lambda}, \lambda\in\Lambda\}$ be a set of indeterminates with the index set $\Lambda$

and let $A$ be a polynomial ring in $\{Z_{\lambda}\}$ with coefficients in $R$. Then there
exists an R-homomorphism $\varphi:A\rightarrow S$ such that

$\varphi(Z_{\lambda})=z_{\lambda}$ , $\lambda\in\Lambda$ .
The kernel $\mathfrak{M}$ of $\varphi$ will be called the defining ideal of $S$ with respect to the
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generator system $\{z_{\lambda}\}$ . Applying Prop. 9 to $S=A/\mathfrak{M}$ , we get the exact sequence

$\mathfrak{M}/\mathfrak{M}^{2}\rightarrow^{\rho}S\otimes_{A}D_{R}(A)^{\varphi_{R;A.S}}\rightarrow D_{R}(S)\rightarrow 0$ .
Since $D_{R}(A)$ is a free module, $S\otimes D_{R}(A)$ is also a free module over $S$ with the
base $\{1\otimes d_{R}^{A}Z_{\lambda}, \lambda\in\Lambda\}$ . In the following we shall write simply $dZ_{\lambda}$ for $1\otimes d_{R}^{A}Z_{\lambda}$.
Then $S\otimes D_{R}(A)$ will be written as $D(S^{*})=\sum SdZ_{\lambda}$ . Let $\{F_{\mu}, \mu\in M\}$ be a set
of generators of the defining ideal $\mathfrak{M}$ , and let $N$ be the submodule of $D(S^{*})$

generated by the forms
$\{\sum_{\lambda}(\partial F_{\mu}/\partial z_{\lambda})dZ_{\lambda}, \mu\in 1\psi\}$ .

Then the image of the homomorphism $\rho$ is given by $N$ From this we get
the following

THEOREM 2. Using the same notations and assumptions as above, the module
of differentials $D_{R}(S)$ is isomorphic $vlo$ the $di_{\vee}\# er_{\vee}^{\rho}nce$ module $D(S^{*}),/N$

COROLLARY 1. In the above notations assume that $S$ is an mtegral domain of
positive characteristic $p$ and that the defining ideal $\mathfrak{M}$ of $S$ is generated by the
polynomials $\{F_{\mu}\}$ such that $\{F_{\mu}\}$ are polynomials in $\{Z_{\lambda}^{p}, \lambda\in\Lambda\}$ . Then $D_{R}(S)$ is
a free module over S.

COROLLARY 2. Let $R$ be a normal domain with the quotient field $K$ and let
$L$ be a separably algebraic extension of K. Let $z$ be an element of $L$ integral over
$R$ and let $f(X)$ be an irreducible monic polynomial for $z$ over R. Then $D_{R}(R[z])$

is isomorphic (as R-module) to $R/(f^{\prime}(z))^{7)}$

PROOF. In this case the defining ideal of $R[z]$ is the principal ideal $(f(X))$ .
Hence the Cor. follows directly from the Theorem.

\S 4. Differentials in local rings

Let $R$ be a local ring and let $M$ be the maximal ideal of $R$ . Assume that
$R$ contains a field $k$ . Let us denote by $L$ the residue class field of $R$, then $k$

can be considered in a natural way as a subfield of $L$ . By Prop. 9 we have
an exact sequence

$M/M^{2}\rightarrow L\otimes_{R}D_{k}(R)\rightarrow D_{k}(L)\rightarrow 0$ .
Moreover if $L$ is a separable extension of $k$ , then the sequence
(G) $0\rightarrow M/M^{2}\rightarrow L\otimes_{R}D_{k}(R)\rightarrow D_{k}(L)\rightarrow 0$

is known to be exact (Th. 5 in Expos\’e 17 in [4]).

Let $R$ be a local ring with the maximal ideal $M$ and let $E$ be a finite R-
module. A set of elements $u_{1},$ $\cdots,$ $u_{n}$ of $E$ is a system of generators of $E$ if,
and only if, $1\otimes u_{i}$ ($i=1,2,$ $\cdots$ , n) form a system of generators of $(R/M)\otimes_{R}E$.

7) The analogous result is obtained also in [6] and [8].
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Moreover $(u_{1}, \cdots, u_{n})$ is a minimal set of generators of $E$ if, and only if, $1\otimes u_{1}$ ,
... , $1\otimes u_{n}$ form a base of the vector space $(R/M)\otimes E$ over the field $R/M$ Thus
the number of the minimal set of generators of $E$ (over $R$) is a well defined
integer independent of the choice of the generator system of $E$. We shall call
this integer the rank of $E$ and it will be denoted by $rank_{R}E$.

PROPOSITION 16. Let $R$ be a local ring containing a field $k$ such that the res-
idue class field of $R$ is a finite separable extension of $k$ , and that $D_{k}(R)$ is a finite
module. Let $u_{1},$ $\cdots,$ $u_{n}$ be a set of elements in the maximal ideal $M$ of R. Then
the differentials $du_{1},$ $\cdots,$

$du_{n}$ (where $d$ stands for $d_{k}^{R}$) form a minimal set of gener-
ators of $D_{k}(R)$ if, and only if, $u_{1},$

$\cdots$ , $u_{n}$ form a minimal set of generators of $M$.
THEOREM 3. Let $A$ be an affine ring8) over a field $k$ and let $R$ be the quotient

ring of $A$ with respect to a prime ideal $\mathfrak{P}$ . Assume that (i) $A$ is an integral do-
main; (ii) the quolient fi\^old $K$ of $A$ is a separable extension of $k$ ; (iii) the residue
class $fi_{\epsilon_{\nu}^{l}}dL$ of $R$ is separably algebraic over $k$ . Then $R$ is a regular local ring
if, and only if, the module of k-differentials $D_{k}(R)$ is a free module.

PROOF. By our assumption $\mathfrak{P}$ is a maximal ideal of $A$ , hence the rank of
$R$( $=the$ rank of $\mathfrak{P}$ ) is equal to the transcendence degree of $A$ over $k$ . Let us
put $\gamma=rankR$. By Prop. 2 we have $D_{k}(K)=K\otimes D_{k}(R)$ . Moreover this iso-
morphism is given by the rule $1\otimes d^{R}u\rightarrow d^{K}u$ (where we omit the subscript
$k$ in the differential operators). Now assume that $R$ is a regular local ring
and let $u_{1},$

$\cdots$ , $u_{r}$ be a regular system of parameters of $R$ . By the preceding
Proposition we see that $\{d^{R}u_{1}, \cdots , d^{R}u_{r}\}$ is a minimal set of generators of $D_{k}(R)$ .
Hence by the above isomorphism we see that $\{d^{K}u_{1}, \cdots, d^{K}u_{r}\}$ is a system of
generators of $D_{k}(K)$ . On the other hand $K$ is a separable extension of dimen-
sion $r$ over $k$ , hence $D_{k}(K)$ is a free module of rank $r$. This implies that
$d^{K}u_{1},$

$\cdots,$
$d^{K}u_{r}$ are linearly independent over $K$ That $d^{R}u_{1},$ $\cdots$ , $d^{R}u_{r}$ are linearly

independent over $R$ follows immediately from this.
Conversely assume that $D_{k}(R)$ is a free module over $R$ and let $\{u_{1}, \cdots, u_{n}\}$

be a minimal set of generators of $M$ ( $=the$ maximal ideal of $R$). Then $\{d^{R}u_{1}$ ,
$d^{R}u_{n}\}$ form a base of $D_{k}(R)$ . Applying again Proposition 2 we see that

$D_{k}(K)=K\otimes_{R}D_{k}(R)$ is also a vector space of dimension $n$ . From this we get
immediately the equality $n=r$, proving that $R$ is a regular local ring.

As an application of the preceding Proposition we can give an alternative
proof of the Jacobian criterion for simple points (cf. [4], [9]).

$p_{R\circ POSITI\circ N}17$ Let $V^{r}$ be an $aJfine$ variety defined over $k$ and let $\mathfrak{P}$ be the
defining ideal of $V$ in $k[x_{1}, \cdots, x_{n}]$ . Let $P$ be a point of $V$ such that $h(P)$ is
separably algebraic over $k$ and let $\mathfrak{Q}$ be the quotient ring of $P$ in $V/k$ . Then $\mathfrak{Q}$

is a regular local ring if, and only if, there exist $(n-r)$-polynomials $f_{1},$ $\cdots$ , $f_{n-r}$ in

8) An affine ring over $k$ is a homomorphic image of a polynomial ring in a finite
number of variables over $k$ .
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$\mathfrak{P}$ such that the rank of the matrix $(\partial f_{i}/\partial x_{j})$ is $n-r$ at $P$.
PROOF. Let $\mathfrak{m}$ be the maximal ideal of $A=k[x_{1}, \cdots, x_{n}]$ defining the point

$P$ and let us put $R=A_{\mathfrak{m}}$ . Then $\mathfrak{Q}=R/\mathfrak{P}R$ . By Prop. 9 we have the exact
sequence

$\rho$
$j$

$\mathfrak{P}^{*}/\mathfrak{P}^{*2}\rightarrow(P/\mathfrak{P}^{*})\otimes_{R}D_{k}(R)\rightarrow D_{k}(R/\mathfrak{P}^{*})\rightarrow 0$

where $\mathfrak{P}^{*}=\mathfrak{P}R$. Now assume that $R/\mathfrak{P}^{*}$ is a regular local ring. Applying
Theorem 3 we see that $D_{k}(R/\mathfrak{P}^{*})$ is a free module of rank $n-r$. Let $\varphi$ be an
$(R/\mathfrak{P}^{*})$-homomorphism: $D_{k}(R/\mathfrak{P}^{*})\rightarrow(R/\mathfrak{P}^{*})\otimes D_{k}(R)$ such that

$i\circ\varphi=the$ identity.

Then the above sequence implies the direct sum decomposition

$(R/\mathfrak{P}^{*})\otimes D_{k}(R)={\rm Im}\rho+{\rm Im}\varphi$ .
Since $D_{k}(R)$ is a free module with the base $\{dx_{1}, \cdots , dx_{n}\},$ $(R/\mathfrak{P}^{*})\otimes_{R}D_{k}(R)$ is
also a free module with the base $\{1\otimes dx_{1}, \cdots , 1\otimes dx_{n}\}$ . Since $R/\mathfrak{P}^{*}$ is a local
ring, each term in the right hand side is also a free module, and the rank of
${\rm Im}\varphi=n-r$. From this we can find $(n-r)$-polynomials $f_{1},$ $\cdots,f_{n-r}$ in $\mathfrak{P}$ such
that $\{df_{1}, \cdots, df_{n-r}\}$ form a subsystem of free base of $D_{k}(R)$ module $\mathfrak{P}^{*}D_{k}(R)$

(where $(R/\mathfrak{P}^{*})\otimes_{R}O_{k}(R)$ is canonically isomorphic to the residue class module
$D_{k}(R)/\mathfrak{P}^{*}D_{k}(R))$ . On the other hand we have

$(R/\iota \mathfrak{n}^{*})\otimes_{R}D_{k}(R)=(R/\mathfrak{m}^{*})\otimes_{(R/\mathfrak{P}^{*})}((R/\mathfrak{P}^{*})\otimes_{R}D_{k}(R))$ .
This implies that a free base of $(R/\mathfrak{P}^{*})\otimes D_{k}(R)$ is also a free base of $(R/\mathfrak{m}^{*})$

$\otimes D_{k}(R)$ . Hence $df_{1},$
$\cdots,$ $df_{n-r}$ must also be linearly independent module $\mathfrak{m}^{*}D_{k}(R)$ .

This is the required result. Conversely assume that $\mathfrak{P}$ contains $(n-r)$ -polyno-
mials $f_{1},$ $\cdots,f_{n-r}$ such that the rank of the matrix $(\partial f_{i}/\partial x_{j})$ modulo $\mathfrak{n}\iota$ is equal
to $n-r$. Then $\{df_{1}, \cdots , df_{n-r}\}$ is a part of minimal base of $D_{k}(R)$ modulo
$\mathfrak{m}^{*}D_{k}(R)$ . Hence we can find a free base of $D_{k}(R)$ containing $df_{1},$

$\cdots,$ $df_{n-r}$ as
members. Since Im$(\rho)iscontainedinD_{k}(R)df_{1}+\cdots+D_{k}(R)df_{n-r}+\mathfrak{P}^{*}D_{k}(R),$ ${\rm Im}(\rho)$

$=(R/\mathfrak{P}^{*})\cdot 1\otimes df_{1}+\cdots+(R/\mathfrak{P}^{*})\cdot 1\otimes df_{n-r}$ . Moreover $\{1\otimes df_{1}, \cdots, 1\otimes df_{n-r}\}$ is a
part of free base of $(R/\rangle \mathfrak{P}^{*})\otimes D_{k}(R)$ , hence $D_{k}(R/\mathfrak{P}^{*})$ is a free module over $k$ .
Now the assertion follows from Th. 3.

COROLLARY 1. Retaining the natations and assumptions as in Prop. 17, $P$ is
a simple point of $V$ if, and only if, $D_{k}(\mathfrak{Q})$ is a free module.

COROLLARY 2. Retaining the notations and assumptions as in Prop. 17 and
assume that $\mathfrak{Q}$ is a regular local ring. Then, any regular system of parameters
is a separating transcendent base of the function field $k(V)$ over $k$ .

REMARK. We shall give here some examples which show that the assump-
tion made in these propositions are inevitable.

EXAMPLE 1. Let $k$ be a non-perfect field and let $u$ be an element of $k$ such
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that $u^{p^{1_{-}}}-\not\in k$ . Let $A=k[X, Y]/(X^{p}+aY^{p})$ and let $R=A_{(x.y)}$ , where $x$ and $y$ are
residue classes of $X$ and $Y$ respectively. Then $D_{k}(R)$ is a free module with
the base $dx$ and $dy$ (cf. Cor. 1 of Th. 2), but $R$ is not a regular local ring. In
this example the quotient field $K$ of $R$ is not a separable extension of $R$ .

EXAMPLE 2. Let $V$ be a plane curve defined over a non-perfect field $k$ by

the equation $X^{2}+Y^{p}=u$ , where $u$ is an element of $k$ such that $u^{p^{1_{-}}}-$ is not
contained in $k$ . As is easily seen $V$ is a normal curve, and in particular the

point $P=(0, u^{p^{1_{-}}})-$ is a normal point of $V$ and the quotient ring $R$ of $P$ in $V/k$

is a regular local ring. Let $A$ be the affine coordinate ring of $V$. By Th. 2
we see easily that $D_{k}(A)$ is generated by $dx$ and $dy$ with the relation $2xdx=0$ .
Hence $D_{k}(R)=R\otimes D_{k}(A)$ is also generated by $d^{R}x$ and $d^{R}y$ with the relation
$2xd^{R}x=0(d^{R}x\neq 0)$ . Thus $D_{k}(R)$ is not a free module. In this example the
assumption (iii) in Th. 3 is not satisfied.

In the same example the coordinate function $x$ is a regular system of param-
eter of $R$. But $k(V)$ is not separable over $k(X)$ , showing the Cor. 2 does not
hold in general if $k(P)$ is not separable over $k$ .

Let $R$ be a local domain containing a field $k$ and let $M$ be the maximal
ideal of $R$. Let $L$ be the residue field of $R$ and assume that $L$ is a separable
extension of $k$ . Let $\{u_{1}, \cdots, u_{s}\}$ be a set of separating transcendence basis of
$L$ over $k$ and let $\alpha_{1},$

$\cdots$ , $\alpha_{s}$ be representatives of $u_{1},$ $\cdots,$ $u_{s}$ in $R$. The elements
$\alpha_{1},$

$\cdots$ , $\alpha_{s}$ are algebraically independent over $k$ , hence the field $k(\alpha_{1}, \cdots, \alpha_{s})=F$

is contained in the ring $R$. Let us denote by $K$ the quotient field of $R$ and
assume that it is possible to find elements $u’ s$ and $\alpha’ s$ in such a way that $K$

is a seperable extension of the field $F$. In this case we shall say that the local
ring $R$ has a separating residue field. Now we can generalize Theorem 3 in
the following

THEOREM 3’. Let $A$ be an affine ring overa field $k$ and let $R$ be the quotient
ring of $A$ with respect to a prime ideal. Assume that (i) $A$ is an integral domain,

(ii) the quotient field $K$ of $A$ is a separable extension of $k$ , (iii) the residue class
field of $R$ is a separable extension of $k$ , (iv) $R$ has a separating residue field.
Then the module of differentials $D_{k}(R)$ is a free module if, and only if, $R$ is a
regular local ring.

PROOF. Let $L$ be the residue field of $R$. By our assumptions there exists
a field $F$ in $R$ such that $L$ is separably algebraic over $F$ and the quotient field
$K$ of $R$ is a separable extension of $F$, and such that $F$ is a purely transcen-
dental extension of $k$ of dimension $r(r=\dim_{k}L)$ . Since $K$ is a separable ex-
tension over $F$, the module of differentials $D_{F}(K)$ is a free module of rank $n-r$

where $n=\dim_{k}K$. Now assume that $R$ is a regular local ring. By Th. 3 we
see that $D_{F}(R)$ is a free module. On the other hand, applying the Prop. 3 and
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the exact sequence (A) we see that the sequence

$0\rightarrow R\otimes_{F}D_{k}(F)\rightarrow D_{k}(R)\rightarrow D_{F}(R)\rightarrow 0$

is exact. Since $D_{F}(R)$ is a free module the above exact sequence splits and
$D_{k}(R)$ is isomorphic to the direct sum of $R\otimes D_{k}(F)$ and $D_{F}(R)$ , both of them
are free modules over $R$. Thus we have proved that $D_{k}(R)$ is a free module.
Conversely assume that $D_{k}(R)$ is a free module of rank $m$ . Then $D_{k}(R)=$

$K\otimes_{R}D_{k}(R)$ is also a free module of rank $m$ , hence $m=n$ . Let $M$ be the
maximal ideal of $R$ . Then $R/M$ is a separable extension of dimension $r$ over
$k$ and $D_{k}(R/M)$ is a vector space of dimension $r$ over the field $R/M$ From
this and the exact sequence

$0\rightarrow M/M^{2}\rightarrow(R/M)\otimes D_{k}(R)\rightarrow D_{k}(R/M)\rightarrow 0$ ,

we see that $M/M^{2}$ is a vector space of dimension $n-r$ over $R/M$ Since the
rank of $R$ is $n-r,$ $R$ must be a regular local ring.

$CoROLLARY$ . Let $V^{n}$ be a variety defined over a field $k$ and let $P$ be a point

of $V$ (not necessarily algebraic over k) and let $R$ be the quotient ring of $P$ in $V/k$ .
Now assume that the local ring $R$ has a separating residue field, then the module
of differentials $D_{h}(R)$ is a free module if, and only if, $P$ is a simple point of $V$.
$\angle VIoreover$ the rank of $D_{k}(R)$ is equal to $n$ .

\S 5. Ramification theory and quasi-separability

Let $S$ be an R-algebra and let $\mathfrak{P}$ be a prime ideal of $S$ and let $\mathfrak{p}$ be the
contraction of $\mathfrak{P}$ in $R$. We shall say that $\mathfrak{P}$ is $unram_{\iota}^{\eta}fied$ if

(U) $\mathfrak{p}s_{\mathfrak{P}}=\mathfrak{p}s_{\mathfrak{P}}$ ,
(U) $S_{\mathfrak{P}}/\mathfrak{B}S_{1\}}$ is a finite separable extension of $R_{p}/pR_{\mathfrak{p}}$ .
Let $\mathfrak{p}$ be a prime ideal of $R$, then $S$ will be said to be unramified over $\mathfrak{p}$ if
(U) every prime ideal $\mathfrak{P}$ of $S$ such that $\mathfrak{P}\cap R=\mathfrak{p}$ is unramified;
(U) There exist only a finite number of primes in $S$ such that $\mathfrak{P}\cap R=\mathfrak{p}$ .
We shall say that $S$ is unramified (over $R$) if $S$ is unramified over every

prime ideal $\mathfrak{P}$ of $R$.
The following proposition is convenient in further discussions.
PROPOSITION $18.(J)$ Let $S$ be an R-algebra and let $\mathfrak{p}$ be a prime ideal of $R$ .

Then $S$ is unramified over $\mathfrak{p}$ if, and only if, $S_{U}/\mathfrak{p}S_{U}$ is a separable $(R_{U}/\mathfrak{p}R_{U})-$

algebra, where $U=R-0$ .
PROOF. Let $\mathfrak{P}$ be a prime ideal of S. Then we have $\mathfrak{P}\cap R=\mathfrak{p}$ if, and only

if, $\mathfrak{P}S_{U}/\mathfrak{p}S_{U}$ is the prime ideal of $S^{*}=S_{U}/\mathfrak{p}s_{U}$ . Now assume that $S^{*}$ is a sepa-
rable $R^{*}=R_{U}/\mathfrak{p}R_{U}$ algebra. Then there are only a finite number of prime

9) This formulation is due to [2].
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ideals $\mathfrak{Q}_{1},$

$\cdots,$
$\mathfrak{Q}_{h}$ in $S^{*}$ and we have $\bigcap_{\dot{i}=i}^{h}\mathfrak{Q}_{i}=0$ . Let $\tilde{\mathfrak{P}}_{i}$ be the complete inverse

image of $\mathfrak{Q}_{i}$ in $S_{rJ}$ , and let $\mathfrak{P}_{i}=\tilde{\mathfrak{P}}_{i}\cap S$. Then $\tilde{\mathfrak{P}}_{i}=\mathfrak{P}_{i}S_{U},\bigcap_{i=1}^{h}\mathfrak{P}_{i}S_{U}=\cap\tilde{\mathfrak{P}}_{i}=\mathfrak{p}S_{U}$ .
Hence we have $\mathfrak{P}_{i}S_{U_{(\mathfrak{P}_{i^{S}U})}}=\mathfrak{p}s_{U_{(\mathfrak{P}_{i^{S}U})}}$ . Since $S_{U_{(\mathfrak{P}_{i^{S}U})}}=S_{\mathfrak{P}_{i}}$ , we get the relation
(U). Moreover $s_{U}/\tilde{\mathfrak{P}}_{i}=(S_{U}/[)S_{U})/\mathfrak{Q}_{i}$ is a separable extension of the field $R^{*}$ ,
and $(U_{2})$ is also satisfied.

Conversely assume that $S$ is unramified over $R$ , then we see easily that any
two prime ideals $\mathfrak{P}$ and $\mathfrak{Q}$ in $S$ such that $\mathfrak{P}\cap R=\mathfrak{Q}\cap R=\mathfrak{p}$ cannot satisfy the
inclusion relations. Let $\mathfrak{P}_{1},$

$\cdots,$
$\mathfrak{P}_{h}$ be all the prime ideals of $S$ such that $R\cap \mathfrak{P}_{i}$

$=\mathfrak{p}$ , then $\bigcap_{i=1}^{h}\mathfrak{P}_{i}S_{U}=\mathfrak{p}s_{U}$ and $S_{U}/\mathfrak{p}S_{U}=S_{U}/\mathfrak{P}_{1}S_{U}+\cdots+S_{U}/\mathfrak{P}_{h}S_{U}$ (direct sum). Since
$S_{U}/\mathfrak{P}_{i}S_{U}=S_{\mathfrak{P}_{i}}/\mathfrak{P}_{i}S_{\mathfrak{P}_{i}}$ is a separable field extension of $R^{*},$ $S^{*}$ is also a separable
$R^{*}$-algebra, and the proof is complete.

In the following we shall discuss the relation between quasi-separability
condition and the unramifiedness condition.

DEFINITION 2. Let $S$ be an R-algebra and let $\mathfrak{P}$ be a prime ideal of S. $We$

shall denote by $\mathfrak{p}$ the contraction of $\mathfrak{P}$ in R. We shall say that $\mathfrak{P}$ satisfies the

finiteness condition if $S_{\mathfrak{P}}/\mathfrak{P}S_{\mathfrak{P}}$ is a finite extension of $R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$ .
$S$ will be said to satisfy the finiteness condition over the prime ideal $\mathfrak{p}$ of $R$ ,

if $S_{U}/\mathfrak{p}S_{U}$ is a finite $(R_{U}/\mathfrak{p}R_{U})$-algebra, where $U=R-\mathfrak{p}$ .
An R-algebra $S$ will be said to satisfy the finiteness condition if $S$ satisfies

the finiteness condition over any prime ideal of $R$ .
THEOREM 4. Let $S$ be an R-algebra and let $\mathfrak{P}$ be a prime ideal of $S$ satisfying

the finiteness conditions, and let $\mathfrak{p}$ be its contraction in R. Then if the quotient
ring $S_{\mathfrak{P}}$ is noetherian and quasi-separable over $R_{\mathfrak{p}}$ , then $\mathfrak{P}$ is unramified.

PROOF. By our assumption $S_{\mathfrak{P}}$ is quasi-separable over $R_{\mathfrak{p}}$ and $\mathfrak{p}R_{\mathfrak{p}}$ is con-
tained in $\mathfrak{P}S_{\mathfrak{B}}$ . Hence $S_{\mathfrak{B}}/\mathfrak{P}S_{\mathfrak{P}}$ is quasi-separable over the field $R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$ by Prop.
7. This and the finiteness condition implies the condition $(U_{2})$ . Let $S^{*}=$

$S_{\mathfrak{P}}/\mathfrak{p}s_{\mathfrak{P}}$ , then $S^{*}$ is a local ring with the maximal ideal $\mathfrak{P}^{*}=\mathfrak{P}S_{\mathfrak{P}}/\mathfrak{p}S_{\mathfrak{P}}$ , and $S^{*}$

contains the field $R^{*}$ such that the residue field $S^{*}/\mathfrak{P}^{*}(=S_{\mathfrak{P}}/\mathfrak{P}S_{\mathfrak{P}})$ is separably
algebraic over $R^{*}$ . From (G) in \S 3 we get an exact sequence

$0\rightarrow \mathfrak{P}^{*}/\mathfrak{P}^{*2}\rightarrow(S^{*}/\mathfrak{P}^{*})\otimes_{s*}D_{R^{*}}(S^{*})$ .
From $D_{R_{\mathfrak{p}}}(S_{\mathfrak{P}})=0$ we get $D_{R^{*}}(S^{*})=0$ by virtue of Prop. 9. Hence the above
exact sequence implies that $\mathfrak{P}^{*}=\mathfrak{P}^{*2}$ . Since $\mathfrak{P}^{*}$ has a finite set of generators we
must have $\mathfrak{P}^{*}=0,$ $i$ . $e$ . $\mathfrak{P}S_{\mathfrak{P}}=\mathfrak{p}S_{\mathfrak{B}}$ , proving $(U_{1})$ .

THEOREM 5. Let $S$ be an R-algebra and assume that $S$ satisfy the finiteness
condition over a prime ideal $\mathfrak{p}$ of R. Then if $S$ is quasi-separable over $R,$ $S$ is
unramified over $\mathfrak{p}$ .

PROOF. Let $U=R-\mathfrak{p}$ , then from $D_{R}(S)=0$ we get $D_{R_{U}}(S_{U})=0$ by Prop. 8.
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Applying Prop. 7 to the last relation we see that $S_{U}/\mathfrak{p}S_{U}$ is a quasi-separable
$(R_{U}/\mathfrak{p}R_{U})$-algebra. The theorem will follow from Prop. 13, Prop. 18 and the
finiteness condition for S.

$CoROLLARY$ . Let $S$ be an R-algebra and assume that $S$ is a finite R-module.
Then if $S$ is quasi-separable, $S$ is unramified.

In the next place we shall study when the quasi-separability will follow
from unramifiedness. For this purpose it is convenient to introduce the notion
of d-different.

DEFINITION 3. Let $S$ be an R-algebra and let $D_{R}(S)$ be the module of R-
differentials in S. Let $\mathfrak{D}$ be the ideal of $S$ generated by the elemenfs $x$ in $S$ such
thxt $xD_{R}(S)=0$ . We shall call $\mathfrak{D}$ d-different of $S$ over $R$ and will be denoted by
$\mathfrak{D}_{a}(S/R)$ , or simply by $ED_{a}$ if it is clear from the context.

THEOREM 6. Let $S$ be an R-algebra and assume that the module $D_{R}(S)$ of R-
differentials in $S$ is a finite S-module. Let $\mathfrak{P}$ be a prime ideal of $S$ which is un-
ramified over $R$, then $\mathfrak{P}$ does not contain the d-different $\mathfrak{D}$ .

PROOF. Let $S^{*}=S_{\mathfrak{P}}$ and $R^{*}=R_{0}$ , where $\mathfrak{p}=R\cap \mathfrak{P}$ . Then $S^{*}$ is unramified
over $R^{*}$ , i. e. if we denote by $\mathfrak{P}^{*}$ and $\mathfrak{p}*the$ maximal ideals of $S^{*}$ and $R^{*}$ re-
spectively, $S^{*}/\mathfrak{P}^{*}$ is a finite separable extension of $R^{*}/D^{*}$ and $\mathfrak{P}^{*}=\mathfrak{p}*s*$ . Hence
$D_{R^{*}}(S^{*}/\mathfrak{P}^{*})=0$ and $(S^{*}/\mathfrak{P}^{*})\otimes_{s*}D_{R^{*}}(S^{*})$ is generated by the elements $da_{1},$ $\cdots$ , $da_{n}$ ,

where $a_{1},$ $\cdots,$ $a_{n}$ are any set of generators of $\mathfrak{P}^{*}$ (Prop. 9) and $d$ stands for $d_{R^{*}}^{s*}$ .
Since $\mathfrak{P}^{*}$ is generated by the elements in $P^{*}$ we see that $D_{R^{*}}(S^{*})\otimes(S^{*}/\mathfrak{P}^{*})=0$ .
On the other hand $D_{R^{*}}(S^{*})=D_{R}(S^{*})$ is a finite module since it is a homomorphic
image of $S^{*}\otimes D_{R}(S)$ , hence we must have $D_{R^{*}}(S^{*})=0$ . By Prop. 10, $D_{R}(S^{*})=$

$S^{*}\otimes D_{R}(S)$ , and the annihilator of $D_{R}(S^{*})$ is given by $\mathfrak{D}\otimes_{s}S^{*}=\mathfrak{D}^{*10)}$ . The
above results implies that the annihilator $\mathfrak{D}^{*}$ of $D_{R}(S^{*})$ must be a unit ideal,
hence $\mathfrak{P}$ cannot contain the d-different $\mathfrak{D}$ .

$CoROLLARY$ . Let $S$ be an R-algebra and assume that $D_{R}(S)$ is a finite S-
module. Then if $S$ is unramified over $R,$ $S$ is quasi-separable over $R$ .

PROOF. Assume that $D_{R}(S)$ is not zero. Then the d-different $\mathfrak{D}$ is not a
unit ideal, and there exists a maximal ideal $\mathfrak{M}$ containing $\mathfrak{D}$ . $\mathfrak{M}$ must be the
one which is ramified over $R$ .

THEOREM 7. Let $S$ be a noetherian R-algebra and let $\mathfrak{D}$ be the d-different.
Let $\mathfrak{P}$ be a prime ideal of $S$ satisfying the finiteness condition. Then if $\mathfrak{P}\ovalbox{\tt\small REJECT} \mathfrak{D},$ $\mathfrak{P}$

is unramified.
PROOF. By Prop. 10 we eave $D_{R}(S_{\mathfrak{P}})=S_{\mathfrak{P}}\otimes_{S}D_{R}(S)$ , hence if we have $\mathfrak{P}$ ER $\mathfrak{D}$,

then $D_{R}(S_{\mathfrak{P}})=0$ . Applying Prop. 8 we see that $D_{R_{\mathfrak{p}}}(S_{\mathfrak{P}})\neq 0$ . The assertion fol-
lows from Th. 4.

Let $R$ be a noetherian normal domain with the quotient field $K$ and let $L$

10) In general if $E$ is a finite S-module and if $\sigma$ is the annihilater of $E$, then the
annihilater of $E\otimes_{S}S_{U}$ is given by $\alpha\otimes_{S}S_{U}$ .
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be a finite separable extension of $K$ Let $S$ be the integral closure of $R$ in $L$ ,
then as is well known $S$ is a finite R-module and every prime ideal of $S$ satis-
fies the finiteness condition. Then we can apply Theorem 6 and 7 to this case
and we get the

THEOREM 8. Under the same notations and assumptions as above let $\mathfrak{D}_{d}$ be
the d-different of $S$ over R. Then any prime ideal $\mathfrak{P}$ of $S$ is unramified if, and
only if, as does not contain the d-different $\mathfrak{D}_{a}$ .

E. Noether and Auslander-Buchsbaum defined another kind of different for
an R-algebra $S$ (cf. [8] and [2]). The different is called by the name of “ homo-
logical different ” in [2]. Homological different is defined in the following way.
Let $S$ be an R-algebra. As we mentioned before, there exists an exact sequence
of $S^{e}=S\otimes_{R}S$ modules

$\varphi$

$0\rightarrow I\rightarrow S^{e}\rightarrow S\rightarrow 0$ .
The homomorphism $\varphi$ is defined by $\varphi(\sum_{:}x_{i}\otimes y_{i})=\sum_{i}x_{i}y_{i}$ and $S$ is made into a
$S^{e}$ -module by the rule $(a\otimes b)x=abx$, where $a,$ $b$ and $x$ are elements of S. Let
En be the annihilater of the ideal $I$, then the homological different $\mathfrak{h}$ is given
by $\varphi(\mathfrak{R})$ .

PROPOSITION 19. The homological different $\mathfrak{h}$ is contained in the d-different
$\mathfrak{D}$ . Moreover if the kernel I has a finite number of generaters, then the radicals
of $\mathfrak{h}$ conincides with that of $\mathfrak{D}^{11)}$.

PROOF. Let $\mathfrak{S}=I^{2}$ : $I,$ $i$ . $e$ . the set of elements $s$ in $S^{e}$ such that $sI\subseteqq I^{2}$ .
We shall show that $\varphi(\mathfrak{S})=\mathfrak{D}$ . Let $a$ be an element of $\mathfrak{D}$ . Since $D_{R}(S)$ is iso-
morphic (as a S-module) to $I/I^{2}$ we see that $aI\subseteqq I^{2}$ . Hence $a\otimes 1$ is contained
in $\mathfrak{S}$ , and $a=\varphi(a\otimes 1)$ is contained in $\varphi(\mathfrak{S})$ . Conversely let $a$ be an element of
$\varphi(\mathfrak{S})$ . Then there exists an element $\alpha$ in $S^{e}$ such that $\varphi(\alpha)=a$ . Let us put
$\alpha=\sum_{i=1}^{s}c_{i}\otimes d_{i}$ . Let $x$ be an arbitrary element of S. Using the relation $\Sigma c_{i}d_{i}=$

$a$, we get

$a(1\otimes x-x\otimes 1)=(a\otimes 1)(1\otimes x-x\otimes 1)$

$=((\Sigma c_{i}d_{i})\otimes 1)(1\otimes x-x\otimes 1)$

$=[(\Sigma c_{i}\otimes d_{i})-\Sigma(c_{i}\otimes 1)(1\otimes d_{i}-d_{i}\otimes 1)](1\otimes x-x\otimes 1)$

$=\alpha(1\otimes x-x\otimes 1)\equiv 0$ $(mod I^{2})$ .
Since $I$ is generated by $1\otimes x-x\otimes 1$ , the above relation implies that $a$ is con-
tained in $\mathfrak{D}$. By definition $\mathfrak{h}=\varphi(\mathfrak{R})$ and $\mathfrak{R}=(0):I\subset I^{2}$ : $I=\mathfrak{S}$ . Hence $\mathfrak{h}=\varphi(\mathfrak{R})$

is contained in $\mathfrak{D}=\varphi(\mathfrak{S})$ .
Now assume that $I$ has a finite number of generaters and let $\{\alpha_{1}, \cdots , \alpha_{n}\}$

11) We owe the last part of the proposition to H. Sato.
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be a set of generaters of $I$. Let $s$ be an arbitrary element of S. From $sI\subseteqq I^{2}$

we get the relation

$s\alpha_{i}=\sum_{j=1}^{\eta}a_{ij}\alpha_{j}$ $(i=1, \cdots, n)$

where $a’ s$ are in $I$. If we put $\delta=\det|s\delta_{J}-a_{ij}|$ , then $\delta\alpha_{t}=0$ for $i=1,2$ , $\cdot$ .. $n_{\circ}$

Hence $\delta$ is contained in R. Applying the homomorphism $\varphi$ to the relation $\delta=$

$\det|s\delta_{ij}-a_{ij}|$ , we see that $\varphi(s)^{n}$ is contained in $\varphi(\mathfrak{R})=\mathfrak{h}$ . Since $\mathfrak{D}=\varphi(\mathfrak{S})$ and $s$

is an arbitrary element of $\mathfrak{S}$, the above relation implies that the d-different $\mathfrak{D}$,
hence the radial of $\mathfrak{D}$ , is contained in the radical of $\mathfrak{h}$ .

\S 6. The module of differentials of higher degree

Let $R$ be a local ring and let $E$ be a finite R-module. Then the number
of minimal set of generators $u_{1},$

$\cdots$ , $u_{n}$ of $E$ is a well determined integer. It
is equal to the dimension of the vector space $E\otimes_{R}(R/M)$ over the field $R/M$,
where $M$ is the maximal ideal of $R$. We shall call this integer the rank of $E$

and denote it by $rank_{R}E$.
LEMMA. Let $R$ be a local ring and let $E$ be a finite R-module over R. Let

$n=rankE$, then the rank of the exterior algebra $\Lambda^{t}E$ is equal to ${}_{n}C_{t}$ . Moreover
if $E$ is a free module, then $\Lambda^{t}E$ is also a free module.

PROOF. Let $M$ be the maximal ideal of $R$ and let $K=R/M$. If $\overline{E}=$

$E\otimes_{R}K$, then the dimension of $\Lambda^{t}\overline{E}$ is, as is well known, equal to ${}_{n}C_{t}$ , Hence if
we can show that $\Lambda^{t}\overline{E}$ is isomorphic to $(\Lambda^{t}E)\otimes_{R}K$ the proof will be complete.
For the sake of simplicity we shall denote $1\otimes x$ by $\overline{x}$, where $x$ is an element
of $E$. Let $f$ be a map from

$\frac{E\chi\cdots\chi E}{t}$
into $\Lambda^{t}\overline{E}$ defined by

$f(x_{1}, \cdots, x_{t})=\overline{x}_{1}\wedge\cdots\Lambda\overline{x}_{t}$ .
Then $f$ is multilinear and skew symmetric. Hence there exists an R-homo-
morphism $g:\Lambda^{t}E\rightarrow\Lambda^{t}\overline{E}$ such that

$ g(x_{1}\wedge\cdots\Lambda x_{t})=\overline{x}_{1}\Lambda\ldots$ A $X_{t}$ .
Since $\Lambda^{t}\overline{E}$ is a K-vector space, $g$ induces a homomorphism $\varphi$ : $(\Lambda^{t}E)\otimes_{R}K\rightarrow\Lambda^{t}\overline{E}$

defined by
$\varphi[1\otimes(x_{1}\Lambda\ldots\wedge x_{t})]=\overline{x}_{1}\Lambda\ldots\wedge\overline{x}_{t}$ .

On the other hand
$\psi$ ( $\overline{x}_{1}\Lambda\ldots$ A $\overline{x}_{t}$) $=1\otimes(x_{1}\wedge\cdots\Lambda x_{t})$

is a well defined homomorphism from $\Lambda^{t}\overline{E}$ into $(\Lambda^{t}E)\otimes_{R}K$ Since $\varphi\cdot\psi=1$ and
$\psi\circ\varphi=1$ , we see that $\Lambda^{t}\overline{E}$ and $(\Lambda^{t}E)\otimes K$ are isomorphic. The last assertion is
proved in [3, Chap. III].

In this occassion we would like to give a refinement of Th. 2 in our pre-
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vious paper [7].

THEOREM 9. Let $V^{\gamma}$ be a variety defined over a field $k$ and $lelP$ be a point

of $V$ such that $k(P)$ is separably algebraic over $k$ . Let $R$ be the quotient ring of
$P$ in $V/k$ , and assume that $\Lambda^{r}D_{k}(R)$ is a free R-module with the base $dt_{1}\Lambda\ldots\wedge dt_{r}$ .
$T_{l}^{7}enP$ is a simple point of $V$ and $\{t_{1}, \cdots, t_{r}\}$ is a set of uniformizing parameters
at $P$.

PROOF. Let $M$ be the maximal ideal of $R$ and let $\{u_{1}, \cdots , u_{n}\}$ be a set of
minimal base of $M$. Then $D_{k}(R)$ is of rank $n$ by Prop. 16. Hence by the above
Lemma the rank of $\Lambda^{r}D_{k}(R)$ is of rank ${}_{n}C_{r}$. From this we see that the rank
of $\Lambda^{r}D_{k}(R)$ is 1 if, and only if, $n=r$. Since rank of $R$ is $r$ and $n$ is equal to
the number of minimal base of $M$, we have $n=r$ if, and only if, $R$ is a regular
local ring. This proves that $R$ is a regular local ring. Moreover $P$ is separably
algebraic over the ground field, $P$ must be a simple point of $V$. Let $u_{1},$

$\cdots$ , $u_{r}$

be a set of uniformizing parameters at $P$, then by Prop. 17 $D_{k}(R)$ is a free
module with the base $du_{1},$ $\cdots$ , $du_{r}$ , hence $\Lambda^{r}D_{k}(R)$ is a free module of rank 1
with the base $du_{1},$ $\cdots$ , $du_{r}$ . Combining the assumptions in the Theorem we see
that $dt_{1}\wedge\cdots\wedge dt_{r}$ and $du_{1}\wedge\cdots\wedge du_{r}$ differ by a unit of $R$ . Then by Prop. 1
in [7], $t_{1},$ $\cdots$ , $t_{r}$ are a set of uniformizing parameters at $P$ on $V$.

REMARK. The assumptions made in Th. 2 in [7] are superfluous since we
have assumed that $\Lambda^{r}D_{k}(R)$ is of rank 1.

Let $V$ be a normal variety defined over a field $k$ and let $K=k(V)$ is the
function field of $V$ over $k$ . Let $L$ be a finite separable extension of $K$ and let
$U$ be the normalization of $V$ in $L$ . Then there exists a natural rational map
$\pi:U\rightarrow V$ called a covering map. Let $P$ be a point of $V$ and let $Q$ be a point
of $U$ lying above $P$. We shall denote by $R$ and $S$ respectively the quotient
rings of $P$ and $Q$ in $V/k$ and $U/k$ . We shall denote by $t_{1},$ $\cdots$ , $t_{n}$ a minimal set
of generators of the maximal ideal $M$ of $R$. To avoid the confusion in the
notations we shall denote $d_{k}^{S}$ simply by $d$. Let $E$ be the submodule of $D_{k}(S)$

generated by $dt_{1},$ $\cdots$ , $dt_{n}$ , Then $D_{R}(S)$ is isomorphic to the difference module
$D_{k}(S)/E$ by Prop. 1. Let $\mathfrak{a}_{t}$ be the annihilaters of the difference modules $\Lambda^{t}D_{k}(S)/$

$\Lambda^{t}E(t=1,2, \cdots)$ . $\mathfrak{a}_{1}$ is nothing other than the d-different of $S/R$ .
THEOREM 10. Assume that $P$ and $Q$ are simple points of $V$ and $U$ respec-

tively, then we have
$a_{1}\supseteqq a_{2}\underline{\supseteq}\ldots\underline{\supseteq}\mathfrak{a}_{\gamma}\underline{\supseteq}\mathfrak{a}_{1^{\gamma}}$

where $ r=\dim$ V. Moreover $t1_{r}$ is a principal ideal.12)

PROOF. Let $(t_{1}, \cdots , t_{r})$ and $(u_{1}, \cdots, u_{r})$ be a regular system of parameters of
$R$ and $S$ respectively. Then, since $D_{h}(R)$ is a free module with the base $\{d^{R}t_{1}$ ,

, $d^{R}t_{r}$ } $,$

$d^{S}t_{1},$ $\cdots$ , $d^{s}t_{r}$ are also linearly independent over $S$ (Prop. 3). For the
sake of simplicity we shall use the symbol $d$ for $d_{k}^{S}$ . Let us express $dt’ s$ in

12) Here we again have the proof of purity of branch loci in this special case.
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terms of the free base $du_{1}$ , , $du_{r}$ of $D_{k}(S)$ ,

(1) $dt_{i}=\sum_{j=1}^{r}a_{ij}du_{j}$ , $1\leqq i\leqq r$ , $a_{ij}\in S$ .

Let $A_{ij}$ be the cofacter of $a_{ij}$ and $A=\det|a_{ik}|$ . Then we can solve (10) in the
form
(2) $du_{j}=\sum_{k=1}^{r}(A_{jk}/A)dt_{k}$ $1\leqq j\leqq r$ .
From (20) we get

$du_{j_{1}}\wedge\cdots\wedge du_{J\iota}=\Sigma(A_{J\downarrow k_{1}} A_{j_{t}k_{t}}/A)dt_{k_{1}}\wedge\cdots\wedge dt_{k_{t}}$

$=\Sigma_{2}\{\sum_{(\alpha)}1(A_{J\iota k_{1}} A_{j_{t}k_{t}}/A)dt_{\alpha_{1}}\wedge\cdots\Lambda dt_{a_{t}}\}$

where the sum $\sum_{(a)}1$ is extended over all the $t$ ! permutations $k_{1},$ $\cdots$ , $k_{t}$ of $\alpha_{1},$ $\cdots,$ $\alpha_{t}$

and the sum $\sum_{2}$ is extended over all set of indices $\alpha_{1}<\ldots<\alpha_{t}$ taken from
1, 2, $\cdots$ , $r$. Now assume that an element $a$ of $S$ is in $\mathfrak{a}_{t}$ . Then $adu_{j_{1}}\wedge\cdots\wedge du_{J\iota}$

is contained in $\sum_{2}S(dt_{a_{1}}\Lambda\ldots\wedge dt_{a_{t}})$ for all $\alpha_{1}<\ldots<\alpha_{t}$ and vice versa. Taking
into account that $dt_{1},$ $\cdots,$

$dt_{r}$ are linearly independent over $S$ we get the con-
clusion: $a$ is contained in $a_{r}\iota f$, and only if,

$a\sum_{(a)}A$
$A_{j_{C}k_{t}}\in(A^{t})$

for all pairs of t-tuples $(j_{1}, \cdots,j_{t})$ and $(\alpha_{1}, \cdots, \alpha_{t})$ . We shall calculate

$\sum_{(\alpha)^{1}}A_{j_{1}k_{1}}$
$A_{j_{t}k_{t}}=\det\left|\begin{array}{lll}A_{j_{1}\alpha_{1}} & \cdots & A_{j_{1\propto t}}\\\vdots & & \vdots\\ A_{j_{t}\alpha_{1}} & \cdots & A_{j_{t}\alpha_{t}}\end{array}\right|$ .

Let $s_{1}<\ldots<s_{n-t}$ and $\beta_{1}<\ldots<\beta_{n-f}$ be the set of integers such that ( $j_{1}$ , $\cdot$ $j_{t}$ ,
$s_{1}$ , $s_{r-t}$) and $(k_{1}, k_{t}, \beta_{1}, \beta_{r-t})$ are even permutations of (1, 2, $\cdot$ .. r) re-
spectively. By an easy calculation we get

$=\ovalbox{\tt\small REJECT}^{A}$

$*$

A
$a_{s_{1}\beta}^{s_{J}.\beta}a.;_{a^{s..-\iota\beta_{r^{1}-t}}}^{0}a_{Sr^{r}-\iota\beta}]$ .
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Taking the determinant of both sides we get the equation13)

$\left|\begin{array}{lll}A_{j\downarrow a_{1}} & \cdots & A_{jt\alpha_{t}}\\\vdots & & \vdots\\ A_{j_{C}\alpha_{1}} & \cdots & A_{jt^{a_{t}}}\end{array}\right|=A^{t-1}B$ , where $B=\left|\begin{array}{lll}a_{s_{1}\beta\iota} & \cdots & a_{s_{1}!^{\backslash }r-t}\\\vdots & & \vdots\\ a_{S\gamma-c9_{1}} & \cdots & a_{s_{r-t}\beta_{r-t}}\end{array}\right|$ .

From these calculation we can conclude the following: $a\in \mathfrak{a}_{t}$ if, and only if,
$aB\in(A)$ for any minor determinant $B$ of order $r-$ ; of $A$ (where it should be
understood that $B=1$ if $t=r$). From this assertion the inclusion relation

$a_{1}\supseteqq \mathfrak{a}_{2}\supseteqq\ldots\supseteqq \mathfrak{a}_{r}$

follows immediately. In particular $a\in \mathfrak{a}_{r}$ if, and only if, $a$ is contained in the
principal ideal $(A)$ , and $A$ is itself contained in $a_{r}$ . From this we get $a_{r}=(A)$ .
Now assume that $a_{1},$

$\cdots$ , $a_{r}$ are elements in $\mathfrak{a}_{1}$ , then $a_{i}A_{\alpha\beta}\in(A)$ for any triplet
$|(i, \alpha, \beta),$ $1\leqq i,$ $\alpha,$ $\beta\leqq r$. Hence

$CJ_{1}\cdots a_{r}\left|\begin{array}{lll}A_{11} & \cdots & A_{1r}\\\vdots & & \vdots\\ A_{r1} & \cdots & A_{rr}\end{array}\right|=a_{1}\cdots a_{r}A^{r-1}\in(A^{r})$

$i$ . $e$ . $a_{1}\cdots a_{r}\in(A)$ . This proves that $a_{1}^{r}$ is contained in $a_{\gamma}$ . Thus the proof is
complete.

Let $V$ and $U$ be as before and let $C$ be an irreducible subvariety of codi-
mension 1 on $U$ and let $D$ be a subvariety of $V$ lying under $C$. Let $Q$ and $P$

be respectively the points of $C$ and $D$ such that $\pi(Q)=P$. It is possible to find
such a pair among the simple points of $U$ and simple points of $V$. Let $R$ and
$S$ be the quotient rings of $P$ and $Q$ in $V/k$ and $U/k$ respectively and let $\{t_{1}$ ,
... , $t_{r}$ } and $\{u_{1}, \cdots, u_{r}\}$ be sets of uniformizing parameters at $P$ and $Q$ . Let
$\omega=d^{R}t_{1}$ A – $\wedge d^{R}t_{r}$ . Then the multiplicity of $C$ in the divisor of the differ-
ential form $\pi*\omega=d^{s}t_{1}\wedge\cdots\Lambda d^{s}t_{r}^{14)}$ is called the differential indexi5) of $C$ and
will be denoted by $e(C)$ . If we represent $d^{S}t’ s$ in terms of $d^{S}u’ s$ , we can write

$ d^{s}t_{1}\Lambda$ – $\wedge d^{s}t_{r}=\alpha d^{s}u_{1}\Lambda\ldots\Lambda d^{s}u_{r}$ .
Then the differential index $e(C)$ is given by the multiplicity of $C$ in the divisor
\langle $\alpha$). On the other hand let $\mathfrak{p}$ be the prime ideal in $S$ defining the divisor $C$,
then $S_{\mathfrak{p}}$ is a discrete valuation ring. Let $\tilde{\omega}$ be its prime element, and let $\mathfrak{D}$ be
the d-different of $S$ over $R$ . Then the above Theorem implies that $(\tilde{\omega}^{e(C)})$ is
contained in $\mathfrak{D}S_{\mathfrak{p}}$ . Hence if we define $e_{1}$ by $\mathfrak{D}S_{\mathfrak{p}}=(\tilde{\omega}^{e_{1}})$ , we get the inequality

(3) $e_{1}\leqq e(C)$ .
13) This is a generalization of the Theorem of Sylvester.
14) In [7], we did not distinguish $d^{R}$ and $d^{S}$ . But it was reasonable since $S\otimes D(R)$

$\rightarrow D(S)$ is injective (Prop. 3). But here we adopt the precise notations to make the
matters clear.

15) Cf. [7], \S 6.
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From Th. 14 we get at once the
$C_{oROLLARY}$ . $e_{1}=e(C)$ if $\dim V=1$ .
The inequality cannot be replaced by an equality in general as is shown

in the following example.
EXAMPLE. Let $V$ be an affine space with coordinates $x$ and $y$ , and let $U$ be

an affine space with coordinates $u$ and $v$ . We shall assume that they satisfy
the following relation

$x=u^{3}+u^{2}v$ , $y=u^{2}v$ .
Let $P$ and $Q$ be the points with the coordinates $(0,0)$ and $(0,0)$ . Let $A=k[x, y]$

and $B=k[u, v]$ , then the local rings $R$ and $S$ of $P$ and $Q$ are given by $k[x, y]_{(x,y)}$

and $k[u, v]_{(u.v)}$ respectively. By a simple calculation we see that d-different of
$S/R$ is given by $(u^{3})$ , but the ideal $\mathfrak{a}_{2}$ in the Theorem is given by $(u^{4})$ . Hence
$e_{1}=3,$ $e(C)=4$ , where $C$ is the straight line defined by the equation $u=0$ in $U$.
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Hiroshima University
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Added in proof: In the course of the proof I found that the recent paper of Ernsf
Kunz, Die Primidealteiler der Differenten in allgemeinen Ringen, J. Reine Angew Math.,
204 (1960), 166-182, have considerable overlap with our present paper. But our method
are quite independent of his.


	On the theory of differentials ...
	\S 1. Notations and terminologies
	\S 2. Module of $R$ -differentials
	\S 3. The structure of ...
	THEOREM 2. ...

	\S 4. Differentials in ...
	THEOREM 3. ...
	THEOREM 3'. ...

	\S 5. Ramification theory ...
	THEOREM 4. ...
	THEOREM 5. ...
	THEOREM 6. ...
	THEOREM 7. ...
	THEOREM 8. ...

	\S 6. The module of differentials ...
	THEOREM 9. ...
	THEOREM 10. ...

	Bibliography


