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\S 1. Introduction.

1. The purpose of this note is to discuss the Dirichlet problem for the
general quasi-linear elliptic differential equation of the second order

(1) $a_{ij}(x, u, gradu)\partial^{2}u/\partial x_{i}\partial x_{j}+b_{k}(x, u, gradu)\partial u/\partial x_{k}=f(x, u, gradu)^{1)}$

with the bounded coefficients $b_{k}$ and with the free term $f$ which is bounded if
the argument $u$ is bounded2).

2. In solving the Dirichlet problem of second order elliptic equations it is
well-known that there are three kinds of important estimation for linear elliptic
equations (see, $e$ . $g.$ , L. Nirenberg [12]). One of the three is Schauder’s interior
estimates which will not be used in this note. Two others of the three concern
the estimations of solutions belonging to $C^{2}(\overline{G})$ in the Banach spaces $C^{1,\alpha}(\overline{G})$

and $C^{2.a}(\overline{G})^{3)}$ . The latter, namely the estimation in $C^{2,\alpha}(\overline{G})$ first derived by J.
Schauder ([13], [14]) and called by the name of Schauder’s boundary estimates,
is complete. But the estimation in $C^{1,a}(\overline{G})$ is, even though considerably satis-
factory by efforts of many eminent scholars (here we quote, in particular, L.
Nirenberg [11] and H. O. Cordes [3]), still incomplete in the present situation.

The author is sorry to say that the results of the present note are con-
siderably general but will become complete when the estimation in $C^{1,\alpha}(\overline{G})$ is
completely accomplished. For this reason the author also hopes to make better
the estimation in $C^{1,\alpha}(\overline{G})$ in the near future.

3. The results of this note are formulated in the sections 4, 6 and 7.
There we shall give four theorems; namely, the lMain theorem, the envelope

1) Here $x=(x_{1}, x_{n})$ and $gradu=(\partial u/\partial x_{1}, \partial u/\partial x_{n})$ . Throughout this ncte we
use the summation convention for doubly appeared indices.

2) Actually we shall concern the equation (1) under more general assumptions. But
for the sake of brevity we shall state the results of this note under rather simpler as-
sumptions in the introduction.

3) See \S 2 and Lemmas $A,$ $C$ of \S 3.
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lheorem, a theorem of Perron type, and a theorem of Peano type. In this intro-
duction we only refer to the main theorem under rather simpler assumptions.

Let $G$ be a smooth, bounded domain in the Euclidean n-space $(n\geqq 2)$ and
let the function $\varphi(x)$ be in $C^{3}(\overline{G})^{4)}$ . Let the functions $a_{ij},$

$b_{k}$ and $f$ be defined
in 9: $x\in\overline{G},$ $|u|<\infty,$ $|q|<\infty$ and Holder-continuous (with some exponent $\tau$ ,
$0<\tau<1)$ in every compact subset of 9. We assume that there exist a finite
quasi-supersolution $\overline{\omega}(x)$ and a finite quasi-subsolution $\underline{\omega}(x)^{5}$ ‘ such that $\underline{\omega}(x)\leqq$

$\overline{\omega}(x)$ in $\overline{G}$ and that $\underline{\omega}(x)\leqq\varphi(x)\leqq\overline{\omega}(x)$ on the boundary $\Gamma$ of $G$ . We assume fur-
ther that the family of differential operators

(2) $\rightarrow C^{(u)}\equiv a_{cj}(x, u(x),$ $gradu(x))\partial^{2}/\partial x_{i}\partial x_{j}$ for all $u(x)\in C^{1}(\overline{G})$

is a suitable set of elliptic operators of complete type6).

Then we obtain
THE MAIN THEOREM. The Dirichlet problem $[D_{\varphi}]$ : to seek functions $u(x)$ in

$C^{2}(\overline{G})$ which satisfy
the differential equation

(1) $a_{ij}(x, u, gradu)\partial^{2}u/\partial x_{i}\partial x_{j}+b_{k}(x, u, gradu)\partial u\partial x_{k}=f(x, u, gradu)$

in the domain $G$ as well as
the boundary condition

(3) $u(x)=\varphi(x)$ on the boundary $\Gamma$ of $G$

has at least one solution $u(x)$ such that

(4) $\underline{\omega}(x)\leqq u(x)\leqq\overline{\omega}(x)$

in the closure $\overline{G}$ of $G$ .
4. At the end of the introduction the author of this note wishes to ex-

press his deepest gratitude to Prof. M. Hukuhara who has constantly inspired
and stimulated him.

\S 2. The Banach spaces $C^{r}(\overline{G})$ and $C^{r,\tau}(\overline{G})$ .
1. The domain $G$ : Hereafter we shall denote by $G$ a fixed bounded domain

in the Euclidean n-space $(n\geqq 2)$ whose boundary $\Gamma$ is of type $Bh^{7)}$ .
2. The Banach space $C^{r}(\overline{G})$ : It is well-known that all functions $g(x)$ con-

4) $\overline{G}$ is the closure of the domain $G$. As for the precise assumptions imposed on $G$

and the function $\varphi(x)$ see the first paragraph of \S 2 and Assumption II of \S 4.
5) See Definition 3 of \S 3 and a remark below it. These notions are a generalization

of those of superharmonic functions and subharmonic functions.
6) See Definitions 2 and 3 in \S 3.
7) $i$ . $e.,$ $G$ is bounded by a h-H\"older continuously twice differentiable hypersurface

$\Gamma(0<h<1)$ which does not intersect itself.
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tinuous in the closure $\overline{G}$ of $G$ together with their derivatives up to order $\gamma^{8^{\backslash },}$

form a Banach space by the norm
\langle $5)_{0}$

$\Vert g\Vert=\Vert g\Vert_{0}=\max_{x\in\overline{G}}|g(x)|$
provided $r=0$ ,

or by the norm

(5) $\Vert g\Vert_{\gamma}=\sum_{k=1}^{r}\sum_{1\leqq\tau_{S}\leqq n}\Vert\partial^{k}g/\partial x_{i_{1}}$
$\partial x_{i_{k}}\Vert+\Vert g\Vert$ provided $r\geqq 1$ .

We denote this Banach space by $C^{r}(\overline{G})$ .
3. The Banach space $C^{r,\tau}(\overline{G})$ : Let $r$ be a non-negative integer and let $\tau$

be a positive number less than 1. Then we can define the quantity $H_{\tau}(g)$ by

\langle 6)
$H_{\tau}(g)=\sup_{x_{\dot{x}}y_{\neq}\in_{y}\overline{G}}\frac{|g(x)-g(y)|}{|x-y|^{\tau}}$

$(\leqq\infty)$ .

It is well-known that all functions $g(x)$ in $C^{r}(\overline{G})$ such that the “ norm “

(7)
$\Vert g\Vert_{r,\tau}=\Vert g\Vert_{r}+\sum_{1\leqq i_{S}\leqq n}H_{\tau}(\partial^{r}g/\partial x_{i_{1}} \partial x_{i_{r}})$

are finite form a Banach space. We denote it by $C^{r,\tau}(\overline{G})$ . We note here that
every bounded, closed sphere in the space $C^{r.\tau}(\overline{G})$ is compact in $C^{\gamma}(\overline{G})$ .

\S 3. Preliminary definitions and lemmas.

1. Quasi-supersolutions and quasi-subsolutions: As in the paper [10] of
$\lambda_{4}!t$ . Nagumo we shall start with the following

$D_{EFI_{\perp}\backslash T}I^{r}\Gamma Io\backslash v1$ . A function $\overline{\omega}(x)$ is said to be a quasi-supersolution in $G$ if
the following requirements are satisfied:

i) The function $\overline{\omega}(x)$ is in $C^{0,\tau}(\overline{G})$ for some $0<\tau<1$ .
ii) For any point $x_{0}\in G$ there exists a neighborhood $U$ of $x_{\rho}$. in which the

function $\overline{\omega}(x)$ is of the form
(8)

$\min_{1\leqq\nu^{\leq k}=}\overline{\omega}_{\nu}(x)$

\langle $k$ is any positive integer which may depend on $U$), where $\overline{\omega}_{\nu}(x)$ are in $C^{2}(U)$

and satisfy in $U$ the differential inequalities

(1) $a_{ij}(x,\overline{\omega}_{\nu}(x),$ $grad\overline{\omega}_{\nu}(x))\partial^{2}\overline{\omega}_{\nu}/\partial x_{i}\partial x_{j}+b_{k}(x,\overline{\omega}_{\nu}(x),$ $grad\overline{\omega}_{\nu}(x))\partial\overline{\omega}_{\nu}/\partial x_{k}$

$\leqq f(x,\overline{\omega}_{\nu}(x),$ $grad\overline{\omega}_{\nu}[x$)).

8) $i$ . $e.$ , that the function $g(x)$ is continuous in the closure $\overline{G}$ of $G$ and that there exists
a set of functions $g_{i_{1}\cdots i_{k}}(x)(1\leqq i_{s}\leqq n, 1\leqq k\leqq r)$ all continuous in the closure $\overline{G}$ such
that

$\partial^{k}g/\partial x_{i_{1}}$ $\partial x_{i_{k}}=g_{i_{1}\cdots i_{k}}(x)$

in the domain $G$ .
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A quasi-subsolution $\underline{\omega}(x)$ in $G$ is defined analogously by the foliowing two
properties:

$i)^{\prime}$ $\underline{\omega}(x)$ is in $C^{0,\tau}(\overline{G})$ for some $0<\tau<1$ .
ii)i For any point $x_{0}$ of $G$ there exists a neighborhood $U$ of $x_{0}$ in which

the function $\underline{\omega}(x)$ is of the form
(8)

$\max_{1\leqq\nu=\leq k}\underline{\omega}_{\nu}(x)$

( $k$ is any positive integer which may depend on $U$ ), where $\underline{\omega}_{\nu}(x)$ are in $ C^{2}(U\rangle$

and satisfy in $U$ the differential inequalities

(1) $a_{ij}(x,\underline{\omega}_{J}(x),$ $g_{\perp}^{r}$ad $\underline{\omega}_{\triangleright}(x))\partial^{2}\underline{\omega}_{\nu}/\partial x_{i}\partial x_{j}+b_{k}(x,\underline{\omega}_{\nu}(x),$ $grad\underline{\omega}_{\nu}(x))\partial\underline{\omega}_{\nu}/\partial x_{k}$

$\geqq f(x,\underline{\omega}_{\nu}(x),$ $grad\underline{\omega}_{\nu}(x))$ .
REMARK. The extended real numbers $\infty and-\infty$ are defined to be a quasi-

supersolution and a quasi-subsolution respectively.

The notions of such functions as given above are a generalization of thcse
of superharmonic functions and subharmonic functions as mentioned in the foot-
note 5) in Introduction.

2. Elliptic operators of complete $type^{9)}$ : We call a differential operator

(9) $\rightarrow C=a_{ij}(x)\partial^{2}/\partial x_{i}\partial x_{j}$

an elliptic operator in $G$ if the symmetric matrix 1 $ a_{ij}\Vert$ is continucus and
positive-definite in the closure $\overline{G}$ of $G$ . Then if $\leftarrow C$ is an elliptic operator in $G$

there exists a constant $A\geqq 1$ such that
(10) $A^{-1}|\xi|^{2}\leqq a_{ij}(x)\xi_{i}\xi_{j}\leqq A|\xi|^{2}$

for any n-tuple $\xi=(\xi_{1}, \cdots, \xi_{n})(|\xi|^{2}=\xi_{i}\xi_{i})$ and for $x\in\overline{G}$ .
DEFINITION 2. We say an elliptic operator $x$ of the form (9) in $G$ is of

complete type if $x$ has the following property:
For all functions $u(x)$ in $C^{2}(\overline{G})$ which satisfy in $G$ the linear differential

equation
(11) $a_{ij}(x)\partial^{2}u/\partial x_{i}\partial x_{j}+b_{k}(x)\partial u/\partial x_{k}=f(x)$

with the functions $b_{k}(x)$ and $f(x)$ in $C(\overline{G})$ , there exists positive constants $K$ and
$\alpha(0<\alpha<1)$ , depending only on the constant $A$ , the shape of the domain $G$ and
the least upper bound $Q$ of $|b_{k}|(k=1, \cdots. n)$ . and the following estimation
lemma A is assumed to hcld.

LEMMA A. $\Vert u\Vert_{1,\alpha}\leqq K(\Vert\varphi\Vert_{2}+\Vert f\Vert)$ , where $\varphi(x)$ is any function in $C^{2}(\overline{G})$ coir-
ciding with the function $u(x)$ on the boundary $\Gamma$ of $G$ .

DEFINITION 3. A family of elliptic operators

(12) $\rightarrow C^{(\lambda)}=a_{ij}^{(\lambda)}(x)\partial^{2}/\partial x_{i}\partial x_{j}$ (with indices $\lambda$ )

9) This term is not an official cne, but a private one used for the sake of author’s
convenlence.
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is called a suitable set of elliptic operators of complete type if the following two
conditions are satisfied:

i) There exists a positive constant $A\geqq 1$ such that

(13) $A^{-1}|\xi|^{2}\leqq a_{tj}^{(\lambda)}\xi_{i}\xi_{j}\leqq A|\xi|^{2}$

for any n-tuple $\xi=(\xi_{1}, \cdots, \xi_{n})$ and for any index $\lambda$ .
ii) Let 1\ddagger be the family of all functions $u_{\lambda}(x)$ in $C^{2}(\overline{G})$ satisfving in $G$

differential equations

(14) $a_{ij}^{(\lambda)}(x)\partial^{2}u_{\lambda}/\partial x_{i}\partial x_{j}+b_{k}^{(\lambda)}(x)\partial u_{\lambda}/\partial x_{k}=f^{(\lambda)}(x)$

with the indices $\lambda$ . Here the functions $b_{k}^{(\lambda)}$ and $f^{(\lambda)}$ are assumed to be con-
tinuous in $\overline{G}$ with the $|b_{k}^{(\lambda}$ ‘ $|$ bounded by a constant $Q$ and with the $|f^{(\lambda)}|$

bounded by a constant $F$. Then the following estimation Lemma $A^{\prime}$ is assumed
to hold.

LEMMA $A^{\prime}$ . For every $u_{A}(x)\in \mathfrak{U}$ , the estimates

(15) $\Vert u_{\lambda}\Vert_{1,\alpha}\leqq K(\Vert\varphi_{\lambda}\Vert_{2}+F)$

hold with the positive constants $K$ and $\alpha(0<\alpha<1)$ depending only on the con-
stants $A,$ $Q$ and on the shape of G. Here the functions $\varphi_{\lambda}(x)$ is any function in
$C^{2}(\overline{G})$ coinciding with the function $u_{\lambda}(x)$ on the boundary $\Gamma$ of $G$ .

REMARK 1. It is known that any elliptic operator in $G$ in the plane $(i.e.$ ,
$n=2)$ is of complete type. (See, $e$ . $g.$ , L. Nirenberg $[11]^{10)}$ . Also see L. Bers
and L. Nirenberg [2] and L. Nirenberg [12].) Hence a set of elliptic operators
in $G$ in the plane is a suitable set of elliptic operators of complete type pro-
vided the inequalities (13) are valid with a constant $A\geqq 1$ .

REMARK 2. In the case $n\geqq 3$ , H. $0$ . Cordes $[3]^{11)}$ recently proved that any
elliptic opearator in $G$ is of complete type provided that the coefficient-matrix
1 $ a_{ij}(x)\Vert$ satisfies a cone-condition $(K_{\epsilon}^{\prime})(i$ . $e.$ , the condition

$(K_{\epsilon}^{\prime})$ $(n-1)(1+\frac{n(n-2)}{(n+1)(n-1)})\sum_{i<j}(\lambda_{i}-\lambda_{j})^{2}\leqq(1-\epsilon)(\sum_{i=1}^{n}\lambda_{i})^{2}$ , $0<\epsilon<1$ ,

imposed on the eigenvalues $\{\lambda_{i}\}_{i=1}^{n}$ of the matrix $\Vert a_{ij}(x)\Vert)$ .
Hence we see that any set of elliptic operators in $G$ is a suitable set of

elliptic operators of complete type provided that the conditions (13) and $(K^{r_{\epsilon}})$

with a fixed $\epsilon$ are valid.

3. A maximum principle of E. Hopf.

10) See Theorem V of L. Nirenberg [11, p. 126]. He has not given his Theorem V
in the form of Lemma $A$ , but it is clear that we can improve his Theorem V in the
form of Lemma A.

11) See H. O. Cordes [3, Satz 9, p. 311]. Since the coefficient of the dependent vari-
able $u$ vanishes in our case his Satz 9 takes the form of Lemma A.



50 K. AK\^O

LEMMA B. Let $v(x)$ be in $C^{2}(G)\cap C(\overline{G})$ and satisfy the elliptic differential
inequality

$a_{ij}(x)\partial^{2}v/\partial x_{i}\partial x_{j}+b_{k}(x)\partial v/\partial x_{k}\geqq 0$

in $G$ , where the $a_{ij}(x),$ $b_{k}(x)$ are continuous in the closure $\overline{G}$ of G. Then we get

$v(x)\leqq\max_{y\in\Gamma}(v(y))$

in $\overline{G}$ .
For a proof see E. Hopf [6] or C. Miranda [9, Chap. I].

4. Theorems of J. Schauder: In this paragraph we shall state the theorems
of J. Schauder ([13], [14], see also C. Miranda [9, Chap. V]) as the lemmas $C$

and D.
Let us consider the elliptic differential equation

(11) $a_{ij}(x)\partial^{2}u/\partial x_{i}\partial x_{j}+b_{k}(x)\partial u/\partial x_{k}=f(x)$

in the domain $G$ under the assumptions that

i) $\sum_{i.j=1}^{n}\Vert a_{ij}\Vert_{0.r}\leqq A_{0}$

for some positive constants $A_{0}$ and $\tau(0<\tau\leqq h)$ ,
ii) for some $A\geqq 1$

(10) $A^{-1}|\xi|^{2}\leqq a_{ij}(x)\xi_{i}\xi_{j}\leqq A|\xi|^{2}$ ,

where $\xi=(\xi_{1}, \cdots, \xi_{n})$ is any n-tuple,
iii) $\Vert b_{k}\Vert_{0,\tau}\leqq Q$ ($k=1,$ $\cdots$ , n) for some constant $Q$ , and finally
iv) $\Vert f\Vert_{0},-<\infty$ .
LEMMA C. There exists a constant $K_{0}$ , depending only on the quantities $A_{0}$ ,

$A,$ $Q,$ $\tau$ and on the shape of $G$ , and the following estimate is valid:

(16) $\Vert u\Vert_{2,\tau}\leqq K_{0}(\Vert\varphi\Vert_{2,\tau}+\Vert f\Vert_{0,\tau})$

for any function $u(x)$ in $C^{2,\tau}(\overline{G})$ which satisfies in $G$ the linear differential equa-
tion (11). Here $\varphi(x)$ is any function in $C^{2,\tau}(\overline{G})$ which coincides with $u(x)$ on the
boundary $\Gamma$ of $G$ .

LEMMA D. The Dirichlet problem [to seek function $u(x)$ in $C^{2}(G)\cap C(\overline{G})$ sat-
isfying the differential equation (11) in the domain $G$ as well as the boundar.$v$ con-
dition $u(x)=\varphi(x)$ on the boundary $\Gamma$ of $G$] has one and only one solution $u(x)$

provided that the boundary data $\varphi(x)$ is such that $\Vert\varphi\Vert_{2,\tau}<\infty$ . Furthermore, the
unique solution $u(x)$ is in $C^{2,\tau}(\overline{G})$ .

REMARK. J. Schauder did not formulate his results in this form. But us-
ing his existence theorem of solutions in $C^{2,\tau}(\overline{G})$ and the lemma $B$ , we see the
unique existence of solutions of the above Dirichlet problem. Hence the unique
solution must be in $C^{2,\tau}(\overline{G})$ .
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5. A comparison theorem: In this paragraph we comsider the differential
equation

(1) $a_{ij}(x, u, gradu)\partial^{2}u/\partial x_{i}\partial x_{j}+b_{k}(x, u, gradu)\partial u/\partial x_{k}=f(x, u, gradu)$

under the following assumptions:

Assumptions:

i) There exist a finite quasi-supersolution $\overline{\omega}(x)$ and a finite quasi-subsolu-
tion $\underline{\omega}(x)$ such that $\underline{\omega}(x)\leqq\overline{\omega}(x)$ in the closure $\overline{G}$ of the domain $G$ .

ii) The coefficients $a_{ij}(x, u, q),$ $b_{k}(x, u, q)$ and the free term $f(x, u, q)$ are de-
fined and continuous in 9: $x\in\overline{G},$ $|u|<\infty,$ $|q|=(q_{1^{2}}+\cdots+q_{n^{2}})\not\in<\infty$ .

iii) If the argument $u$ is greater than $\overline{\omega}(x)$ at the point $x$, then

(17) $a_{ij}(x, u, q)=a_{ij}(x,\overline{\omega}(x),$ $q$), $b_{k}(x, u, q)=b_{k}(x,\overline{\omega}(x),$ $q$)

and
(18) $f(x, u, q)>f(x,\overline{\omega}(x),$ $q$).

If the argument $u$ is less than $\underline{\omega}(x)$ at the point $x$, then

(17) $a_{ij}(x, u, q)=a_{ij}(x,\underline{\omega}(x),$ $q$), $b_{k}(x, u, q)=b_{k}(x,\underline{\omega}(x),$ $q$)

and
(18) $f(x, u, q)<f(x,\underline{\omega}(x),$ $q$).

LEMMA E. Let $u(x)$ be a function in $C^{2}(\overline{G})$ satisfying the differential equation
(1) in the domain $G$ as well as the boundary condition: $\underline{\omega}(x)\leqq u(x)\leqq\overline{\omega}(x)$ on the
boundary $\Gamma$ . Then in the closure $\overline{G}$ of $G$ the inequalities

$\underline{\omega}(x)\leqq u(x)\leqq\overline{\omega}(x)$

are valid.
PROOF. We shall only prove the inequality $u(x)\leqq\overline{\omega}(x)$ . Another inequality

will be proved similarly.
Suppose $c>0$ be the maximum of the function $u(x)-\overline{\omega}(x)$ in $\overline{G}$ . There

would be a point $x_{0}$ in $G$ at which $u(x_{0})-\overline{\omega}(x_{0})=c$ . Since $\overline{\omega}(x)$ is of the form

$\overline{\omega}(x)=\min_{1\leqq\nu\leqq k}\overline{\omega}_{\nu}(x)$

in a suitable neighborhood $U$ of $x_{0}$ , if we pick up a function $\overline{\omega}_{\nu}(x)$ such that
$\overline{\omega}_{\nu}(x_{0})=\overline{\omega}(x_{0}),$ $c$ is the maximum value of the function $u(x)-\overline{\omega}_{\nu}(x)$ in $U$.

Let us denote by $\Leftrightarrow\overline{c}$ the elliptic operator with constant coefficients

(19) $\leftarrow C\equiv a_{tj}(x_{0},\overline{\omega}_{\nu}(x_{0}),$ $grad\overline{\omega}_{\nu}(x_{0}))\partial^{2}/\partial x_{i}\partial x_{j}$

$+b_{k}(x_{0},\overline{\omega}_{\nu}(x_{0}),$ $grad\overline{\omega}_{\nu}(x))\partial/\partial x_{k}$ .
Then by virtue of well-known criterion the inequality

(20) $\overline{X}(u-\overline{\omega}_{\nu})\leqq 0$

holds at the point $x_{0}$ .
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On the other hand, since
(21) $gradu(x_{0})=grad\overline{\omega}_{\nu}(x_{0})$ , $u(x_{0})>\overline{\omega}_{\nu}(x_{0})=\overline{\omega}(x_{0})$ ,

the direct calculation would show that at the point $x_{0}$

(22) $\rightarrow\overline{C}(u-\overline{\omega}_{\nu})\geqq f(x_{0}, u(x_{0}),$ $gradu(x_{0}))-f(x_{0},\overline{\omega}_{\nu}(x_{0}),$ $grad\overline{\omega}_{\nu}(x_{0}))>0$ ,

which contradicts (20). Thus we have verified the inequality $u(x)\leqq\overline{\omega}(x)$ in $\overline{G}$ .

\S 4. The Main Theorem.

Hereafter we shall consider the differential equation

(1) $a_{ij}(x, u, gradu)\partial^{2}u/\partial x_{i}\partial x_{j}+b_{k}(x, u, gradu)\partial u/\partial x_{k}=f(x, u, gradn)$

under the following assumptions.

Assumptions:
I. The coefficients $a_{ij}(x, u, q),$ $b_{k}(x, u, q)$ and the free term $f(x, u, q)$ are de-

fined in 9: $x\in\overline{G},$ $|u|<\infty,$ $|q|<\infty$ , and Holder-continuous in every compact
subset of 9 (with some exponent $\tau,$ $0<\tau<1$).

II. The function $\varphi(x)$ is assumed to be in $C^{2,\sigma}(\overline{G})$ for some $\sigma(0<\sigma<1)$ .
III. Let $\overline{\omega}(x)$ and $\underline{\omega}(x)$ (possibly $\pm\infty$ ) be respectively a quasi-supersolution

and a quasi-subsolution in $G$ such that $\underline{\omega}(x)\leqq\overline{\omega}(x)$ on $\overline{G}$ and $\underline{\omega}(x)\leqq\varphi(x)\leqq\overline{\omega}(x)$

on $\Gamma$ . We define the function $a_{ij}^{(u)}(x),$ $b_{k}^{(u)}(x),$ $f^{(u)}(x)$ as follows: Let $g(x, u, q)$ be
any one of the $a_{ij},$

$b_{k},$ $f$. Then the function $g^{(u)}(x)$ is defined by

(23) $g^{(u)}(x)=\left\{\begin{array}{l}g(x,\overline{\omega}(x),gradu(x))\\g(x,u(x),gradu(x))\\g(x,\underline{\omega}(x),gradu(x))\end{array}\right.$ $providedprovidedprovided\frac{\omega}{u}(x)<u(x)<u(x)\geqq\overline{\omega}(x)(x)\leqq\underline{\omega}(x),\overline{\omega}(x)$ ,

where $u(x)$ is any element of $C^{1}(\overline{G})$ .
Then the assumption III is characterized by the following a) and b):

a) The functions $|b_{k}^{(u)}(x)|$ are bounded by a positive constant $Q$ , whiie for
the functions $f^{(u)}(x)$ there exist three non-negative constants $B,$ $F$ and $\theta(0<\theta<$

1) such that
$|f^{(u)}(x)|\leqq B|gradu|^{\theta}+F$

for every $u(x)\in C^{1}(\overline{G})$ .
b) The family of differential operators

(24) $J^{(u)}\equiv a_{ij}^{(u)}(x)\partial^{2}/\partial x_{i}\partial x_{j}$

with the index set $u\in C^{1}(\overline{G})$ is a suitable set of elliptic operators of complete
type (see Definition 3 in \S 3).

THE MAIN THEOREM. Under the assumptions I-III there exists at least one
solution $u(x)$ in $C^{2}(\overline{G})$ of the Dirichlet problem $[D_{\varphi}]$ [to seek functions $u(x)$ in $C^{2}(\overline{G})$

which satisfy the differential equation (1) in the domain $G$ as well as the boundary
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$\epsilon onclitionu(x)=\varphi(x)$ on the boundary $\Gamma$ of $G$] such that $\underline{\omega}(x)\leqq u(x)\leqq\overline{\omega}(x)$ in $\overline{G}$ .
REMARK 1. The most simple case is one that $f(x, u, 0)=0$ . In this case we

can set
(25)

$\underline{\omega}(x)\equiv\min_{y\in\Gamma}\varphi(y)$ (a const.) , and $\overline{\omega}(x)=\max_{y\in\Gamma}\varphi(y)$
(a const.).

The main theorem assures that there exists at least one solution $u(x)$ in $C^{2}(\overline{G})$

of the Dirichlet problem $[D_{\varphi}]$ such that

$\min_{y\in\Gamma}\varphi(y)\leqq u(x)\leqq\max_{y\in\Gamma}\varphi(y)$

for $x\in\overline{G}$ .
REMARK 2. In this remark we shall impose following two assumptions on

the differential equation (1):
i) The coefficients $a_{ij}(x, u, q)$ and $b_{k}(x, u, q)$ are bounded in 9: $x\in\overline{G},$ $|u|<\infty$ ,

$|q|<\infty$ and the matrix I $ a_{ij}(x, u, q)\Vert$ satisfies the condition

(26) $A^{-1}|\xi|^{2}\leqq a_{ij}(x, u, q)\xi_{i}\xi_{j}\leqq A|\xi|^{2}$ $(A\geqq 1)$ ,

which holds for any n-tuple $\xi=(\xi_{1}, \cdots, \xi_{n})$ and for every point $(x, u, q)$ in 9.
ii) The free term $f(x, u, q)$ is of the form

\langle 27) $c(x, u, q)u+f_{1}(x, u, q)+f_{2}(x, u, q)$ ,

where
a) $c(x, u, q)\geqq 0$ ,
b) $f_{1}(x, u, q)$ is bounded,
c) $f_{2}(x, u, q)$ is non-decreasing with respect to $ld$ and for every $M>0$ there
exist two constants $B(1?/l)$ and $F(M)$ such that

$|f_{2}(x, u, q)|\leqq B(1\psi)|q|+F(1W)$

in $9_{M}$ ; $x\in\overline{G},$ $|u|\leqq M,$ $|q|<\infty$ .
Then, we can always construct an arbitrarily large quasi-supersolution $\overline{\omega}(x)$ in

$f/le$ form
(28) $C(C-e^{-\gamma x_{1}})$

with two suitably chosen positive constants $C$ and $\gamma$ . Furthermore,

(29) $\underline{\omega}(x)\equiv-\overline{\omega}(x)=-C(C-e^{-Tx_{1}})$

is quasi-subsolution which is arbitrarily large in the absolute value if $C$ and $\gamma$

are sufficiently large.

\S 5. Proof of the main theorem.

1. The Banach space $\mathfrak{B}\equiv Cl(\overline{G})$ and the closed sphere $\mathfrak{S}_{N}$ : Let a $(0<\alpha<1)$

be the constant in the lemma $A^{\prime}$ for the family of elliptic differential operators

\langle 24) $\rightarrow C^{(u)}\equiv\alpha_{?j}^{(u)}(x)\partial^{2}/\partial x_{i}\partial x_{j}$
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for any $u(x)\in C^{1}(\overline{G})$ as an index. Such an $\alpha C_{\vee}^{3}rtainly$ exists by virtue of
Assumption III b).

Let $N$ be a sufficiently large positive number which will be determined
later on. We denote by $\mathfrak{S}_{N}$ the closed sphere: $\Vert u\Vert_{1,\alpha}\leqq N$. It is clear that
the sphere $\mathfrak{S}_{N}$ is a convex, compact subset of B.

2. We define the function $h^{(u)}(x)$ by

(30) $h^{(u)}(x)-f^{(u)}(x)=(\frac{u(x)-\overline{\omega}(x)}{\frac{1+|_{u(x)-\underline{\omega}(x)}u(x)|+|\overline{\omega}(x)|0}{1+|u(x)|+|\underline{\omega}(x)|}}$ $providedprovidedprovidedu(x)\leqq\underline{\omega}(x)u(x)\geqq\overline{\omega}(x)\underline{\omega}(x)<u(x)<\overline{\omega}(x)$ ,

for any function $u(x)$ in $\mathfrak{S}_{N}$ . Then we easily see that

(31) $|h^{(u)}(x)-f^{(u)}(x)|\leqq 1$ and hence $|h^{(u)}(x)|\leqq F+1+BN^{\theta}$ .
3. The mapping $\sigma$ : We define a mapping $9i$ from $\mathfrak{S}_{N}$ into $\mathfrak{B}$ in the follow-

ing way:
Let $u(x)$ be in $\mathfrak{S}_{N}$ . Then the Dirichlet problem $[D_{\varphi}(u)]$–to seek functions

$U(x)$ in $C^{2}(\overline{G})$ satisfying
the differential equation

(32) $a_{ij}^{ru)}(x)\partial^{2}U/\partial x_{i}\partial x_{j}+b_{k}^{(u)}(x)\partial U/\partial x_{k}=h^{(u)}(x)$

in the domain $G$ , as well as
the boundary condition

(33) $U(x)=\varphi(x)$ on the boundary $\Gamma$ of $G$

–has one and only one solution $U(x)$ in $C^{2}(\overline{G})$ by virtue of Lemma C. We
define the mapping $Z$ by
(34) $U=\mathcal{G}(u)$ .

4. We shall show that $9^{\cdot}(\mathfrak{S}_{N})\subseteqq \mathfrak{S}_{N}$ for a suJficiently large $N$ By virtue of
Lemma $A^{\prime}$ for every $u(x)\in \mathfrak{S}_{N}$ (and $U=q(u)$ ) we obtain

(35) $\Vert U\Vert_{1,a}=\Vert 9^{\cdot}(u)\Vert_{1.\alpha}\leqq K(\Vert\varphi\Vert_{2}+\Vert h^{(u)}\Vert)$

$\leqq K(\Vert\varphi\Vert_{2}+F+1+BN^{\theta})\leqq N$

if we choose $N$ sufficiently large.

5. We insist that $x$ is continuous in $\mathfrak{S}_{N}$ : To prove this, let $u_{1}(x)$ be a fixed
element of $\mathfrak{S}_{N}$ and let $u(x)$ by any in $\mathfrak{S}_{N}$ . And let us denote by $\overline{X}^{(u)}$ the differ-
ential operator
(36) $a_{if}^{(u)}(x)\partial^{2}/\partial x_{i}\partial x_{j}+b_{k}^{(u)}(x)\partial/\partial x_{k}$ .
Then the function $V\equiv U_{1}-U=X(u_{1})-\mathscr{Z}(u)(\in C^{2}(\overline{G}))$ satisfies the differential
equation
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(37) $\Leftrightarrow\overline{C}^{(u)}(V)=(\overline{J}_{\Leftrightarrow}^{(u)}-C^{\overline{(}u_{1})})(U_{1})+h^{(u_{1})}(x)-h^{(u)}(x)$

in $G$ as well as the boundary condition
(38) $V(x)=0$ on the boundary $\Gamma$ .

Since $U_{1}$ is in $C^{2}(\overline{G})$ , the absolute value of the right side of (37) is less
than an arbitrary constant $\epsilon>0$ if $\Vert u-u_{1}\Vert_{1}\leqq\kappa$ for some $\kappa=\kappa(\epsilon, u_{1})>0$ . Hence,
by virtue of Lemma $A^{\prime}$ of \S 3 we get

(39) $\Vert V\Vert_{1.\alpha}\leqq K(\Vert 0\Vert_{2}+\epsilon)=K\epsilon$

for $u\in \mathfrak{S}_{N}$ such that $\Vert u-u_{1}\Vert_{1}\leqq\kappa$ , which is just to be proved.

6. As we have already seen in 4 and 5 $\xi T(\mathfrak{S}_{N})\subseteqq \mathfrak{S}_{N}$ and $q$ is continuous
in $\mathfrak{S}_{N}$ if we choose $N$ sufficiently large. Therefore by the well-known fixed
point theorem of Schauder-Tychonoff (see, $e$ . $g.$ , Dunford-Schwartz [4, p. 456])

there is at least a fixed element $u\in \mathfrak{S}_{N}$ under the mapping $9i,$ $i.e.$ ,

(40) $u=\xi\Gamma(u)$ .
Let $u(x)$ be one of the fixed points under the mapping $\xi\Gamma$. Then $u(x)$ sat-

isfies the differential equation

(41) $a_{ij}^{(u)}(x)\partial^{2}u/\partial x_{i}\partial x_{j}+b_{k}^{(u)}(x)\partial u/\partial x_{k}=h^{(u)}(x)$

in $G$ as well as the boundary condition
(42) $u(x)=\varphi(x)$ on $\Gamma$ .

By virtue of Lemma $E$ , the function $u(x)$ satisfies the inequalities

(43) $\underline{\omega}(x)\leqq u(x)\leqq\overline{\omega}(x)$

in the closure $\overline{G}$ . Hence we see that
(44) $h^{(u)}(x)=f^{(u)}(x)$

in $G$ . Therefore, the function $u(x)\in C^{2}(\overline{G})$ is a required solution of the Dirichlet
problem $[D_{\varphi}]$ :

$a_{ij}(x, u, gradu)\partial^{2}u/\partial x_{i}\partial x_{j}+b_{k}(x, u, gradu)\partial u/\partial x_{k}=f(x, u, gradu)$

in the domain $G$ and
$u(x)=\varphi(x)$ on the boundary $\Gamma$ of $G$ .

Thus we have established the theorem.

\S 6. The envelopes of solutions.

1. The envelope theorem: Under the same assumptions as in the Main
Theorem we obtain

THE ENVELOPE THEOREM. Let $\mathfrak{U}$ be the family of all solutions $u(x)$ in $C^{2}(\overline{G})$
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of the Dirichlet problem $[D_{\varphi}]$ such that $\underline{\omega}(x)\leqq u(x)\leqq\overline{\omega}(x)$ . Then
(45) $u_{SJp}(x)\equiv\sup u(x)$ $(u(x)\in \mathfrak{U})$

and
(45) $u_{\inf}(x)\equiv\inf u(x)$ $(u(x)\in \mathfrak{U})$

are solutions of the Dirichlet problem $[D_{\varphi}]$ .
PROOF. 1. According to Lemma $A^{\prime}$ there exist positive constants $K$ and

$\alpha(0<\alpha<1)$ , depending only on the quantity $A$ of (26), the shape of $G$ and
the least upper bound $Q$ of $|b_{k}^{(u)}(x)$ , such that

(46) $\Vert u\Vert_{1,\alpha}\leqq K(\Vert\varphi\Vert_{2}+\Vert f^{(u)}(x)\Vert)\leqq K(\Vert\varphi\Vert_{2}+F+B\Vert u\Vert_{1}^{\theta})$

for every $u(x)\in \mathfrak{U}$ . Hence there exists a constant $K_{1}$ such that
(47) $\Vert u\Vert_{1,a}\leqq K_{1}$ ,

for every $u(x)\in \mathfrak{U}$ . Hence by Lemma $C$ we get

(48) $\Vert u\Vert_{2,\beta}\leqq K_{0}(\Vert\varphi\Vert_{2.\sigma}+\Vert f^{(u)}(x)\Vert_{0,\alpha},)\leqq K_{*}$

with positive constants $K_{0},$ $K_{*}$ and $\beta$ independent of any special choice of
$u(x)\in \mathfrak{U}$ . Here $\alpha^{\prime}=\min(\alpha, \tau)$ and $\beta$ is a positive constant less than $\alpha^{\prime}$ and $\sigma$.
Hence the functions $u_{\sup}(x)$ and $u_{\inf}(x)$ are well-defined and continuous in $\overline{G}$ .

$2^{o}$ . Let $\{u_{k}(x)\}_{k=1}^{\infty}$ be an increasing sequence of functions in 1\ddagger , and let us
set $u(x)=\lim u_{k}(x)$ . Then, according to (48) there exists a subsequence $\{u_{k^{\prime}}(x)\}$

such that $k\rightarrow\infty the$ sequence $\{u_{k},(x)\}$ converges uniformly in $\overline{G}$ to the function $u(x)$

with their derivatives up to the second order.
Hence we see that the limit function $u(x)$ is also in $\mathfrak{U},$

$i$ . $e.$ , a solution in
$C^{2}(\overline{G})$ of the Dirichlet problem $[D_{\varphi}]$ .

3. Let $\{r_{l}\}_{l=1}^{\infty}$ be the set of all rational points of $G$ . Then we can choose
a sequence $\{u_{k}^{(l)}(x)\}_{k=1}^{\infty}$ in $\mathfrak{U}$ such that $u_{k}^{(l)}(r_{l})\uparrow u_{3}up(r_{l})(l=1,2,3, \cdots)$ . First we set
$\tilde{u}_{1}(x)=u_{1}^{(1)}(x)$ . Next we set
(49) $\underline{\lambda}_{2}(x)=\max(\tilde{u}_{1}(x), u_{2}^{(1)}(x),$ $u_{2}^{(2)}(x))$ .
Then $\underline{\lambda}_{2}(x)$ is a quasi-supersolution in $G$ and satisfies the condition $\underline{\omega}(x)\leqq\underline{\lambda}_{2}(x)\leqq$

$\overline{\omega}(x)$ in $\overline{G}$ . According to the main theorem there exists a solution $\tilde{u}_{2}(x)$ in $\mathfrak{U}$

such that
(50) $\underline{\lambda}_{2}(x)\leqq\tilde{u}_{2}(x)\leqq\overline{\omega}(x)$ .

By induction we can choose an increasing sequence $\{\tilde{u}_{k}(x)\}_{k=1}^{-}$ in $\mathfrak{U}$ such that
(51) $\underline{\lambda}_{k}(x)\leqq\tilde{u}_{k}(x)\leqq\overline{\omega}(x)$ ,
where
(52) $\underline{\lambda}_{k}(x)=\max(\tilde{u}_{k-1}(x), u_{k}^{(1}(x),$ $\cdots,$

$u_{k}^{(k)}(x))$ .
By the construction we see that

(53)
$\lim_{k\rightarrow\infty}\tilde{u}_{k}(r_{\iota})=u_{\grave{\backslash }}up(r,)$

$(l=1,2,3, \cdots)$ .
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The limit function $u(x)$ of the sequence $\{\tilde{u}_{k}(x)\}_{k\Leftarrow 1}^{\infty}$ is also in $\mathfrak{U}$ according to the
2. Since $u(x)$ and $u_{up}\neg,(x)$ are both continuous in $\overline{G}$ and coincide at all rational
points of $\overline{G}$ , we see that

$u(x)\equiv u_{\sup}(x)$

in the closure $\overline{G}$ . Thus we have shown that $u_{\sup}(x)$ is in U.
Simialarly the function $u_{\inf}(x)$ will be verified to be in U.

2. A theorem of Perron type: We shall show an analogous theorem to
Perron’s theorem concerning harmonic functions.

A THEOREM OF Perron TYPE. Let $\Lambda^{-}be$ the family of all quasi-supersolutions
$\overline{\lambda}(x)$ such that $\overline{\lambda}(x)\leqq\overline{\omega}(x)$ in $\overline{G}$ and $\overline{\text{\‘{A}}}(x)\geqq\varphi(x)$ on the boundary $\Gamma$ of $G$ , and let
4 be the family of all quasi-subsolutions $\underline{\lambda}(x)$ such that $\underline{\lambda}(x)\geqq\underline{\omega}(x)$ in $\overline{G}ond\underline{\lambda}(x)\leqq$

$\varphi(x)$ on $\Gamma$ . Then for any $\overline{\lambda}_{0}(x)\in\Lambda^{-}$

$u_{*}(x)\equiv\sup\underline{\lambda}(x)$ $[\underline{\lambda}(x)\in\underline{\Lambda};\underline{\lambda}(x)\leqq\overline{\lambda}_{0}(x)]$

is a solution of the Dirichlet problem $[D_{\varphi}]$ . And the similar statement for the
function

$u^{*}(x)\equiv\inf\overline{\lambda}(x)$ $[\overline{\lambda}(x)\in\overline{\Lambda};\overline{\lambda}(x)\geqq\underline{\lambda}_{0}(x)]$

is valid.
PROOF. For each $\underline{\lambda}(x)\in\underline{\Lambda}$ such that $\underline{\lambda}(x)\leqq\overline{\lambda}_{0}(x)$ in $\overline{G}$ there exists a solution

$u_{\underline{/}}\cdot(x)$ in $\mathfrak{U}$ satisfying the inequalities

$\underline{\lambda}(x)\leqq u_{\underline{\lambda}}(x)\leqq\overline{\lambda}_{0}(x)$

in $G$ , by virtue of the main theorem. Hence the function $u_{*}(x)$ can be written
in the form

$\sup u_{4}(x)$ $[\underline{\lambda}(x)\in\underline{\Lambda};\underline{\lambda}(x)\leqq\overline{\lambda}_{0}(x)]$ .
According to the envelope thcorem we see that $u_{*}(x)$ is in U. Thus we have
established the theorem.

\S 7. A Theorem of Peano Type.

1. In the Cauchy problem (the initial value problem) of the general ordi-
nary differential equation

(54) $\left\{\begin{array}{l}y^{\prime}=f(t,y),\\y(0)=y_{0},\end{array}\right.$

$0\leqq t\leqq t_{0}$ ,

it is well-known that there exist two solutions $y_{\max}(t)$ and $y_{\min}(t)$ of the problem
such that for any solution $y(t)$ of the problem the inequalities

(55) $y_{\max}(t)\geqq y(t)\geqq y_{\min}(t)$

are valid in $0\leqq t\leqq t_{0}$ , provided that $f(t,y)$ is continuous and bounded in $ 0\leqq t\leqq$

$t_{0},$ $|y|<\infty$ . Furthermore all other solutions than $y_{\max}(t)$ and $y_{\min}(t)$ fill the gap
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between $y_{\max}(t)$ and $y_{\min}(t)$. See, $e$ . $g.$ , M. Hukuhara [7, p. 59, Theorem 21.1],
or E. Kamke [8, p. 67].

2. Similar circumstances to paragraph 1 occur in the Dirichlet problem for
second order elliptic differential equations. (I. Hirai and the author [5] have
already proved generalized Peano’s theorem for the Dirichlet problem concern-
ing semilinear elliptic equation.) In this paragraph we shall prove a theorem
of this type for quasi-linear elliptic equations.

Now, we return to the Dirichlet problem $[D_{\varphi}]$ . In this section we require
the following assumptions which are more restricted than the ones given in \S 4.

We shall consider the differential equation

(56) $a_{ij}(x, gradu)\partial^{2}u/\partial x_{i}\partial x_{j}+b_{k}(x, gradu)\partial u/\partial x_{k}=f(u, u, gradu)$

in the domain $G$ . We set the following

Assumptions:

I’. The coefficients $a_{ij}(x, q),$ $b_{k}(x, q)$ are defined and bounded in 9*: $x\in\overline{G}$ ,
$|q|<\infty$ , while the free term $f$ is defined in 9: $x\in\overline{G},$ $|u|<\infty,$ $|q|<\infty$ . And
the $a_{ij},$

$b_{k}$ (the f) are Holder-continuous with an exponent $\tau(0<\tau<1)$ in
every compact subset of 9* (of 9).

II’. The function $\varphi(x)$ is assumed to be in $C^{2,\sigma}(\overline{G})$ with a certain $\sigma(0<\sigma<1)$ .
IIIi. The family of differential operators defined by

(57) $\rightarrow C^{(u)}\equiv a_{ij}(x, gradu(x))\partial^{2}/\partial x_{i}\partial x_{j}$

for all $u(x)\in C^{1}(\overline{G})$ is assumed to be a suitable set of elliptic operators of com-
plete type.

IV’. a) The free term $f(x, u, q)$ is non-decreasing with respect to $u,$
$i$ . $e.$ ,

(58) $f(x, u, q)\leqq f(x,\overline{u}, q)$ provided $u<\overline{u}$ .
b) For every $M>0$ there are three non-negative constants $B_{M},$ $F_{M}$ and $\theta$

$(0<\theta<1)$ such that
$|f(x, u, q)|\leqq B_{M}|q|^{\theta}+F_{M}$

provided that $x\in\overline{G},$ $|u|\leqq M,$ $|q|<\infty$ .
Further, without loss of generality, we may assume that the domain $G$ is

in the half space $x_{1}>0$ . Let $C$ and $\gamma$ be sufficiently large positive numbers
such that $C\gamma e^{-\mathcal{T}x_{1}}\geqq 1$ in $\overline{G}$ . Then the functions

(59) $\overline{\omega}(x)=C(2-e^{-\gamma x_{1}})$

and
(59) $\underline{\omega}(x)=-C(2-e^{-Tx_{1}})$

satisfy in $G$ the differential inequalities

(60) $a_{ij}^{(u)}(x)\partial^{2}\overline{\omega}/\partial x_{i}\partial x_{j}+b_{k}^{(u)}(x)\partial\overline{\omega}/\partial x_{k}<f(x,\overline{\omega}, grad\overline{\omega})$
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and
(60) $a_{ij}^{(u)}(x)\partial^{2}\underline{\omega}/\partial x_{i}\partial x_{j}+b_{k}^{(u)}(x)\partial\underline{\omega}/\partial x_{k}>f(x,\underline{\omega}, grad\underline{\omega})$

as well as the inequalites

(61) $\underline{\omega}(x)\leqq-|\varphi(x)|\leqq|\varphi(x)|\leqq\overline{\omega}(x)$

on the boundary $\Gamma$ provided that the positive constants $C$ and $\gamma$ are suitably
chosen.

Under Assumptions I’-IV’, we get
A THEOREM OF Peano TYPE. There exist two solutions $u_{\max}(x)$ and $u_{\min}(x)$

of the Dirichlet problem $[D_{\varphi}]$ such that for any solution $u(x)$ in $C^{2}(\overline{G})$ of the pro-
blem $[D_{\varphi}]$ the inequalities

$u_{\min}(x)\leqq u(x)\leqq u_{\max}(x)$

are valid in the closure $\overline{G}$ of G. Further, all solutions other than $u_{\min}(x)$ and
$u_{\max}(x)$ fill the gap between $u_{\min}(x)$ and $u_{\max}(x)$ .

REMARK. In the paragraph 4 of this section the author will give a con-
crete example for this theorem.

PROOF. 1’. Let $\mathfrak{U}^{*}$ be the family of all solutions in $C^{2}(\overline{G})$ of the Dirichlet
problem $[D_{\varphi}]$ . Then for any $u(x)\in \mathfrak{U}^{*}$ the inequalities

(62) $\underline{\omega}(x)\leqq u(x)\leqq\overline{\omega}(x)$

are valid in $G$ , where $\underline{\omega}(x)$ and $\overline{\omega}(x)$ are functions given by (59) and (59) with
suitably chosen $C$ and $\gamma^{12)}$ . The existence of the solutions $u_{\max}(x)$ and $u_{\min}(x)$

is just a restatement of the envelope theorem.

2. Let $u_{i}(x)(i=1,2)$ be in $\mathfrak{U}^{*}$ such that $u_{1}(x)\leqq\iota t_{2}(x)$ and let $c\leqq 0$ be the
maximum of the function $u_{2}(x)-u_{1}(x)$ in $\overline{G}$ . Then

$\overline{\lambda}(x)=\min(u_{1}(x)+c/2, u_{2}(x))$

and
$\underline{\lambda}(x)=\max(u_{1}(x), u_{2}(x)-c/2)$

are a quasi-supersolution in $G$ and a quasi-subsolution in $G$ respectively. Hence,
according to the main theorem, there exists a solution $u(x)$ in $C^{2}(\overline{G})$ such that

$\underline{\lambda}(x)\leqq u(x)\leqq\overline{\lambda}(x)$

in $\overline{G}$ . The solution $u(x)$ , therefore, satisfies the condition
$u_{1}(x)\leqq u(x)\leqq u_{1}(x)+c/2$ , and $u_{2}(x)-c/2\leqq u(x)\leqq u_{2}(x)$

in $\overline{G}$ .

12) Suppose $c_{0}>0$ be the maximum of $u(x)-\overline{\omega}(x)$ in $G^{-}$ Then, at a maximum point
$x_{0}$ , we would get

$0\geqq a_{ij}^{(u)}(x)\partial^{2}(u-\overline{\omega})/\partial x_{i}\partial x_{j}>f(x_{0}, u(x_{0}),$ $gradu(x_{0}))-f(x_{0,\overline{\omega}}(x_{0})grad_{\overline{\omega}}(x_{0}))>0$

since $grad\overline{\omega}(x_{0})=gradu(x_{0})$ . This is absurd.
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3. From the preceding discussion we see that for any pair $(x^{*}, u^{*})$ such
that $x^{*}\in\overline{G}$ and $u_{k}(x^{*})\leqq u^{*}\leqq u_{2}(x$“ $)$ there exists a sequence of solutions $\{u_{k}(x)\}_{k=1}^{\infty}$

in $\mathfrak{U}^{*}$ such that $\lim_{k\rightarrow\infty}u_{k}(x^{*})=u^{*}$ . From (48) in the proof of the envelope theorem
there exists a subsequence $\{u_{k},(x)\}$ such that the subsequence converges uni-
formly in $\overline{G}$ to a function $u(x)$ with their derivatives up to the second order.
The function $u(x)$ is easily seen in $\mathfrak{U}^{*}$ and satisfies the condition $u(x^{*})=u^{*}$ .

4. The procf of Theorem follows immediately from $2^{o}$ and 3 if we set
$u_{1}(x)\equiv u_{\min}(x)$ and $u_{2}(x)\equiv u_{\max}(x)$ .

3. COROLLARY 1. Let $u_{i}(x)\in \mathfrak{U}^{*}(i=1,2)$ be such that $u_{1}(x)\leqq u_{2}(x)$ in G. And
let $(x^{*}, u^{*})$ be any pair with the properties that $x^{*}\in\overline{G},$ $u_{1}(x^{*})\leqq u^{*}\leqq u_{2}(\mathscr{S})$ . Then
there exists a function $u(x)\in \mathfrak{U}^{*}$ which satisfies the inequahties

$u_{1}(x)\leqq u(x)\leqq u_{2}(x)$

in $\overline{G}$ as well as the additional condition $u(x^{*})=u^{*}$ .
The proof follows from 2 and 3 in the proof of the theorem.

COROLLARY 2. Suppose the solution of the Dirichlet problem $[D_{\varphi}]$ is not unique.
Then lhere exists a positive constant $\delta$ such that the solution of the Dirichlet problem
$[D\psi]$ is not unique provided that $|\varphi(x)-\psi(x)|<\delta$ on the boundary $\Gamma$ .

PROOF. Let $\tilde{u}_{1}(x)$ and $\tilde{u}_{2}(x)$ be the maximal and the minimal solution of the
1Dirichlet problem $[D_{\varphi}]$ and let $\delta=4^{-\max(\tilde{u}_{1}(x)-\tilde{u}_{2}(x))}(>0)$ . Suppose that $\psi(x)$

is in $C^{2,\sigma}(\overline{G})$ with some $\sigma(0<\sigma<1)$ and satisfies the inequality $|\psi(x)-\varphi(x)|<\delta$

on $\Gamma$ .
Since $\tilde{u}_{2}(x)+\delta$ and $\tilde{u}_{1}(x)-\delta$ are a quasi-supersolution and a quasi-subsolution

in $G$ , there exist two solutions $u_{1}(x)$ and $u_{2}(x)$ of the Dirichlet problem $[D\psi]$

such that
$ lt_{1}(x)\geqq\tilde{u}_{1}(x)-\delta$ and $ u_{2}(x)\leqq\tilde{u}_{2}(x)+\delta$

in $G$ . But at the maximum point $x_{0}$ of the function $\tilde{u}_{1}(x)-\tilde{u}_{2}(x)$ we get

$u_{2}(x_{0})\leqq\tilde{u}_{2}(x_{0})+\delta<\tilde{u}_{1}(x_{0})-\delta\leqq u_{1}(x_{0})$ ,

which shows that $n_{1}(x)$ and $u_{2}(x)$ are mutually different solutions of the Dirichlet
problem $[D\psi]$ .

COROLLARY 3. Let $\varphi(x)$ be in $C^{2.\sigma}(\overline{G})$ for some $\sigma,$
$0<\sigma<1$ and assume that

the solution of the Dirichlet problem $[D_{\varphi}]$ is unique. Let $u(x)$ be the unique solu-
tion of the problem $[D_{\varphi}]$ and let $\tilde{u}(x)$ be any solution in $C^{2}(\overline{G})$ of the differential
equation (1). If $\epsilon\geqq 0$ and

$\epsilon\geqq\tilde{u}(x)-\varphi(x)$ $(\tilde{u}(x)-\varphi(x)\geqq-\epsilon)$

on the boundary $\Gamma$ of $G$ , then the inequality

$\epsilon\geqq\tilde{u}(x)-u(x)$ $(\tilde{u}(\dot{\chi})-\iota t(x)\geqq-\epsilon)$
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is valid in $\overline{G}$ .
REMARK. This corollary indicates that the uniqueness of solutions induces

the weak maximum principle. (The converse is evidently true.)

PROOF. Suppose $\tilde{u}(x_{0})>u(x_{0})+\epsilon$ at some point $x_{0}$ of $G$ . Since $\tilde{u}(x)-\epsilon$ is a
quasi-subsolution in $G$ there would exist a solution $v(x)$ of the Dirichlet problem
$[D_{\varphi}]$ such that $ v(x)\geqq\tilde{u}(x)-\epsilon$ . But, by virtue of the uniqueness of the Dirichlet
problem $[D_{\varphi}]$ , we would get $v(x)\equiv u(x)$ and hence $ u(x_{0})\geqq\tilde{u}(x_{0})-\epsilon$, which is
absurd.

4. An example: We shall consider the following
Dirichlet problem [D]:

Domain $G$ : $1<|x|<3$ ,

Differential equation: $\Delta u=(n-1)x_{k}\partial u/\partial x_{k}/|x|^{2}+\sqrt{|gradu|}13)$

Boundary condition: $u(x)\Rightarrow 0$ on $|x|=1$ and $|x|=3$ .
Then we get the following results:

Maximal solution: $u_{\max}(x)\equiv 0$ .
Minimal solution: $u_{\min}(x)=\{||x|-2|^{3}-1\}/12$ .
A family of solutions

$u_{0_{J}}(x)=\left\{\begin{array}{l}\{||x|-1-a|^{3}-a^{3}\}/12 for 1\leqq|x|\leqq 1+a,\\0 for 1+a<|x|<3-a,\\\{||x|-3+a|^{3}-a^{3}\}/12 for 3-a\leqq|x|\leqq 3,\end{array}\right.$

with $0<a<1$ fill the gap between $u_{\max}(x)$ and $u_{\min}(x)$ when $a$ moves in the
interval $(0,1)$ .

PROOF. Let $u(x)$ be any solution in $C^{2}(\overline{G})$ of the problem $[D]$ . Then, by
virtue of Lemma $B$ , we get $u(x)\leqq 0$ . Hence the identically $z$ero function is the
maximal solution of $[D]$ .

Next let $\epsilon$ be an arbitrary small positive number and consider the function

$v_{\epsilon}(x)\equiv\frac{1}{12}\{||x|-2|^{3}-1\}+\frac{\epsilon}{2}\{(|x|-2)^{2}-1\}$ .

The function $v_{\epsilon}(x)$ satisfies in $G$ the differential inequality

$\Delta v_{e}-(n-1)x_{k}\partial v_{\epsilon}/\partial x_{k}/|x|^{2}=v_{\epsilon}^{\prime\prime}=\frac{1}{2}||x|-2|+\epsilon$

$>\sqrt{\frac{1}{4}(|x|-2)^{2}+\epsilon||x|-2|}\geqq\sqrt{|v_{\epsilon}^{\prime}|}=\sqrt{|gradv_{\epsilon}|}$ ,

where we denote by $v_{\epsilon}^{\prime}$ and $v_{\epsilon}^{\prime\prime}$ the derivatives of $v_{e}$ with respect to $r=|x|$ .
Again, let $u(x)$ be any solution of $[D]$ . Then we get

$v_{\epsilon}(x)\leqq u(x)$

13) $\Delta$ is the Laplacian $\delta_{ij}\partial^{2}/\partial x_{i}\partial x_{q}$ .
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in $\overline{G}$ , for otherwise we would get an absurdity
$\Delta(u-v_{\text{\’{e}}})>0$

at positive maximum points of the function $u(x)-v_{\epsilon}(x)$ . Thus we have shown
that

$u_{\min}(x)=\{||x|-2|^{3}-1\}/12$

is the minimal solution of the problem $[D]$ .
University of Tokyo
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