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§1. Introduction. Like the canonical languages of Post [2], [3] elemen-
tary formal systems (as they are to be definad) provide a direct characteriza-
tion of recursive enumerability for sets (and relations) of formal exptessions,
without recourse to Godel numbering.®> In this paper we develop just enough
of the theory of these systems to construct a “ universal ” system and to prove
its recursive unsolvability. This proof is of unusual brevity ; no number theory
is employed, and the Post normal form theorem for canonical systems is circum-
vented.

§ 2. Elementary formal systems. For any finite alphabet K we define an
elementary formal system (E) over K as a collection of the following items: (i)
the alphabet K; (ii) A new alphabet of symbols called variables; (iii) another
alphabet of symbols called predicates, each of which is assigned a unique posi-
‘tive integer called itsdegree; (iv) two more symbols — and ,; (v) A finite set
A, -+, A, of expressions which are (well formed) formulas, according to the
definition given below ; these strings are called the axioms of the system (E).

By a term of (E) we mean any string composed of symbols of K and vari-
ables (or either one alone). By an atomic formula of (E) we mean an expres-
sion of the form P¢,---,¢,, where ¢, ,¢, are terms and P is a predicate of
degree n. By a (well formed) formula of (E) we mean either an atomic formula
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2) 'This paper is a condensation of Chapter 1 of the author’s forthcoming monograph
[1]. We are publishing it separately, since it forms a completely self contained unit,
designed to give the general reader a quick insight into the essential nature of unde-
cidability arguments.

3) Our systems offer certain technical advantages over those of Post, in that their
structure is simpler to describe and their techniques are particularly simple to apply.
Lct. [1] for a complete development of recursive function theory from the viewpoint of
elementary formal systems.] The “productions” of Post (whose definition involves a
cumbersome metamathematical notation) are replaced by substitution and modus
ponens, as sole rules of inference. Thus these 2 familiar logistic rules suffice for the
construction of «// formal mathematical systems.
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F, or an expression of the form F,— F,— --- —F,, where each F; is atomic; in
such an expression, F, is called the conclusion and F,,---, F,_, are called the
premisses. [In the intended interpretation, the symbol “ — " stands for implica-
tion with association to the right; e.g. Fy,—F,—F; is to be read “F, and F,
together imply F,” or “F, implies that F, implies F;”].

A (well formed) formula X of (E) is said to be provable in (E) or a theorem
of (E) iff X is either an axiom of (E) or else is obtainable from the axioms of
(E) by finitely many applications of the 2 rules: (i) to substitute any (non-
empty) string in K for (all occurrences of) any variable ; (ii) to infer X, from
X, and X,;— X, providing X; is atomic. [The reason for this proviso is that
implication is associated to the right; a formula X, — X, can be read “ X, im-
plies X,” only if X, is atomic].

A predicate P of desgree n is said to represent the set of all n-tuples (X, -,
X,) (of strings in K) such that PX,, -+, X, is provable in (E). A set, or rela-
tion, W of strings in K is called formally vepresentable over K iff there exists
an elementary formal system (E) over K in which W is represented by some
predicate.” A mathematical system (M) in an alphabet K can now be called
Sformal or finitary iff its set of theorems is formally representable over K.

§ 3. Recursive enumerability. Just as any non-negative integer is uniquely
expressible as a polynomial in powers of 2 with coefficients 0 and 1, so is any
positive integer uniquely expressible as a polynomial in powers of 2 with coef-
ficients 1 and 2. We let D be the 2-sign alphabet {1,2}; these 2 symbols we
call dyadic digits;, any string a,a._, -~ a1a, of dyadic digits is called a dyadic
numeral. This numeral is identified with the positive integer a,+2a,+4a,+ ---
+2"2,.2 Any set (or relation) A of positive integers shall be identified with
the corresponding set (or relation) of dyadic numerals. We call A recur-
sively enumerable (abbreviated r.e.) iff A is formally representable over D.?

4) Formal representability of W is equivalent to representability in a Post canonical
system, which in turn is equivalent t% ¥ecursive enumerability (under any of the stan-
dard Goédel numberings). The equivalence of formal representability to Post’s canonical
representability is substantiated in [1]. The following interesting question arises: If
K is a sub-alphabet of L and if W is a set (or relation) of strings in K and if W is
formally representable over L, is W necessarily formally representable over K? We
answer this question affirmatively in [1].

5) Other characterizations of formal systems, also basically along the lines of Post,
have been provided by Markov [4] and Lorenzen [5].

6) Our choice of 1 and 2, rather than 0 and 1, is made for certain technical reasons.
Our program could (with minor modifications) also be carried out using 0 and 1 (cf.
[7D.

7) Our choice of 2 as a base is one of convenience rather than necessity. Post’s
definition of recursive enumerability used 1 as a base. In we show that our defi-
nition of recursive enumerability is invariant under change of base.
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And A is called recursive iff both A and its complement A are r.e. [If A is a
relation of degree %, then A is understood to be the complement of A relative
to the sat of all n-tuples of numbers (positive integers).]

§4. A universal system. We now wish to construct a so-called universal
system U in which we can, so to speak, express all propositions of the form
that such and such a number is in such and such a recursively enumerable set.

Preparatory to the construction of U, we need a device for “ transcribing”
all elementary formal systems over D into one finite alphabet. We take 3
symbols: v,’,p. By a transcribed variable we mean any of the strings ¢/,v”,
v'"’, etc.; by a iranscribed predicate we mean a string of p’s followed by a
string of accents ; the number of p’s is to indicate the degree of the predicate.
We now define a franscribed system to be a system like an elementary formal
system over D, except that we use transcribed variables and transcribed pre-
dicates in place of individual symbols for variables and predicates. It is obvious
that representability in a transcribed system is equivalent to representability
in a system which is not transcribed. We use the terms “ transcribed term?”,
“ transcribed (well formed) formula” in their obvious contexts. For any tran-
scribed formulas X, X,, -, X,, Y, we say that Y is derivable from X,, -, X,
iff Y is provable in that transcribed system whose axioms are X, -, X,.

We now construct the system U.® The alphabet K, of U shall consist of
the nine symbols: 122/ p, — *—. We refer to these signs as the 1st, 2nd, ---,
9th symbols of U respectively. [The first seven are used for constructing all
transcribed systems.] The sentences of U shall be all expressions of the form
X* X% - *X,— Y, where X, X,, -+, X,,, Y are transcribed well formed formulas.
[For =1 the expression is of the form X,— Y.] Such a sentence shall be
called true in U iff Y is derivable from X, -+, X,. We let T be the set of all
true sentences. By a predicate H of U (not to be confused with a transcribed
predicate) we mean an expression of the form X*---*X,~ P, where X,, -, X,
are transcribed formulas and P is a transcribed predicate ; the degree n of H
is, by definition, that of P. This predicate H is said to represent (in U) the
set of all n-tuples (¢, -+, a,) of numbers such that P a,,a,, ---, a, is derivable
from X, --, X, —alternatively H represents in U the relation (or set) repre-
sented by P in that transcribed systems whose axioms are X, -, X, Thus
the number sets (and relations) representable in U are precisely those which
are recursively enumerable—- it is in this sense that U is called a “ universal ”
system for all r.e. sets and relations.

§ 5. The recursive unsolvability of U. As we have remarked, we are

8) The details of this construction differ a bit from those in [I]. We believe the
present version to be a slight improvement.
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identifying the positive integers with their corresponding dyadic numerals.
We let g1, g5 -+, &, be the respective numbers (numerals) 12,122, --- , 1222222222,
For any string X in the alphabet K;, we define its Godel number X, to be the num-
ber (numeral) obtained from X by substituting g, g, -, &s respectively for the
1st, 2nd, -+, 9th symbols of U. [E.g. the Godel number of v* 2 is 122212222122.7]
Our Godel numbering has the technical advantage of being an isomorphism
with respect to concatenation—i. e. for any strings X, Y in K, the Gédel num-
ber (XY) of XY is simply X,Y, (i.e. X, followed by Y,). For any set W of
strings in K, we let W, be the corresponding set of Godel numbers. Thus,
e. g., T, is the set of Godel numbers of all frue sentences of U.

The set 7'is formally representable over K, and the set 7T, is r.e. (we prove
this in the appendix). We now wish to show that the system U is recursively
unsolvable, in the sense that T, is not a recursive set. To show that the com-
plement 7, of T, is not recursively enumerable, we employ the following modi-
fication of Goédel’s well known diagonalization agreement.

For any string X in K, we define its norm to be the string XX, —i.e. X
followed by its own Go6del number (numeral). [We might note that if X is a
predicate of U of degree 1, then the norm of X is a sentence which is true
in U iff the Gédel number of X lies in the set represented by X.79 Every
number #» (looked at as a dyadic numeral) itself has a Godel number #, (e.g.
the Godel number of 121 is 1212212), and hence also a norm #n %, For any
number set A we define A* to be the set of all numbers whose norm is in A.
Thus n e A* iff nn,= A

Lemma. If Ais 7.e., so is A%

Proor. Let (E) be an elementary formal system over D in which the pre-
dicate P represents A. We add a new unary predicate @ and a new binary
predicate G and the new axioms:

G1,12

G2,122

Gx,y— Gz, w— Gxz, yw

Gx, y— Pxy— Qx
[x,y,z w are variables]

Then G represents the set of all ordered pairs (x,y) such that x,=y and
@ represents A*.

Prorosition 1. For every v.e. set A theve is a sentenre X such that X is
true (in U) ioff its Godel number X, is in A. (and hence also: X, T,« X, € A).

Proor. Let A be r.e. Then so is A* by the above lemma. Then A* is
represented in U by some predicate H: Then for every number #,

9) This notion of “norm” plays here a role quite analogous to that in [£]
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Hn is true—n e A*
onn, e A.
Satting # = A, where % is the Godel number of H, we have:
Hh is true—hh, s A.

However h%, is the Godel number of the sentence HA. Therefore Hi: is true
iff its own Godel number is in A.

says, in effect, that every r.e. set A either contains some
element of 7, or lacks some element outside 7,. Since the complement T, of
T, cannot possibly have this property, it immediately follows that T, is not
r.e. We hence have

Tueorem 1. [After Post’s form of Church’s theorem]. The system U is
not recursively solvable.

Remarks. Theorem 1 means (intuitively) that there exists no “ mechanical ”
procedure to determine which numbers are in which recursively enumerable
sets. Given any stronger system (S)—i. e., one in which it is possible to “effec-
tively ” translate all sentences of U into sentences of (S) in such a manner as
to preserve both truth and falsity—it can be shown that (S) in turn must be
“undecidable ”. This approach has been utilized (for other formulations of U)
to establish Godel’s incompleteness theorem.

The sentence Hl constructed in our proof of Proposition 1 is a highly
simplified variant of Godel’s famous sentence which “refers” to its own Godel
number ; it can be thought of as expressing the proposition that its own Godel
number is in the set A. It was our purpose to capture the crucial ideal behind
Godel’s construction utilizing a bare minimum of formal machinery.

Appendix
Formal representability of 7 and T

In this appendix we prove that the set 7 of true sentences of U is for-
mally representable over K, and that 7, is r.e. We shall represent 7 in an
elementary formal system (E) over K,. We first note that the implication sign
of (E) is to be distinct from the implication sign of transcribed systems. We
could continue to use “— " for the latter ; we prefer however to use “—" to
denote the implication sign of (E) (since it will occur so frequently), and we
shall now denote the implication sign of transcribed systems by “imp”. Simi-
larly we shall now use the ordinary comma for our punctuation sign of (E),
and “com” for the punctuation sign of transcribed systems. Variables of (E)
(not to be confused with transcribed variables) will be denoted by “x”,“y”,

¢

“z” “w”, with or without subscripts. Predicates of (E) (not to be confused
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either with predicates of U or transcribed predicates) will be introduced as
needed.

We now introduce the axioms of (E) in groups, first explaining what each
newly introduced predicate of (E) is to represent.

N represents the set of numbers (dyadic numerals).
N1
N2
Nx— Ny— Nxy

Acc represents the set of strings of accents
Acc’
Accx— Accx’

V represents the set of transcribed variables.
Accx— Vox

P represents the set of transcribed predicates.

Accx— Ppx
Px— Ppx

¢ represents the set of trancribed terms.
Nx—itx
Va—tx
Ix—ty—ixy

F, represents the set of transcribed atomic formulas.
Accx— ty— Fopxy
Fox—ty— Fypxcom y

F represents the set of transcribed formulas.
Fox—Fx
Fox— Fy— Fximpy

dv represents the relation “ x and v are distinct transcribed variables”.

vx— Accy— dox, xy

dvx, y—dvy, x
S represents the set of all quadruples (x, 9, z, w) such that x is any string (well
formed or not) which is compounded from numerals, transcribed variables,
transcribed predicates, com, imp; y is a transcribed variable, z is a numeral,
and w is the result of substituting z for all occurrences of y in x (that is, all
occurrences which are not immediately followed by more accents).

Nx— Vy— Nz—Sx, 9,2, %

Vx— Nz—Sx, %, 2,2

dvx,y— Nz—Sx, v, 2, x

Px—Vy—Nz—Sx,v,2,x

Vy— Nz— S com, ¥, z, com

Vy— Nz— Simp, y, z, imp

Sx, 9, 2, w—>Sx1, ¥, 2, W, —> SxXy, Yy 2, W,
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T represents the set of true sentences of U
Fx—Tx—x
Tx—y—Fz—Tx%z—y
Tx—y—Fz—>Tz%%—y
Tx—y—Sy, 2z, 25, w—Ix+—w
Tx—y—>Tx—yimpz—Fy—Tx—z
This completes the construction of the system (E) in which T is repre-

sented. To represent T, over {1,2}, just take all the above axioms and replace
each symbol of K, by its Giodel number.
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