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Introduction.

It is an important but difficult problem of topology to compute the coho-
mology groups of Postnikov complexes $K(\pi, n;k;G, n+q)$ . These cohomologv
groups become stable for large $n$ ; more precisely, $H^{n+i}(K(\pi, n;k;G, n+q);\Lambda)$

become independent of $n$ for sufficiently large $n$ . This “ limit group “ will be
denoted by

$A^{i}(\pi, k, G, q;\Lambda)=\lim H^{n+i}(K(\pi, n;k;G, n+q);\Lambda)$ .
The purpose of this paper is to.determine $A^{i}(\pi, k, G, 1;Z_{2})$ (which we shall
hereafter denote simply by $A^{i}(\pi, k, G;Z_{2}))$ for the case where each of $\pi,$ $G$ is
generated by one element. Our result will be given as Theorem in \S 3, after
some preparations in \S \S 1-2.

Our computation is based on some properties of secondary cohomology
operations as given in \S 2.

We shall indicate another geometrical method in the appendix.
In the case where $\pi=Z,$ $G=Z_{2},$ $\Lambda=Z_{2}$ and $q=1$ , the preoblem was solved

by H. Toda [9] by geometrical methods.
The author is greatly indebted to Professors S. Iyanaga and T. Yamano-

shita for their helpful suggestions and discussions. The author also wishes to
acknowledge his gratitude to Professors A. Komatu and H. Toda for having
called his attention to this problem and for their encouragement.

\S 1. Preliminaries.

1. Let $\pi,$
$G$ be abelian groups and $n,$ $q$ positive integers. A Postnikov

space $X(\pi, n;k;G, n+q)$ with an invariant $k\in H^{n+q+1}(\pi, n;G)$ can be considered
as a fibre space with the base space $c\chi(\pi, n)$ (Eilenberg-MacLane space) and the
fibre $X(G, n+q)$ :
(1.1) $cX(\pi, n;k;G, n+q)/X(G, n+q)=cjC(\pi, n)$ .
The projection and the inclusion of the fibering will be denoted by $p,$ $i$ respec-
tively. Then we have the following exact sequence associated with (1.1) for
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$i\leqq 2n+q-1$ :
$\tau$

$i^{*}$

(1.2) $...-H^{i+1}(\pi, n;Z_{2})-H^{i}(G, n+q;Z_{2})-H^{i}(\llcorner K(\pi, n;k;G, n+q);Z_{2})$

$p*$

$-H^{\ell}(\pi, n;Z_{2})-\cdots$ ,

where $\tau$ is the transgression.
It is known that the groups $H^{n+i}(c\chi(\pi, n;k;G, n+q);Z_{2})$ become stable for

sufficiently large $n$ . We denote this group by $A^{i}(\pi, k, G, q;Z_{2})$ and write

(1.3) $A^{*}(\pi, k, G, q;Z_{2})=\sum_{i=0}^{\infty}A^{i}(\pi, k, G, q;Z_{2})$ .
If we denote as usual by $A^{i}(\pi;Z_{2})$ the stable group $H^{n+i}(cX(\pi, n);Z_{2})$ for large
$n$ , then we have (1.2)

(1.4) $-A^{i+1}(\pi;Z_{2})A^{i-q}(G;Z_{2})\underline{\tau}-A^{i}(\pi, k, G, q;Z_{2})$

$i^{*}$

$p*$

$-A^{i}(\pi;Z_{2})-\cdots$ .
We denote further by $A^{*}$ the Steenrod algebra

$A^{*}(Z_{2} ; Z_{2})=\lim H^{*}(Z_{2}, n;Z_{2})$ ,

in which the multiplication is defined by the composition of the squaring oper-
ations $Sq^{r}$ . The squaring operations in $A^{*}(\pi;Z_{2}),$ $A^{*}(G;Z_{2})$ and $A^{*}(\pi, k, G, q;Z_{2})$

define naturally the left $A^{*}$-module structure in these modules, and $\tau,$
$i^{*}\backslash ,$ $p*in$

exact sequence (1.4) are $A^{*}$-homomorphisms.
2. We need the following results on $A^{*}$ .
Let $\alpha\in A^{*}$ . The mapping $\beta\rightarrow\beta\alpha$ for every $\beta\in A^{*}$ will be denoted by $\alpha_{*}$.

Then we have the following exact $s\circ.quences$ (cf. H. Toda [9] and A. Negishi .
[4]).

$Sq_{*}^{1}\backslash $ $Sq^{1_{*}}$

(1.5) $ A^{*}\rightarrow$ $A^{*}$ $\rightarrow A^{*}$ ,

(1.6)
$A^{*}\rightarrow^{Sq^{2_{*}}}$

$A^{*}$
$\rightarrow A^{*}/A^{*}Sq^{1}Sq^{2_{*}}$

,

(1.7)
$A^{*}/A^{*}Sq^{1}\rightarrow^{Sq^{3_{*}}}$

$A^{*}$

$\rightarrow A^{*}Sq_{*}^{2}$

(1.8) $A^{*}/A^{*}Sq^{1}\rightarrow A^{*}/A^{*}Sq^{1}Sq_{*}^{5}\rightarrow A^{*}Sq^{3_{*}}$

(1.9)
$-4^{*}/A^{*}Sq^{1}\rightarrow A^{*}/A^{*}Sq^{1}Sq^{s_{*}}\rightarrow A^{*}/A^{*}Sq^{1}Sq_{*}^{3}$ ,

(1.10) $A^{*}\rightarrow A^{*}/A^{*}Sq^{1}Sq_{*}^{2}\rightarrow A^{*}/A^{*}Sq^{1}Sq_{*}^{5},$ .
3. We shall use the following results on derived Bockstein cohomology

operations.
Let
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(1.11)
$0\rightarrow Z_{2^{q}}\rightarrow^{f_{Q}}Z_{2^{q+1}}\rightarrow^{g_{q}}Z_{2}\rightarrow 0$

,

(1.12)
$0\rightarrow Z_{2}\rightarrow^{\prime}Z_{2^{q+1}}f_{q}\rightarrow^{\prime}Z_{2^{q}}g_{q}\rightarrow 0$

,

be exact sequences. The coboundary $op\circ.rators$ associated with (1.11), (1.12) are
denoted by $\delta_{q},$ $\delta_{q}^{\prime}$ respectively. Then derived Bockstein cohomology operations
$\Delta_{2}^{q}(q\geqq 1)$ were defined by T. Yamanoshita [10], such that for any pair of spaces
(X, $Y$).

(1.13) $\Delta_{2}^{q}$ : $H^{n}(X, Y;Z_{2})\cap Ker\Delta_{2}^{q-1}\rightarrow H^{n+1}(X, Y;Z_{2})/{\rm Im}\delta_{q-1}^{\prime}$ .
The following properties of $\Delta_{2}^{q}$ are known (cf. T. Yamanoshita [10]).

(1.14) $\Delta_{2}^{1}=Sq^{1}$ : $H^{n}(X, Y;Z_{2})\rightarrow H^{n+1}(X, Y;Z_{2})$ .
(1.15) The naturality $f^{*}\circ\Delta_{2}^{q}=\Delta_{\Delta}^{q}\circ f^{*}$ holds for homomorphisms $f^{*}$ of coho-
mology groups induced by a mapping $f$ : (X. $Y$ ) $\rightarrow(X^{\prime}, Y^{\prime})$ .
(1.16) $\Delta_{A}^{q}\circ\Delta=\Delta\circ\Delta_{2}^{q}$ for the coboundary homomorphism $\Delta$ of cohomology se-
quence.
(1.17) $\Delta_{2}^{q}\circ\tau=\tau\circ\Delta_{2}^{q}$ for the transgression $\tau$ .
(1.18) $\Delta_{2}^{r}\circ\Delta_{2}^{q}=0$ .

Let $E/F=B$ be a fibering of a space $E$ such that the local system formed
by $H^{i}(F;Z_{2})$ is trivial for each $i\geqq 0,$ $H^{i}(B;Z_{2})=0$ for $ 0<i<\lambda$ , and $H^{l}(F;Z_{2})$

$=0$ for $ 0<i<\mu$ . Let
$i^{*}$ $p*$ $\tau$

(1.19) $...-H^{i}(F;Z_{2})-H^{\dot{t}}(E;Z_{2})-H^{\dot{t}}(B;Z_{2})-H^{i-1}(F;Z_{2})-\cdots$

be an exact sequence associated with the above fibering, where $p$ is the pro-
jection, $i$ is the inclusion, and $\tau$ is the transgression $(1 \leqq i<\lambda+\mu)$ .

Then we have (cf. T. Yamanoshita [10] and H. Toda [9]) :
(1.20) For $\alpha\in H^{i}(F;Z_{2}),$ $\beta\in H^{i}(B;Z_{2})$ , assume that $\Delta_{2}^{r}\beta=\{\tau\alpha\}$ . Then there
is an element $\tilde{\alpha}\in H^{i+1}(E;Z_{2})$ such that $ i^{*}\tilde{\alpha}=Sq^{1}\alpha$ and $\Delta_{2}^{r+1}p^{*}\beta=\{\tilde{\alpha}\}r\geqq 1$ .
(1.21) For $\alpha\in H^{i}(E;Z_{2})$ , $\beta\in H^{i+1}(B;Z_{2})$ , assume that $\Delta_{\Delta}^{r}\alpha=\{p^{*}\beta\}$ . Then
$\tau\circ\Delta_{2}^{r+1}\circ i^{*}(\alpha)=\{Sq^{1}\beta\}$ .
(1.22) For $\alpha\in H^{i}(F;Z_{2}),$ $\beta\in H^{i+1}(B;Z_{2})$ , assume that $\tau\alpha=\beta$ , and $\beta\in Ker\Delta_{2}^{r-1}$ .
Then there are elements $\tilde{\alpha}\in H^{i+1}(E;Z_{2}),$ $\gamma\in H^{i-2}(B;Z_{2})$ such that $ i^{*}\tilde{\alpha}=Sq^{1}\alpha$ ,
$\Delta_{2}^{r}\beta=\{\gamma\}$ and $\Delta_{2}^{r-1}\tilde{\alpha}=\{p^{*}r\},$ $r\geqq 2$ .

\S 2. Certain secondary cohomology operations.

Let $i=^{\urcorner}\geq_{1}^{k_{\lrcorner}}\alpha_{i}\beta_{i}=0$ be a relation with homogeneous degree $m+1$ in $A^{*}$ , and $C$

be a graded left free $A^{*}$-module generated by symbols $[\beta_{i}]$ , where $\deg[\beta_{i}]=$

$\deg\beta_{i}=\nu_{i}$ :
$C=\sum_{i=1}^{k}A^{*}[\beta_{i}]$ .



Stable cohomology groups of Postnikov complexes 23

Let $(d, z)$ be a pair, where $disaA^{*}$ -map of degree zero from $C$ to $A^{*}$ defined
by $d[\beta_{i}]=\beta_{i}$ , and $z=\sum_{i=1}^{k}\alpha_{i}[\beta_{i}]$ .

For such a pair, J. F. Adams has defined axiomatically the stable secondary
cohomology operation $\Phi_{z}$ such that

(2.1) $\Phi_{z}$ : $H^{n}(X;Z_{2})_{\cap}Ker\beta_{1}\cap\cdots\cap Ker\beta_{k}\rightarrow H^{n+m}(X;Z_{2})/\sum_{t=1}^{k}{\rm Im}\alpha_{i}$ ,

for any space $X$.
We use the following results in [1].
a) If $\Phi,$ $\Phi^{\prime}$ are two operations associated with the same pair $(d_{;}z)$ , then

there is an element $\gamma$ in $(A^{*}/dC)$. such that
(2.2) $\Phi(u)-\Phi^{\prime}(u)=\{\gamma(u)\}$ ,

for $u\in H^{n}(X;Z_{2})\cap Ker\beta_{1}\cap\cdots\cap Ker\beta_{k}$ ,
b) Suppose $z=\sum_{t}a_{t}z_{t}$ , where $a_{t}\in A^{*},$ $z_{t}=\Sigma\alpha_{i,t}[\beta_{i}]$ and $dz_{t}=0$ , and let $\Phi_{t}$

be an operation associated with the pair $(d, z_{t})$ . Then there is an operation $\Phi$

associated with $(d, z)$ such that

(2.3) $\sum_{t}a_{t}\Phi_{t}(u)=\{\Phi(u)\}mod \sum_{i,t}{\rm Im} a_{t}\alpha_{i,t}$ ,

for $u\in H^{n}(X;Z_{2})\cap Ker\beta_{1}\cap\cdots\cap Ker\beta_{k}$ .
c) Let the following commutative diagram be given:

(2.4)
$\mu\downarrow_{d},\downarrow\mu^{\prime}A^{*}C\underline{d}$

$A^{*}-C^{\prime}$

in which $d,$ $d^{\prime}$ are as above, $C^{\prime}=\sum_{i=1}^{f}\alpha_{i^{\prime}}[\beta_{i^{\prime}}]$ , and $\mu,$
$\mu^{\prime}$ are $A^{*}$-maps with the

same degree. Let $\Phi$ be an operation associated with a pair $(d, z)$ . Then there
is an operation $\Phi^{\prime}$ associated with $(d^{\prime}, \mu^{\prime}z)$ such that
(2.5) $\Phi_{z}(\mu(u))=\{\Phi_{l^{l\prime}z}^{\prime}(u)\}$ ,

for $u\in H^{n}(X;Z_{2})_{\cap}Ker\beta_{1}^{\prime}\cap Ker\beta_{2}^{\prime}\cap\cdots\cap Ker\beta_{j^{\prime}}$ .
We put now:

$z(1,1)=Sq^{1}[Sq^{1}],$ $z(2,2)=Sq^{2}[Sq^{2}]+Sq^{3}[Sq^{1}],$ $z(3,3)=Sq^{o}\circ[Sq^{3}]+Sq^{5}[Sq^{1}],$ $z(1,3)$

$=Sq^{1}[Sq^{3}],$ $z(3,2)=Sq^{3}[Sq^{2}]$ and $z(5,3)=Sq^{5}[Sq^{3}]$ . Operations associated with
$z(1,1),$ $z(2,2),$ $z(3,3)$ are defined uniquely from c). We denote them with $\Phi(1,1)$ ,
$\Phi(2,2),$ $\Phi(3,3)$ respectively. We have $\Phi(1,1)=\Delta_{2}^{2}$ .

PROPOSITION 1.
1) $Sq^{1}\Delta_{2}^{2}u=0$ , for $u\in H^{n}(X;Z_{2})\cap KerSq^{1}$ .
2) i) $Sq^{2}\Phi(2,2)u=\Delta_{2}^{2}Sq^{4}u+Sq^{4}\Delta_{2}^{2}u$ mod ${\rm Im} Sq^{1}+{\rm Im} Sq^{4}Sq^{1}$ , for $ u\in H^{n}(X, Z_{2})\cap$

$Ker$ Sq’ $\cap KerSq^{2}$ .
ii) $\Phi(2,2)Sq^{2}u=\Phi(3,3)u+Sq^{4}\Delta_{2}^{2}u$ mod ${\rm Im} Sq^{2}+{\rm Im} Sq^{3}+{\rm Im} Sq^{4}Sq^{1}$ , for $ u\in$
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$H^{n}(X;Z_{2})\cap KerSq^{1}\cap KerSq^{3}$ .
3) i) $\Phi(3,3)u=\Delta_{2}^{2}Sq^{4}u$ mod Im Sq’,

ii) $Sq^{2}\Phi(3,3)u=\Delta_{2}^{2}Sq^{4}Sq^{2}u+Sq^{4}\Delta_{2}^{2}Sq^{2}u+Sq^{6}\Delta_{2}^{2}u$ mod ${\rm Im}$ Sq’ $+{\rm Im} Sq^{4}Sq^{1}+$

${\rm Im} Sq^{6}Sq^{1}$ , for $u\in H^{n}(X;Z_{2})_{\cap}Ker$ Sq’ $\cap KerSq^{3}$ .
PROOF. The proof of 1) is easily seen from (1.14) and (1.18).

The proof of 2), $i)^{*)}$ .
Consider the following commutative diagram

$d$

$A^{*}$ – $A^{*}[Sq^{1}]$

$\downarrow Sq^{4}d^{\prime}$ $\downarrow\mu^{\prime}$

$A^{*}$ – $A^{*}[Sq^{1}]+A^{*}[Sq^{2}]=C^{\prime}$

where $\mu^{\prime}$ is given by
$\mu^{\prime}[Sq^{1}]=Sq^{4}[Sq^{1}]+Sq^{2}Sq^{1}[Sq^{2}]$ .

Then we have
$\mu^{\prime}z(1,1)=Sq^{6}[Sq^{1}]+Sq^{3}Sq^{1}[Sq^{2}]$

$=Sq^{2}(Sq^{2}[Sq^{2}]+Sq^{3}[Sq^{1}])+Sq^{4}Sq^{1}[Sq^{1}]$

$=Sq^{2}z(2,2)+Sq^{4}z(1,1)$ .
From the above c), there is an operation $\Phi_{l}\alpha_{z(1,1)}$ associated with $\mu^{\prime}z(1,1)=$

$Sq^{2}z(2,2)+Sq^{4}z(1,1)$ such that
$\Delta_{2}^{2}Sq^{4}u=\Phi_{/z_{z(1,1)}},u$ mod ${\rm Im} Sq^{1}$ ,

for $u\in H^{n}(X;Z_{2})\cap Ker$ Sq’ $\cap KerSq^{2}$ .
On the other hand, from a) and b), there is an element $\gamma$ in $(A^{*}/d^{\prime}C^{\prime})_{5}$ such

that
$(Sq^{2}\Phi(2,2)+Sq^{4}\Delta_{2}^{2})u-\Phi_{\mu’ z(1,1)}u=\gamma u$ mod ${\rm Im}$ Sq’ $+{\rm Im} Sq^{4}Sq^{1}$ .

But, we have $(A^{*}/d^{\prime}C^{\prime})_{5}=0$ , and so $\gamma=0$ . This yields. the result 2), i).

In the same way, we can also prove the relations 2), ii) and 3), i). We
omit the proofs of them.

Using the results 2), i) and ii), we have
$Sq^{2}\Phi(3,3)u=Sq^{2}\Phi(2,2)\cdot Sq^{2}u+Sq^{2}Sq^{4}\Delta_{2}^{2}u$

mod ${\rm Im} Sq^{3}Sq^{1}+{\rm Im}(Sq^{5}+Sq^{4}Sq^{1})+{\rm Im} Sq^{6}Sq^{1}$ ,

$=(\Delta_{2}^{2}Sq^{4}+Sq^{4}\Delta_{2}^{2})\cdot Sq^{2}u+(Sq^{6}+Sq^{5}Sq^{1})\Delta_{2}^{2}u$

mod ${\rm Im} Sq^{1}+{\rm Im} Sq^{4}Sq^{1}+{\rm Im} Sq^{6}Sq^{1}$ ,

$=\Delta_{2}^{2}Sq^{4}Sq^{2}u+Sq^{4}\Delta_{2}^{2}Sq^{2}u+Sq^{6}\Delta_{2}^{2}u$

mod ${\rm Im} Sq^{1}+{\rm Im} Sq^{4}Sq^{1}+{\rm Im} Sq^{6}Sq^{1}$ ,

$*)$ This was also proved by N. Shimada and T. Yamanoshita, not utilizing the re-
sult of Adams [1].
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for $u\in H^{n}(X;Z_{2})\cap Ker$ Sq’ $\cap KerSq^{3}$ .
This completes the proof of (3), ii).

Operations associated with $z(1,3),$ $z(3,2),$ $z(5,3)$ are not uniquely determined.
If $\Phi(1,3),$ $\Phi^{\prime}(1,3)$ are two operations associated with $z(1,3)$ , we have

(2.6) $\Phi(1,3)u-\Phi^{\prime}(1,3)u=xSq^{2}Sq^{1}u$ mod ${\rm Im}$ Sq’,

for $u\in H^{n}(X;Z_{2})\cap KerSq^{3},$ $x$ being zero or one.
For two operations $\Phi(3,2),$ $\Phi^{\prime}(3,2)$ associated with $z(3,2)$ , we have

(2.7) $\Phi(3,2)u-\Phi^{\prime}(3,2)u=xSq^{4}u$ mod ${\rm Im} Sq^{3}$ ,

for $u\in H^{n}(X;Z_{2})\cap KerSq^{2},$ $x$ being zero or one.
For two operations $\Phi(5,3),$ $\Phi^{\prime}(5,3)$ associated with $z(5,3)$ , we have

(2.8) $\Phi(5,3)u-\Phi^{\prime}(5,3)u=xSq^{7}u+ySq^{6}Sq^{1}u+zSq^{4}Sq^{2}Sq^{1}u$ mod ${\rm Im} Sq^{5}$ ,

for $u\in H^{n}(X;Z_{2})\cap KerSq^{3},$ $x,$ $y,$ $z$ being zero or one.
Now we have
PROPOSITION 2. There exist secondary operations $\Phi(1,3),$ $\Phi(3,2)$ and $\Phi(5,3)$

associated respectively with $z(1,3),$ $z(3,2)$ and $z(5,3)$ such that
1) i) $\Phi(3,2)u=\Delta_{2}^{2}Sq^{2}Sq^{1}u$ mod ${\rm Im} Sq^{1}$ ,

ii) $Sq^{2}\Phi(3,2)u=\Delta_{2}^{2}Sq^{4}Sq^{2}Sq^{1}u$ mod ${\rm Im}$ Sq’, for $u\in H^{n}(X;Z_{2})\cap KerSq^{2}$ .
2) $\Phi(1,3)u=\Delta_{2}^{2}Sq^{2}u$ mod ${\rm Im}$ Sq’, for $u\in H^{n}(X;Z_{2})\cap KerSq^{3}$ .
3) i) $\Phi(5,3)u=\Delta_{2}^{2}Sq^{4}Sq^{2}u$ mod ${\rm Im} Sq^{1}$ ,

ii) $Sq^{2}\Phi(5,3)u=Sq^{6}\Delta_{2}^{2}Sq^{2}u$ mod ${\rm Im} Sq^{6}Sq^{1}$ , for $u\in H^{n}(X;Z_{2})\cap KerSq^{3}$ .
PROOF. 1) Applying c), we see easily that there is an operation $\Phi(3,2)$ as-

sociated with $z(3,2)$ such that
$\Phi(3,2)u=\Delta_{2}^{2}Sq^{2}Sq^{1}u$ mod ${\rm Im} Sq^{1}$ ,

for $u\in H^{r}(X;Z_{0,\rightarrow})\cap KerSq^{2}$ .
Consider the following commutative diagram

$d$

$A^{*}$ – $A^{*}[Sq^{1}]$

$\downarrow Sq^{4}Sq^{2}Sq^{1}$ $\downarrow\mu^{\prime}$

d’
$A^{*}$ – $A^{*}[Sq^{2}]=C^{\prime}$

where $\mu^{\prime}$ is given by $\mu^{\prime}[Sq^{1}]=Sq^{4}Sq^{2}[Sq^{2}]$ . Then we have
$\mu^{\prime}z(1,1)=Sq^{1}Sq^{4}Sq^{2}[Sq^{2}]=Sq^{4}Sq^{3}[Sq^{2}]$ .

Therefore, there is an operation $\Phi_{\mu_{z(1,1)}}$, associated with $\mu^{\prime}z(1,1)=Sq^{4}Sq^{3}[Sq^{2}]$ ,
such that

$\Delta_{2}^{2}Sq^{4}Sq^{2}Sq^{1}u=\Phi_{1^{x}’ z(1,1)}u$ mod ${\rm Im} Sq^{1}$ .
Since the operation $Sq^{4}\Phi(3,2)$ is also associated with $\mu^{\prime}z(1,1)$ , there is an ele-
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ment $\gamma$ in $(A^{*}/d^{\prime}C^{\prime})_{8}$ such that
$Sq^{4}\Phi(3,2)u-\Phi_{\mu’ z(1.1)}u=\gamma u$ mod ${\rm Im} Sq^{5}Sq^{2}$ .

But we have $(A^{*}/d^{\prime}C^{\prime})_{8}=\{Sq^{8}, Sq^{7}Sq^{1}\}$ . Thus we may put

$Sq^{4}\Phi(3,2)u-\Phi_{/\ell’ z(1,1)}u=xSq^{8}u+ySq^{l}Sq^{1}u$ mod ${\rm Im} Sq^{6}Sq^{2}$ ,

where $x,$ $y$ are zero or one.
Operating $Sq^{1}$ from the left to the above, we have

$Sq^{5}\Phi(3,2)u=xSq^{9}umod 0$ .
Since $Sq^{8}Sq^{5}\Phi(3,2)=Sq^{7}Sq^{1}\Phi(3,2)=0$ and $Sq^{3}(xSq^{9})=xSq^{11}Sq^{1}$ , we have $x=0$ .
Thus we have

$Sq^{4}\Phi(3,2)u-\Phi_{\mu’ zt1,1)}u=ySq^{7}Sq^{1}u$ mod ${\rm Im} Sq^{5}Sq^{2}$ ,

which shows
$Sq^{4}\Phi(3,2)u=\Phi_{\mu’ z(1,1)}u=\Delta_{2}^{2}Sq^{4}Sq^{2}Sq^{1}u$ mod ${\rm Im}$ Sq’.

Proof of 2) is easy, and so omitted.
3) Applying c), we see easily that there is an operation $\Phi^{\prime}(5,3)$ associated

with $z(5,3)$ such that
$\Phi^{\prime}(5,3)u=\Delta_{2}^{2}Sq^{4}Sq^{2}u$ mod ${\rm Im} Sq^{1}$ ,

for $u\in H^{n}(X;Z_{2})\cap KerSq^{3}$ .
Since the operation $Sq^{2}\Phi^{\prime}(5,3)+Sq^{6}\Phi(1,3)$ is associated with the trivial re-

lation $Sq^{2}Sq^{6}[Sq^{3}]+Sq^{6}Sq^{1}[Sq^{3}]$ in $A^{*}[Sq^{8}]$ , we may put

$(Sq^{2}\Phi^{\prime}(5,3)+Sq^{6}\Phi(1,3))u=xSq^{9}u+ySq^{8}Sq^{1}u+zSq^{7}Sq^{2}u$ mod ${\rm Im} Sq^{6}Sq^{1}$ ,

where $x,$ $y,$ $z$ are zero or one. Since
$Sq^{3}(Sq^{2}\Phi^{\prime}(5,3)+Sq^{6}\Phi(1,3))u=0mod 0$ and

Sq’ $(xSq^{9}u+ySq^{8}Sq^{1}u+zSq^{7}Sq^{2}u)=xSq^{11}Sq^{1}u+ySq^{11}Sq^{1}u_{p}$

we have $x=y$ , that is,

$(Sq^{2}\Phi^{\prime}(5,3)+Sq^{6}\Phi(1,3))u=x(Sq^{9}+Sq^{8}Sq^{1})+zSq^{7}Sq^{2}u$ .
Next, operate $Sq^{2}$ to the above, then we have

$Sq^{2}(Sq^{2}\Phi^{\prime}(5,3)+Sq^{6}\Phi(1,3))u=Sq^{3}Sq^{1}\Phi^{\prime}(5,3)u+Sq^{r}Sq^{1}\Phi(1,3)u$

$=0mod 0$ , and
$Sq^{2}x(Sq^{9}+Sq^{8}Sq^{1})u+Sq^{2}zSq^{7}Sq^{2}u$

$=x(Sq^{10}Sq^{1}+Sq^{10}Sq^{1})u+z(Sq^{9}Sq^{2}+Sq^{8}Sq^{3})u$

$=zSq^{9}Sq^{2}u$ ,

which show $z=0$ . Thus we have

$(Sq^{2}\Phi^{\prime}(5,3)+Sq^{6}\Phi(1,3))u=x(Sq^{9}+Sq^{8}Sq^{1})u$ mod ${\rm Im} Sq^{6}Sq^{1}$ .
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If we take $\Phi(5,3)=\Phi^{\prime}(5,3)+xSq^{7}$ for the above $\Phi^{\prime}(5,3)$ , we have
$\Phi(5,3)u=\Delta_{2}^{2}Sq^{4}Sq^{2}u$ mod ${\rm Im} Sq^{1}$ , and
$(Sq^{2}\Phi(5,3)+Sq^{6}\Phi(1,3))u$

$=Sq^{2}\Phi^{\prime}(5,3)u+x(Sq^{9}+Sq^{8}Sq^{1})u+Sq^{6}\Phi(1,3)u$ mod ${\rm Im} Sq^{6}Sq^{1}$

$=0$ mod ${\rm Im} Sq^{6}Sq^{1}$ .
This completes the proof.

In the sequel, $\Phi(1,3),$ $\Phi(3,2),$ $\Phi(5,3)$ will always mean a fixed cohomology
operation associated with $z(1,3),$ $z(3,2),$ $z(5,3)$ , respectively, with the properties
of the Proposition 2.

\S 3. Stable cohomology group $A^{*}(\pi, k^{(2)}, G;Z_{2})$ .
In this section, we shall consider the stable cohomology group $A^{*}(\pi,$ $k^{(2)},$ $G$ ;

$Z_{2})$ determined by abelian groups $\pi,$
$G$ and an invariant $k^{(2)}\in A^{2}(\pi;G)$ , where

$\pi$ and $G$ have one generator and the invariant $k^{(2)}$ is non-trivial.
Let us denote by $\pi$ one of the groups $Z,$ $Z_{2}$ or $Z_{2^{q^{\prime}+1}}(q^{\prime}\geqq 1)$ , and by $G$ one

of $Z_{2}$ or $Z_{2^{q+1}}(q\geqq 1)$ .
Let

$0\rightarrow Z_{2}\rightarrow^{f_{q^{\prime}}}Z_{2^{q+1}}\rightarrow Z_{2^{q}}\rightarrow 0$

be the exact sequence, then we see easily

(3.1) $A^{2}(\pi;G)\approx Z_{2}$ and $f_{q*}^{\prime}:$ $A^{2}(\pi;Z_{2})\approx A^{2}(\pi;Z_{2^{q+1}})$ ,

where $f_{q}^{\prime_{*}}$ denotes the homomorphism of cohomology groups induced by the
inclusion $f_{q}^{\prime}$ of coefficient groups.

Let $u$ be the generator of degree zero of $A^{*}(\pi;Z_{2})$ , and $a$ be the generator
of degree zero of $A^{*}(G;Z_{2})$ . Then, from (3.1), our $A^{*}(\pi, k^{(2)}, G;Z_{2})$ must be one
of the following six types, as $k^{(2)}\in A^{2}(\pi;G)$ is non-trivial:

(3.2) (1) $A^{*}(Z, Sq^{2}u, Z_{2} ; Z_{2})$ (2) $A^{*}(Z_{2}, Sq^{2}u, Z_{2} ; Z_{2})$

(3) $A^{*}(Z_{2^{q^{r}+1}}, Sq^{2}u, Z_{2} ; Z_{2})$ (4) $A^{*}(Z,f_{q}^{\prime}*Sq^{2}u, Z_{2^{q+1}} ; Z_{2})$

(5) $A^{*}(Z_{2},f_{q}^{\prime_{*}}Sq^{2}u, Z_{2q+1} ; Z_{2})$ (6) $A^{*}(Z_{2^{q^{\prime}+1}},f_{q*}^{\prime}Sq^{2}u, Z_{2^{q+1}} ; Z_{2})$ .
For convenience, we denote these types by $A^{*}(1),$ $A^{*}(2),$ $A^{*}(3),$ $A^{*}(4),$ $A^{*}(5)$ and
$A^{*}(6)$ , respectively, and write $e$ . $g$ . $A^{i}(1)$ for $A^{i}(Z, Sq^{2}u, Z_{2} ; Z_{2})$ . Then we have
the following exact sequence:

$j*$ $p*$

$(S_{j})$ : $-A^{i+1}(\pi;Z_{2})-A^{i-1}(G;Z_{2})-A^{i}(j)-A^{i}(\pi;Z_{2})$

$\tau$

$-A^{i-2}(G;Z_{2})-\cdots$

where $j=1,2,3,4,5,6$ .
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We are now in a position to formulate our main theorem.
THEOREM.

(I) $A^{*}(Z, Sq^{2}u, Z_{2} ; Z_{2})$ is an $A^{*}$-module generated by elements $v=p^{*}u$ and $\Phi(2,2)_{b}$

with basic relations
$Sq^{1}v=Sq^{2}v=Sq^{3}\Phi(2,2)v=0$ .

In particular, we have
$\Delta_{2}^{2}Sq^{4}v=Sq^{2}\Phi(2,2)v$ .

(II) $A^{*}(Z_{2}, Sq^{2}u, Z_{2};Z_{2})isanA^{*}- modulegeneratedbyelementsv=p^{*}uand\Phi(3,2)v$

with basic relations
$Sq^{2}v=Sq^{1}\Phi(3,2)v=Sq^{5}\Phi(3,2)v=0$ .

In particular, we have
$\Phi(3,2)v=\Delta_{2}^{2}Sq^{2}Sq^{1}v,$ $Sq^{4}\Phi(3,2)v=\Delta_{2}^{2}Sq^{4}Sq^{2}Sq^{1}v$ mod $Sq^{7}Sq^{1}v$ .

(III) $A^{*}(Z_{2^{q^{\prime}+1}}, Sq^{2}u, Z_{2} ; Z_{2})$ is an $A^{*}$-module generated by elements $v=p^{*}u,$ $\Delta_{2}^{q^{\prime}+1}v$

and $\Phi(2,2)v$ with basic relations
$Sq^{1}v=Sq^{2}v=Sq^{1}\Delta_{2}^{q\prime+1}v=0$ , and

$Sq^{3}\Phi(2,2)v=\left\{\begin{array}{l}0 if q^{\prime}>1\\Sq^{5}\Delta_{2}^{q^{\prime}+1}v\end{array}\right.$

if $q^{\prime}=1$ .
In particular, we have

$Sq^{3}\Phi(2,2)v=\Delta_{2}^{2}Sq^{4}v+Sq^{4}\Delta_{2}^{2}v$ .
(IV) $A^{*}(Z,f_{q*}^{\prime}Sq^{2}u, Z_{2^{q+1}} ; Z_{2})$ is an $A^{*}$-module generated by elements $v=p^{*}\iota t,$ $b_{1}$

such that $i^{*}b_{1}=a$ , and $\Phi(3,3)v$ with basic relations

$Sq^{1}v=Sq^{3}v=Sq^{1}\Phi(3,3)v=Sq^{3}\Phi(3,3)v=0$ , and

$Sq^{1}b_{1}=\left\{\begin{array}{l}0\\Sq^{2}v\end{array}\right.$

if $q>1$

if $q=1$ .
In particular, $\iota oe$ have

$\Delta_{2}^{Q}b_{1}=Sq^{2}v$ , $\Phi(3,3)v=\Delta_{2}^{2}Sq^{4}v$ and $Sq^{2}\Phi(3,3)v=\Delta_{A}^{2}Sq^{4}Sq^{2}v$ .
(V) $A^{*}(Z_{2},f_{q}^{\prime_{x}}Sq^{3}u, Z_{2^{Q+1}} ; Z_{2})$ is an A’-module generated by elements $v=p^{*}u,$ $b_{1}$

such that $i^{*}b_{1}=a$ and $\Phi(5,3)v$ with basic relations

$Sq^{3}v=Sq^{1}\Phi(5,3)v=Sq^{2}\Phi(5,3)v=C$ , and

$Sq^{1}b_{1}=\{Sq^{2}v0$
if $q>1$

if $q=1$ .
In particular, we have

$\Delta_{2}^{q}b_{1}=Sq^{2}v$ and $\Phi(5,3)v=\Delta_{2}^{2}Sq^{4}Sq^{2}v$ mod $Sq^{7}v$ .
(VI) $A^{*}(Z_{\rightarrow\vee}oq^{\prime}+1,t_{q}^{-\gamma}*Sq^{2}u, Z_{\lrcorner}\circ q+1;Z_{2})$ is an $A^{*}$-module generated by elements $v=p^{*}u$ ,
$\Delta^{q_{)}^{\prime}+1}v\lrcorner b^{1}$ such that $i^{*}b^{1}=a$ and $\Phi(3,3)v$ with basic relations
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$Sq^{1}v=Sq^{3}v=Sq^{1}\Delta_{l}^{q\prime+1}v=Sq^{1}\Phi(3,3)v=0$ ,

$Sq^{1}b_{1}=\{Sq^{2}vC$ $ififq>1q=1$

, and

$Sq^{3}\Phi(3,3)v=\left\{\begin{array}{l}0\\Sq^{7}\Delta_{2}^{q^{l}+1}v\end{array}\right.$

if $q^{\prime}>1$

if $q^{\prime}=1$ .
In particular, we have

$\Delta_{2}^{q}b_{1}=Sq^{2}v$ , $\Phi(3,3)v=\Delta_{2}^{2}Sq^{4}v$ and
$\Delta_{2}^{2}Sq^{4}Sq^{2}v=Sq^{2}\Phi(3,3)v+Sq^{6}\Delta_{2}^{2}v$ mod $Sq^{7}v$ .

To prove this theorem, we need some informations about the exact se-
quences $(S_{j})$ .

First, it is well-known that

(3.3) $A^{i}(Z, Z_{2})\approx A^{i}/A^{j-1}Sq^{1}$ , $A^{i}(Z_{2} ; Z_{2})\approx A^{t}$ and
$A^{i}(Z_{2^{q+1}} ; Z_{2})\approx A^{i}/A^{i-1}Sq^{1}\oplus A^{i-1}/A^{i-2}Sq^{1}$ ,

where $\oplus denote$ the direct sum.
Second, the transgression $\tau$ is determined by the following property.

PROPOSITION 3.
i) In the cases (1), (2) and (3), we have

$\tau a=Sq^{2}u$ .
ii) In the cases (4), (5) and (6), we have

$\tau a=0$ and $\tau\Delta_{2}^{q+1}a=Sq^{3}u$ .
The first part i) is a well-known result. To prove the second part ii), we

require the following lemma.
Let

$0\rightarrow Z_{2}\rightarrow^{\prime}Z_{2^{q+1}}f_{q}\rightarrow^{\prime}Z_{2^{q}}g_{q}\rightarrow 0$ ,

$0\rightarrow Z_{2^{q}}\rightarrow^{f_{q}}Z_{2^{q+1}}\rightarrow^{g_{q}}Z_{2}\rightarrow C$

,

$0\rightarrow Z_{2^{q+1}}\rightarrow Z_{2^{2(q+1)}}\rightarrow Z_{2^{q+1}}\rightarrow 0$

be exact sequences defined in usual ways. And we shall denote by $\delta_{q}^{\prime},$ $\delta_{q}$ and
$\delta$ the coboundary homomorphisms associated with the above sequences, respec-
tively.

Consider the following diagram:
$\delta$

(3.4)
$A^{3}(\pi\downarrow g^{2}*s_{q^{1}=\Delta_{2}^{1}};Z_{q^{q+1}})\uparrow f_{q}^{\prime}*$

$\downarrow g_{Q^{*}}$

– $A^{2}(\pi;Z_{2^{Q+1}})$

$A^{3}(\pi;Z_{2})$ – $A_{2}(\pi;Z_{2})$
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Then we have
LEMMA. In the above diagram (3.4), we have

$g_{q^{*}}f_{q}^{\prime_{*}}=0$ and $g_{q}*\delta f_{q}^{f_{*}}=Sq^{1}$ .
PROOF. The first part is clear, and so we shall prove only the second part.

Let us consider the commutative diagram

From the above diagram, we see that $\delta f_{q}^{\prime}*is$ equal to the coboundary homo-
morphism $\delta_{q+1}$ .

Similary the composition $g_{q}*\delta_{q+1}$ is equal to the coboundary homomorphism
$\delta_{1}=Sq^{1}$ . Thus we have $g_{q}*\delta f_{q^{*}}^{\prime}=g_{q}*\delta_{q+1}=Sq^{1}$ .

PROOF OF PROPOSITION 3, ii).

Let $c$ be a fundamental class of $A^{0}(Z_{2^{q+1}} ; Z_{2^{q+1}})$ , and $u$ be the non-zero ele-
ment of $A^{0}(\pi;Z_{2})$ . Then we see easily that

(3.5) $g_{q}*c=a$ , $g_{q}*\delta c=\Delta_{2}^{q+1}a$ and $\tau c=f_{q}^{\prime_{*}}Sq^{2}u$ .
Since $\tau g_{q*}=g_{q}*\tau$ and $\tau\delta=\delta\tau$ hold, we see by using the lemma and (3.5) that

$\tau a=\tau g_{Q^{*}}c=g_{q}*\tau c$

$=g_{q}*f_{q}^{\prime_{*}}Sq^{2}$

$=0$

$\tau\Delta_{2}^{q+1}a=\tau g_{q}*\delta c=g_{q}*\tau\delta c$

$=g_{q}*\delta f_{q*}^{\prime}Sq^{2}u$

$=Sq^{1}Sq^{2}u=Sq^{3}u$ .
This completes the proof.

PROOF OF THE THEOREM.
We begin with the proof of (II).

From the exactness of the sequence $(S_{2})$ , we have an isomorphism $p^{*}:$ $A^{0}(Z_{2}$ ;
$Z_{2})\approx A^{0}(2)$ , therefore $v=p^{*}u$ is a generator of $A^{*}(2)$ . The homomorphism $\tau$ ;

$A^{*}(Z_{2} ; Z_{2})\rightarrow A^{*}(Z_{2} ; Z_{2})$ is given by $\tau(a)=Sq^{2}u$ . Since $\tau\alpha a=\alpha Sq^{2}u$ for each $\alpha$

in $A^{*},$ $\tau$ is equivalent to $Sq_{*}^{2}$ : $A^{*}\rightarrow A^{*}$ . It follows from the exactness of the
sequence (1.7) in \S 1 that the kernel of $Sq_{*}^{2_{\backslash }}$ is
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$Sq_{*}^{3}(A^{*}/A^{*}Sq^{1})=(A^{*}/A^{*}Sq^{1})\cdot Sq^{3}$ ,

that is, the kernel of $\tau$ is generated by $Sq^{3}a$ .
From the exactness of $(S_{2})$ , we see that $A^{*}(2)$ is generated by $v=p^{*}u$ and

an element $b_{4}\in A^{4}(2)$ such that
$i^{*}b_{4}=Sq^{3}a$ .

Since $\tau a=Sq^{2}u$ , we have $Sq^{2}v=0$ , and so $\Phi(3,2)v$ is well-defined. As $b_{4}$ we may
take $\Phi(3,2)v$ such that

$\Phi(3,2)v=\Delta_{2}^{2}Sq^{2}Sq^{1}v$ ,

$Sq^{4}\Phi(3,2)v=\Delta_{2}^{2}Sq^{4}Sq^{2}Sq^{1}v$ mod ${\rm Im} Sq^{1}$ .
Then we have relations

Sq‘ $b_{4}=Sq^{5}b_{4}=0$ .
Now let

$\alpha v+\beta b_{4}=0$ , $\alpha,$ $\beta\in A^{*}$

be a relation between generators $v$ and $b_{4}$ , then we have $i^{*}(\alpha v+\beta b_{4})=i^{*}(\beta b_{4})=$

$\beta Sq^{3}a=0$ . From (1.8) in \S 1, the kernel of $Sq_{*}^{3}:$ $A^{*}\rightarrow A^{*}$ is generated by Sq’
and $Sq^{5}$ . Therefore such a $\beta$ is generated by $Sq^{1}$ and $Sq^{5}$ , that is, there are
some elements $\beta_{1}$ and $\beta_{2}$ in $A^{*}$ such that

$\beta=\beta_{1}Sq^{1}+\beta_{2}Sq^{5}$ .
Since $Sq^{1}b_{4}=Sq^{5}b_{4}=0$ , we have $\beta b_{4}=0$ , and so $\alpha v=0$ . Since the image of $\tau$

is generated by $Sq^{2}u$ , such an $\alpha$ is generated by $Sq^{2}$ , that is, there is an ele-
ment $\alpha_{1}$ in $A^{*}$ such that

$\alpha=\alpha_{1}Sq^{2}$ .
Hence we have

$\alpha v+\beta b_{4}=\alpha_{1}Sq^{2}v+\beta_{1}Sq^{1}b_{4}+\beta_{2}Sq^{5}b_{4}$ .
This shows that

$Sq^{2}v=Sq^{1}b_{4}=Sq^{5}b_{4}=0$

are the basic relations of the generators.
The proof of (I) is similar to the above. We only use the exact sequences

(S)
$,$

$(1.6),$ $(1.7)$ and the Proposition 1 instead of $(S_{2}),$ $(1.7),$ $(1.8)$ and the Proposi-
tion 2.

PROOF OF (V).

From the exactness of the sequence $(S_{5})$ , we have an isomorphism $p^{*}:$ $A^{0}(Z_{2}$ ;
$Z_{2})\approx A^{0}(5)$ , therefore $v=p^{*}u$ is a generator of $A^{*}(5)$ .

According to the Proposition 3, the homomorphism $\tau$ : $A^{*}(Z_{2^{q+1}} ; Z_{2})\rightarrow A^{*}(Z_{2}$ ;
$Z_{2})$ is given by $\tau a=0$ and $\tau\Delta_{2}^{q+1}a=Sq^{3}u$ .

From the exactness of (1.8), the kernel of such a $\tau$ is generated by $a$ and
$Sq^{6}\Delta_{2}^{q+1}a$ . From the exactness of the sequence $(S_{5})$ , we see that $A^{*}(5)$ is gener-
ated by $v=p^{*}u$ , an element $b_{1}$ such that $i^{*}b_{1}=a$ and an element $b_{7}$ in $A^{7}(5)$
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$suchthati^{*}b_{7}=Sq^{5}\Delta_{2}^{q+1}a$ . Since $\tau\Delta_{2}^{q+1}a=Sq^{3}u,$ $wehaveSq^{3}v=0$ . Applying(1.21)

to the exact sequence $(S_{5})$ , we easily verify that
$\Delta_{2}^{q}b_{1}=Sq^{2}v$ .

Then we have

$Sq^{1}b_{1}=\{Sq^{2}v0$

if $q>1$

if $q=1$ .
Since $Sq^{3}v=0,$ $\Phi(5,3)v$ is well-defined. As $b_{7}$ we may take $\Phi(5,3)v$ such that

$\Phi(5,3)v=\Delta_{2}^{2}Sq^{4}Sq^{2}v$ mod $Sq^{\prime}v$ , and
$Sq^{2}\Phi(5,3)v=Sq^{6}\Delta_{2}^{2}Sq^{2}v$ .

By applying (1.20) to the exact sequence (S.), we see that in this case $\Delta_{2}^{2}Sq^{2}v=0$ .
From the above relations, we have

$Sq^{1}b_{7}=Sq^{2}b_{7}=0$ .
Let

$\alpha v+\beta b_{1}+\gamma b_{7}=0$ , $\alpha,$ $\beta,$ $\gamma\in A^{*}$

be a relation between the generators $v,$ $b_{1}$ and $b_{7}$ taken as above. Then we have
$i^{*}(\alpha v+\beta b_{1}+\gamma b_{7})=i^{*}(\beta b_{1}+\gamma b-)=\beta a+\gamma Sq^{5}\Delta_{2}^{q+1}a=0$ .

Now we define a homomorphism

$\varphi$ : $A^{*}(Z_{2^{q+1}} ; Z_{2})\rightarrow A^{*}(Z_{r,\wedge}q+1;Z_{2})$

by $\varphi(a)=a$ and $\varphi(\Delta_{2}^{q+1}a)=Sq_{*}^{5}(\Delta_{2}^{q+1}a)$ .
From the exactness of (1.10), we see that the kernel of $\varphi$ is generated by $Sq^{1}a$ ,
$Sq^{1}\Delta_{2}^{q+1}a$ and $Sq^{2}\Delta_{2}^{q+1}a$ . That is, $\beta$ is generated by $Sq^{1}$ , and $\gamma$ is generated by
$Sq^{1}$ and $Sq^{2}$ :

$\beta=\beta_{1}Sq^{1},$ $\gamma=\gamma_{1}Sq^{1}+\gamma_{2}Sq^{2}$ for some $\beta_{1},$
$\gamma_{1}$ and $\gamma_{2}$ in $A^{*}$ .

Since

$Sq^{1}b_{1}=\left\{\begin{array}{l}0 if q>1\\Sq^{2}v if q=1,\end{array}\right.$

and $Sq^{1}b_{7}=Sq^{2}b_{7}=0$ , we have

$\alpha v=\left\{\begin{array}{l}0 if q>1\\\beta_{1}Sq^{2}v if q=1.\end{array}\right.$

Since the image of $\tau$ is generated by $Sq^{3}u$ , such an $\alpha(resp_{-}\alpha+\beta_{1}Sq^{2})$ is gener-
ated by $Sq^{3}$ . Therefore we may put

$\alpha=\alpha_{1}Sq^{3}$ if $q>1$ , and
$\alpha+\beta_{1}Sq^{2}=\alpha_{2}S^{\cap}q^{\circ}$ if $q=1$ .

Then we have
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$\alpha v+\beta b_{1}+\gamma b_{7}=\{\alpha_{1}Sq_{3}^{3}v+\beta_{1}Sq^{1}b+\gamma Sq+\gamma S_{1}qb_{7}\alpha_{2}Sqv+\beta^{1}(Sq^{1}b_{1}^{1}+S^{1}q^{2}v^{1})^{b\prime}+\gamma_{1}S^{2}qb_{7}^{2}+\gamma_{2}Sq^{2}b_{7}$

if $q>1$

if $q=1$ ,

which shows that our relations are basic.
PROOF OF (VI).

From the exactness of the sequence $(S_{6})$ , we have an isomorphism $p^{*};$

$A^{0}(Z_{2^{Q^{\prime}}}+\iota ; Z_{2})\approx A^{0}(6)$ , therefore $v=p^{*}u$ is a generator of $A^{*}(6)$ . According to
the Proposition 3, the homomorphism $\tau:A^{*}(Z_{2^{q+1}} ; Z_{2})\rightarrow A^{*}(Z_{2^{q^{\prime}+1}} ; Z_{2})$ is given
by $\tau a=0$ and $\tau\Delta_{2}^{q+1}a=Sq^{3}u$ . From the exact sequence (1.9), we see that the
kernel of $\tau$ is generated by $a$ and $Sq^{3}\Delta_{2}^{q+1}a$ .

From the exactness of $(S_{6})$ , we see that there are elements $b_{1}$ in $A^{l}(6)$ and
$b_{5}$ in $A^{5}(6)$ such that $i^{*}b_{1}=a,$ $i^{*}b_{5}=Sq^{3}\Delta_{2}^{q+1}a$ , and $A^{*}(6)$ is generated by $v=p^{*}u$ ,
$\Delta_{2}^{q+1}v,$ $b_{1}$ and $b_{5}$ .

Since $\tau\Delta_{2}^{q+1}a=Sq^{3}u$ , we have $Sq^{3}v=0$ and $Sq^{1}v=0$ , therefore $\Phi(3,3)v$ is well-
defined. Then we may take $\Phi(3,3)v$ as $b_{5}$ .

According to (1.21) and the Proposition 1, we have relations:

$\Delta_{2}^{q}b_{1}=Sq^{2}v$ , $\Phi(3,3)v=\Delta_{2}^{2}Sq^{4}v$

and $Sq^{2}\Phi(3,3)v=\Delta_{2}^{2}Sq^{4}Sq^{2}v+Sq^{6}\Delta_{2}^{2}v$ mod $Sq^{r}v$ . This shows that

$(3.6\rangle$ $Sq^{1}v=Sq^{3}v=Sq^{1}\Delta_{\Delta}^{q^{\gamma}+l}v=Sq^{1}b_{\partial}=0$ ,

$Sq^{1}b_{1}=\{Sq^{2}v0$

if $q>1$

if $q=1$ , and

$Sq^{3}b_{5}=\dagger Sq^{7}\Delta_{2}^{q^{f}+1}v0$

if $q^{\prime}>1$

if $q^{\prime}=1$ .
Next we shall prove that the relations (3.6) are basic relations.
Let

$\alpha v+\beta\Delta_{2}^{q^{\prime}+1}v+\gamma b_{1}+\delta b_{5}=0$ , $\alpha,$ $\beta,$
$\gamma,$

$\delta\in A^{*}$

be a relation between generators $v,$ $\Delta_{2}^{q^{\prime}+1}v,$ $b_{1}$ and $b_{5}$ . Then we have

$i^{*}(\alpha v+\beta\Delta_{2}^{q^{\prime}+1}v+\gamma b_{1}+\delta b_{5})$

$=i^{*}(\gamma b_{1}+\delta b_{0}’)$

$=\gamma a+\delta Sq^{3}\Delta_{2}^{q+1}a=0$ .

From the exactness of (1.9), such a $\delta$ is generated by $Sq^{1}$ and $Sq^{3}$ , that is, $\delta=$

$\delta_{1}Sq^{1}+\delta_{2}Sq^{3}$ for some $\delta_{1}$ and $\delta_{2}$ of $A^{*}$ . $\gamma$ is generated by $Sq^{1}$ , that is, $\gamma=\gamma_{1}Sq^{1}$

for some $\gamma_{1}$ of $A^{*}$ . From (3.6), we have
$\alpha v+\beta\Delta_{2}^{q^{\prime}+1}v=0$ if $q^{\prime}>1$ and $q>1$ ,

$(\alpha+\gamma_{1}Sq^{2})v+\beta\Delta_{2}^{q}‘+1v=0$ if $q^{\gamma}>1$ and $q=1$ ,
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$\alpha v+(\beta+\delta_{2}Sq^{7})\Delta_{2}^{q^{\prime}+1}v=0$ if $q^{r}=1$ and $q>1$ ,

$(\alpha+\beta_{1}Sq^{2})v+(\beta+\delta_{2}Sq^{r})\Delta_{t}^{q^{f}+1}v=0$ if $q^{\prime}=1$ and $q=1$ .
On the other hand, since the image of $\tau$ is generated by $Sq^{3}u$ , and $Sq^{1}u=$

$Sq^{1}\Delta_{2}^{q^{J}+1}u=0$ , we may put for some $\alpha_{1},$ $\alpha_{2},$
$\alpha_{1}^{\prime},$ $\alpha_{2}^{\prime},$ $\beta_{1}$ and $\beta_{1}^{\prime}$ of $A^{*}$ ,

$\alpha=\alpha_{1}Sq^{1}+\alpha_{2}Sq^{3}$ , $\beta=\beta_{1}Sq^{1}$ if $q^{\prime}>1$ and $q>1$ ,

$\alpha+\gamma_{1}Sq^{g}=\alpha_{1^{\prime}}Sq^{1}+\alpha_{2}^{\prime}Sq^{3}$ , $\beta=\beta_{1}Sq^{1}$ if $q^{\prime}>1$ and $q=1$ ,

$\alpha=\alpha_{1}Sq^{1}+\alpha_{2}Sq^{3}$ , $\beta+\delta_{2}Sq^{7}=\beta_{1}^{\prime}Sq^{1}$ if $q^{\prime}=1$ and $q>1$ ,

$\alpha+\gamma_{1}Sq^{2}=\alpha_{1}^{f}Sq^{1}+\alpha_{2}^{\prime}Sq^{3}$ , $\beta+\delta_{2}Sq^{7}=\beta_{1}^{\prime}Sq^{1}$ if $q^{\prime}=1$ and $q=1$ .
Then we have

$\alpha v+\beta\Delta_{2}^{q/+1}v+\gamma b_{1}+\delta b_{5}$

$=(\alpha_{1}’ Sq^{1}v+\alpha_{2}^{3}Sqv+\beta Sq\Delta_{2}^{q}v+\gamma_{3}(S^{1}q^{1_{1}}b+^{1}Sq^{1_{2}}v^{5})q^{3}v_{3}+_{+^{1}\delta Sqb_{5^{+1}}+^{+1}\delta Sq^{1}bi^{fq>^{2}1a^{b}n^{5}d}}q>1q=1$

,

$(+\delta(S_{1}qb+_{q}^{+1}s_{+1}^{v_{q}+_{7}\gamma_{q}S_{1}q_{v^{1})}}7q+1andandq>1q=1$

.
This shows that (3.6) are basic relations between $v,$ $\Delta_{2}^{q^{J}+1}v,$ $b_{1}$ and $b_{5}$ .

The proofs of (III), (IV) are similar to the above, and so omitted.

Appendix

We shall show in these Appendix that we can obtain the above results in
low dimensional $cas^{\underline{\cap}}.s$ also by geometrical considerations.

First we shall summarize the results of H. Toda [7], [8] and T. Yamano-
shita [11] on stable homotopy groups of spheres: $G_{i}=\lim\pi_{n+i}(S^{n})(=\pi_{n+i}(S^{n})$

for $i+1<n$) for $i\leqq 10$ .
$G_{0}=Z=\{f\}$ ,
$G_{1}=Z_{2}=\{\eta\}$ , where $\eta$ is a suspension of Hopf map $S^{3}\rightarrow S^{2}$ ,
$G_{2}=Z_{2}=\{\eta\circ\eta\}$ ,
$G_{3}=Z_{8}+Z_{3}$ , where $Z_{8}=\{\nu\}$ , and $\nu$ is a suspension of Hopf map $S^{7}\rightarrow S^{4}$ ,
$G_{4}=G_{5}=0$ ,
$G_{6}=Z_{2}=\{\nu\circ\nu\}$ ,
$G_{7}=Z_{16}+Z_{3}+Z_{5}$ , where $Z_{16}=\{\sigma\}$ , and $\sigma$ is asuspension of Hopf map $S^{15}\rightarrow S^{8}$ ,
$G_{8}=Z_{2}+Z_{2}=\{\sigma\circ\eta, \epsilon\},$ $\epsilon=[\eta, 2\nu, \nu]$ , where $[$ , , $]$ denotes the toric construc-

tion [7].
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$G_{9}=Z_{2}+Z_{2}+Z_{2}=\{\sigma\circ\eta\circ\eta,\epsilon\circ\eta, J\},$ $\mu=[\eta, 16f\sigma]$ ,
$G_{10}=Z_{2}+Z_{9}$ , where $Z_{2}=\{\mu 0\eta\}$ .

We have relations
$\eta^{o}\nu=0$ , $U^{o}\nu=0$ , $\mathcal{E}^{o}\eta\circ\eta=0$ , $\eta\circ\eta\circ\eta=4\nu$ .

\langle We shall use these results up to $G_{4}$ in the following. Further results on $G_{6}$ ,
$Q_{6},$ $\cdots$ would be needed, if we continue our computation to higher dimensional
cases.)

Now let $\pi$ and $G$ be finitely generated abelian groups, and $X_{n}$ be an $(n-1)-$

connected CW-complex such that $\pi_{n}(X_{n})=\pi,$ $\pi_{n+1}(X_{n})=G$ , and with the Eilen-
berg-MacLane invariant $k^{n+2}\in H^{n+2}(\pi;G)$ . $n$ is supported to be sufficiently
Xarge.

The following are the CW-complexes $X_{n}$ with the invariants corresponding
to the cases (1) $\sim(6)$ , \S 3. ( $X_{n}$ corresponding to the case $(j)$ is denoted by $X_{n}(j)$)

(cf. $A_{n^{2}}$-polyhedra [3]).
$X_{\Gamma f}(1)=S^{n}$ ,

$X_{n}(2)=S_{n}\bigcup_{3}e^{n+1}$ , where $e^{n+1}$ is attached to $S^{n}$ by a map of degree 2,

$X_{;l}(3)=S_{n}\bigcup_{2^{q’+1}}e^{n+1}$
, where $e^{n+1}$ is attached to $S^{n}$ by a map of degree $2^{q^{\prime}+1}$ ,

$q^{\prime}\geqq 1$ ,

$X_{\iota}(4)=(S^{n}\vee S^{n+1})\bigcup_{\eta^{2^{q}}}e^{n+2}$
, where $(S^{n}\vee S^{n+1})$ is a union of $S^{n}$ and $S^{n+1}$ with

a single commm point, and $e^{n+2}$ is attached to $(S^{n}\vee S^{n+1})$ by a map
$\eta$ and of degree $2^{q}$ over $S^{n+1}$ ,

$X_{n}(5)=(S^{n}\vee S^{n+1})\bigcup_{\eta.2^{q}}e^{n+2}\bigcup_{2}e^{n+1}$
, where $e^{n+1}$ is attached to $S^{n}$ by a map of

degree 2,

$X_{n}(6)=(S^{n}\vee S^{n+1})\bigcup_{\eta^{2^{q}}}e^{n+2_{2^{q}}}U_{+1}e^{n+1}$
, where $e^{n+1}$ is attached to $S^{n}$ by a map of

degree $2^{q^{\prime}+1},$ $q^{\prime}\geqq 1$ .
For such a complex $X_{n}$ , we can construct by killing homotopy methods a $CW$.
complex $K_{n}$ , satisfy the conditions:

1) $JC(\pi, n)\supset K_{n}\supset X_{n}$ ,
2) $K_{n}^{n+2}=X_{n}$ , and
3) $\pi_{i}(K_{n})=0$ for $n+2<i$.

Then $K_{n}$ is a complex of type $JC(\pi, n;k^{n+2} ; G, n+1)$ . From each $X_{n}(J)$ we obtain
$K_{n}^{n+l}(j)$ $(l=1,2,3, \cdots)$

by step by step construction. For examples, $K_{n}^{n+4}(j),$ $j=1,2,$ $\cdots$ , 6 are given as
follows.
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$e^{n+4}$ $e^{n+4}$

$\ovalbox{\tt\small REJECT}_{\nearrow 2}\nu e^{e_{\eta}^{n+3}}\downarrow_{n+I}^{4\nearrow}$

$S^{n}$

$K_{n}^{n+4}(1)$ $K_{n}^{n+4}(2)$ $K_{n}^{n+4}(3)$

$e^{n+4}$
$e^{\eta^{\llcorner}4}$ $e^{n+4}$ $e^{n+4}$ $e^{n+4}$ $e^{n+4}$ $e^{n+4}$ $e^{n+4}$

$o^{n+3}|2$ $|$

$e^{2}\downarrow_{n+3}$ $|2e^{n+3}$ $|$ $I_{np+3}^{2}$

$\mathfrak{d}^{n}1^{\eta},\nu e^{n+2}\backslash _{S^{n+1}}2^{q}[\eta$

$e^{\eta}\downarrow_{n+I}$

’5

$K_{n}^{n+4}(4)$ $K_{n}^{n+4}(5)$ $K_{n}^{n+4}(6)$

where $\ldots$ means union with a single common point.
By the construction, we have

$A^{i}(j)=\lim H^{n+i}(K_{n}(j);Z_{2})$ .
From the cell structure of $K_{n}(j)$ , we can obtain cohomological informations of
$JC(\pi, n;k^{n+2} ; G, n+1)$ in low dimensions. For examples, the Proposition 3 in \S 3
is easily obtained from the aboves. We can also obtain the same relations of
generators in $A^{*}(j)$ .
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