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An almost Hermitian structure is called an almost Kahlerian structure, if
the associated differential form to $=F_{ji}dx^{j}\wedge dx^{i}$ is closed, and the space with
an almost Kahlerian structure is called an almost K\"ahlerian space. (See K.
Yano $[10]^{1)}.$)

In the present paper, we remark that an almost K\"ahlerian space is not
necessarily only the space which might be called by this name, and assert
that there exists a more general space which may be called by this name.
Furthermore, we define a certain almost Hermitian space (called an almost semi-
K\"ahlerian space) having some interesting characters. Some results on almost
K\"ahlerian spaces, for example, those on almost analytic vectors (S. Tachibana
[7] and [8]), may be generalized to these new spaces.

In \S 1 we shall prove some identities valid in an almost Hermitian space,
and obtain a necessary and sufficient condition that an almost Hermitian space
is Hermitian. In \S 2 we shall define various almost Kahlerian spaces, and de-
duce some identities and theorems in these spaces. In \S 3 we shall discuss the
curvatures in almost (semi-) K\"ahlerian spaces. In \S 4 we shall define an almost
analytic tensor which is a generalization of an analytic tensor in a K\"ahlerian

space and consider contravariant almost analytic vectors in almost (semi-)
K\"ahlerian spaces. In the last section, we shall give necessary and sufficient
conditions that a contravariant vector is almost analytic in almost (semi-)
K\"ahlerian spaces.

The author wishes to express his sincere thanks to Professor K. Yano who
has given valuable suggestions to the author, and also to Professor S. Sawaki
with whom the author had frequent chances of discussions on the topics treat-
ed in the present paper.

\S 1. Almost Hermitian spaces.

Let $X_{2n}$ be a $2n$-dimensional real differentiable space of class $C^{\infty}$ with local
coordinates $\{x^{i}\}$ admitting an almost complex structure defined by the tensor

1) The numbers between brakets refer to the Biblography at the end of this paper.
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field $F_{i}^{h}$ satisfying

(1.1) $F_{i}^{\iota}F_{\iota}^{h}=-A_{i}^{h}$ , $h,$ $i,$ $\cdots=1,2,$ $\cdots$ , $2n$ ,

where $A_{i}^{h}$ denotes the unit tensor.2)

It is a well known fact that a space $X_{2n}$ with an almost complex structure
$F_{i^{h}}$ always admits a positive definite Riemannian metric such that
(1.2) $F_{i}^{m}F_{n^{l}}g_{ml}=g_{ih}$ .

By an almost Hermitian space we shall mean a space which admits an
almost complex structure $F_{i}^{h}$ and an almost Hermitian metric $g_{ih}$ , that is, a
space which satisfies (1.1) and (1.2). It is easily seen that $F_{ih}=F_{i}^{l}g_{lh}$ is anti-
symmetric in its lower indices.

In an almost Hermitian space, we define the following linear operators
operating on the tensors

(1.3) $0_{ih}^{ml}=\frac{1}{2}(A_{i}^{m}A_{h}^{\iota}-F_{i^{m}}F_{h}^{l})$ ,

(1.4) $*0_{ih}^{ml}=\frac{1}{2}(A_{i}^{m}A_{h}^{l}+F_{i^{m}}F_{l\iota}^{l})$ .

A tensor is called pure (hybrid) in two indices if it is annihilated by trans-
vection of $*o(O)$ on these indices.

Since (1.2) can be written in the form
$O_{ih}^{ml}g_{ml}=0$ ,

the metric tensor $g_{ih}$ is hybrid in $i$ and $h$ .
From (1.1), we have

(1.5) $F_{i}^{\iota}\nabla_{j}F_{\iota}^{h}+F_{\iota}^{h}\nabla_{j}F_{i}^{l}=0$ ,

where $\nabla_{j}$ denotes the operator of covariant differentiation with respect to the
Riemannian connection. Thus from (1.2) and the last equation, we find that
$F_{ih}$ is hybrid in $i$ and $h$ , but $\nabla_{j}F_{ih}$ is pure in $i$ and $h$, that is,

(1.6) $O_{ih}^{ml}F_{ml}=0$ , or $*O_{ih}^{ml}F_{ml}=F_{ih}$ ,

(1.7) $*O_{l}^{m_{h}l}\nabla_{j}F_{ml}=0$ , or $O_{ih}^{ml}\nabla_{j}F_{ml}=\nabla_{j}F_{ih}$ .
For the two operators with the same indices, we have

(1.8) $O_{ih}^{ml}0_{ml}^{ts}=O_{ih}^{ts}$ , $*O_{i\hslash}^{ml*}O_{ml}=O_{lh}^{ts}$ ,

$O_{ih}^{ml*}O_{m}^{ts}\iota=*O_{th}^{ml}O_{ml}^{ts}=0$ , $*O_{i\hslash}^{ml}+O_{ih}^{ml}=E$ ,

where $E$ denotes an identity operator.
The Nijenhuis tensor of an almost complex structure is defined by

(1.9) $N_{ji}^{h}=F_{j}^{l}(\nabla_{l}F_{i}^{h}-\nabla_{i}F_{\iota}^{h})-F_{i}^{l}(\nabla_{l}F_{j}^{h}-\nabla_{j}F_{l}^{h})$ .
2) Notations are those of K. Yano [10].
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From the definition we easily find that $N_{ji}^{h}$ is antisymmetric in $j$ and $i$.
Now, in an almost Hermitian space, if we put

(1.10) $2P_{jih}=N_{jih}-N_{jhi}-N_{ihj}$ , $1V_{jih}=N_{ji}^{l}g_{lh}$ ,

then from the above definitions and (1.5), we find

(1.11) $P_{jih}=F_{j}^{l}\nabla_{l}F_{ih}+F_{i}^{l}\nabla_{j}F_{l’\iota}$ ,

(1.12) $N_{jih}=P_{jih}-P_{ijh}$ .
If, in an almost Hermitian space, the Nijenhuis tensor vanishes identically,

then the space is called a Hermitian space.
Now we shall obtain a necessary and sufficient condition that an almost

Hermitian space is a Hermitian space.
In a Hermitian space, from the definition, on taking account of (1.10), we

find $P_{jih}=0,$ $i$ . $e.$ ,

(1.13) $F_{j}^{l}\nabla_{l}F_{ih}+F_{i}^{\iota}\nabla_{j}F_{lh}=0$ , or $O_{ji}^{rnl}\nabla_{m}F_{\iota^{h}}=0$ .
Conversely, if, in an almost Hermitian space, (1.13) holds good, then from

(1.12), we get $N_{ji^{h}}=0$ . Thus we have
THEOREM 1.1. A necessary and sufficient condition that an almost Hermitian

space is a Hermitian space is that $\nabla_{j}F_{ih}$ is hybrid in $j$ and $i$, that is,

$O_{ji}^{ml}\nabla_{m}F_{\iota}^{h}=0$ .

\S 2. Almost K\"ahlerian spaces.

I). Definitions.
Theorem 1.1 suggests us that there exists a new almost K\"ahlerian space,

so we state;
In an almost Hermitian space, if its structure tensor $F_{i^{h}}$ satisfies

(2.1) $*O_{ji}^{ml}\nabla_{m}F_{l}^{h}=0$ , or $O_{ji}^{ml}\nabla_{m}F_{l}^{h}=\nabla_{j}F_{i}^{h}$ ,

then we shall call the space an $*0$-almost K\"ahlerian space (or briefly an $*0-$

space) and if it satisfies
(2.2) $F_{i}\equiv\nabla_{l}F_{i}^{l}=0$ ,
or
(2.3) $F_{jih}\equiv\nabla_{j}F_{ih}+\nabla_{i}F_{hj}+\nabla_{h}F_{ji}=0$ ,
or
(2.4) $\nabla_{j}F_{ih}+\nabla_{i}F_{jh}=0$ ,

then we shall call the space an almost semi-K\"ahlerian space, or an H-almost
K\"ahlerian space (an $H- space^{8)}$), or a K-almost Kahlerian space (a $K- space^{4)}$),

3) Usually an H-space is called an almost K\"ahlerian space. K. Yano [10, p. 231].
4) S. Tachibana [8].
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respectively.
Now, in these spaces we shall deduce some identities and theorems which

are useful in the later sections.
Let $K_{kji}^{h}$ be the Riemannian curvature tensor;

(2.5) $K_{kJt}^{h}=\partial_{k}\{j^{h}i\}-\partial_{J}\{k^{h}i\}+\{k^{h}l\}\{j^{l}i\}-\{j^{h}l\}\{k^{l}i\}$ .
where $\partial_{k}=\partial/\partial x^{k}$, and

(2.6) $K_{ji}=K_{lji}^{l}$ , $K=g^{ml}K_{ml}$ , $K_{kjih}=K_{kji}^{l}g_{lh}$ ,

(2.7) $H_{ji}=\frac{1}{2}F^{ml}K_{mlji^{5)}}$ , $H=-F^{ml}H_{ml}$ .

Applying the Ricci formulae to $F_{i}^{h}$, we have the following identities which
are valid in an almost Hermitian space;

(2.8) $\nabla_{k}\nabla_{j}F_{i}^{h}-\nabla_{j}\nabla_{k}F_{i}^{h}=K_{kjl}^{h}F_{i}^{\iota}-K_{kji}^{\iota}F_{l}^{h}$ ,

(2.9) $F^{ml}\nabla_{m}\nabla_{l}F_{ih}=F_{i}^{l}H_{lh}+F_{h}^{\iota}H_{il}$ .
And the following identities are well known;

(2.10) $S\nabla_{j}F_{i}^{h}-\nabla_{j}SF_{i}^{h}vv=F_{i}^{\iota}Sv\{_{J^{h_{l}}}\}-F_{l\mathfrak{t}}^{\iota}Sv\{_{J^{l_{i}}}\}$ ,

(2.11) $fv\{_{j^{h}i}\}=\frac{1}{2}g^{hl}[\nabla_{j}S_{v}g_{\iota i}+\nabla_{i}S_{v}g_{jl}-\nabla_{l}S_{v}g_{ji}]$ ,

where $Sv$ denotes the operator of Lie differentiation with respect to $v^{i}$ .
II) Almost semi-K\"ahlerian spaces.
Now, we shall assume we are in an almost semi-K\"ahlerian space.
From (2.8), by virtue of the definition (2.2), we find

(2.12) $\nabla_{\iota}\nabla_{j}F_{i}^{\iota}=F_{i}^{\iota}K_{fl}-H_{ji}$ .
From (1.1) and (2.2), we find

(2.13) $F^{ji}\nabla_{j}F_{ih}=\nabla_{j}(F^{ji}F_{ih})=0$ .
Operating $\nabla^{h}=g^{lh}\nabla_{l}$ to the last equation and taking account of (2.12), we have
(2.14) $H-K=(\nabla_{h}F^{ml})(\nabla_{l}F_{m^{h}})$ ,
which is useful in \S 3.

On the other hand, from (2.10), by virtue of (2.2), we find

(2.15) $-\nabla_{l}SF_{i}^{\iota}=F_{i^{m_{i}}}gvv\{_{m^{l}l}\}-F_{m}^{\iota}Sv\{_{\iota^{m_{i}}}\}$ ,

and substituting (2.11) in the last equation, we get

(2.16) $-\nabla_{l}SF_{i}^{l}=\frac{1}{2}F_{i}^{m}g^{ls}(\nabla_{mi}Sg_{ls})+F^{ml}(\nabla_{mi}Sg_{li})vvv$

5) This notation differs from K. Yano’s only in a factor. K. Yano [10, p. 235].
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which are useful in \S 4.

III) *O-spaces.
In an $*0$-space, by definition (2.1), we have

(2.17) $\nabla_{j}F_{i}^{h}+F_{j^{l\prime t}}F_{i}^{l}\nabla_{m}F_{\iota^{h}}=0$ .
Transvecting the last equation with $g^{ji}$ and on taking account of (1.2), we find
$F_{i}=0$. Thus we have

THEOREM 2.1. An $*0$-space is an almost semi-Kahlerian space.
Next, since in an $O$-space the tensor $\nabla_{j}F_{ih}$ is pure in its lower indices, we

find that $F_{jih}$ is also pure in its lower indices, $i$ . $e.$ ,

(2.18) $F_{j}^{\iota}F_{lih}=F_{i}^{l}F_{jlh}=F_{h}^{\iota}F_{jil}$ .
From the definition (2.1), we find

$F_{j}^{l}\nabla_{l}F_{ih}=F_{h}^{l}\nabla_{j}F_{il}$ .
Operating $\nabla^{h}$ to the last equation and taking account of (2.12), we obtain

(2.19) $(\nabla_{h}F_{j}^{\iota})(\nabla_{l}F_{i}^{h})=F^{hl}\nabla_{h}\nabla_{j}F_{il}-F_{J^{m}}F_{i}^{\iota}K_{ml}+F_{j}^{l}H_{li}$ .
Now, in an $*0$-space, if the Nijenhuis tensor vanishes, then from (1.10),

we have $P_{jih}=0,$ $i.e.$ ,
$F_{j}^{l}\nabla_{l}F_{ih}+F_{i}^{l}\nabla_{j}F_{lh}=0$ ,

from which taking account of (2.1), we get $\nabla_{j}F_{i}^{h}=0$ . Conversely, it is easily
seen that the Nijenhuis tensor vanishes if $\nabla_{j}F_{i}^{h}=0$ .

Thus we find that in an $O$-space, the conditions $\nabla_{j}F_{i}^{h}=0$ and $N_{ji}^{\hslash}=0$ are
equivalent to each other.

IV) H-spaces.
Now, we shall assume we are in an H-space. If we put

$T_{jih}=2^{*}O_{ji}^{ml}\nabla_{m}F_{lh}$ ,

then from the definition (2.3), we have
$T_{jih}=\nabla_{j}F_{ih}+F_{J^{m}}F_{i}^{\iota}\nabla_{m}F_{lh}$

$=-(\nabla_{t}F_{hj}+\nabla_{h}F_{ji})-F_{j^{m}}F_{i}^{l}(\nabla_{l}F_{\iota m}+\nabla_{h}F_{ml})$

$=\nabla_{t}F_{jh}+F_{i}^{\iota}F_{j^{m}}\nabla_{l}F_{mh}$

$=T_{ijh}$ ,

by virtue of (1.7). On the other hand, taking account of (1.5), we have
$T_{jih}=-\nabla_{j}F_{hi}-F_{j^{m}}F_{h}^{l}\nabla_{m}F_{li}$

$=-T_{jhi}$ .
It is a $wel1- known_{-}^{\mathscr{O}}\not\subset fact\underline{B}that$ if a tensor $T_{jih}$ is symmetric in $j$ and $i$, and
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antisymmetric in $i$ and $h$ , then $T_{jih}$ is the zero tensor.
Thus we obtain $*O_{ji}^{ml}\nabla_{m}F_{lh}=0$ . Hence we have
THEOREM 2.2. An H-space is an *O-space.

V) K-spaces.
In a K-space, from the definition (2.4), we find

$T_{fih}=\nabla_{j}F_{ih}+F_{J^{m}}F_{i}^{l}\nabla_{m}F_{lh}$

$=-(\nabla_{h}F_{ij}+F_{j^{m}}F_{i}^{l}\nabla_{h}F_{lm})$ ,

thus on taking account of (1.7), we find $T_{jih}=0$ . Hence we have
THEOREM 2.3. A K-space is an *O-space.
Next, operating $V^{h}$ to (2.4), we obtain

(2.20) $F_{j}^{\iota}K_{li}+F_{i}^{l}K_{jl}=0$ , or $O_{ji}^{ml}K_{ml}=0$ ,

which shows that in a K-space the Ricci tensor $K_{ji}$ is hybrid in $j$ and $i$.
From (2.19), taking account of (2.4), (2.9) and (2.20), we obtain

$(\nabla_{j}F^{ml})(\nabla_{i}F_{ml})=K_{ji}-2F_{j}^{l}H_{li}-F_{i}^{l}H_{jl}$ .
As the left hand side of the last equation is symmetric in $j$ and $i$, we find

(2.21) $F_{j}^{\iota}H_{li}+F_{i}^{\iota}H_{jl}=0$ , or $O_{jt}^{ml}H_{ml}=0$ ,

which shows that in a K-space $H_{ji}$ is hybrid in $j$ and $i$.
Consequently, we have

(2.22) $(\nabla_{j}F^{ml})(\nabla_{i}F_{ml})=K_{ji}-F_{j}^{\iota}H_{lt}$ .
Now, we state;
THEOREM 2.4. A necessary and sufficient condition that an $*0$-space is $a$ K-

space is that the Nijenhuis tensor $N_{jih}$ is antisymmetric in its all lower indices6).

In fact, if in an $*0$-space the Nijenhuis tensor $N_{jih}$ is antisymmetric in
its all indices, then from (1.9) and (2.1), we have

$0=N_{jih}+N_{jhi}=2F_{j}^{l}(\nabla_{i}F_{hl}+\nabla_{h}F_{il})$ ,

from which we have (2.4). Conversely, in a K-space, since the Nijenhuis ten-
sor has the form
(2.23) $N_{jih}=4F_{j}^{l}\nabla_{l}F_{ih}$ ,

which shows that $N_{jih}$ is antisymmetric in $i$ and $h$ , thus it is antisymmetric
in its all indices. $q$ . $e.d$ .

Furthermore we can obtain the following;
THEOREM 2.5. A necessary and sufficient condition that a K-space is Kahlerian

6) If, in an almost Hermitian space, the Nijenhuis tensor $N_{jih}$ is antisymmetric
in its all lower indices, then the space is called a half-Hermitian space. Thus, we
see that as an almost Hermitian space corresponds to an $*0$-space so a half-Hermitian
space corresponds to a K-space. S. Sawaki and S. Kot6 [5].
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is that $F_{i}^{h}$ satisfies
(2.24) $K_{ji}=F_{j}^{\iota}H_{li}$ .

In fact, if a K-space satisfies (2.24), then from (2.22), we find
$(\nabla_{j}F^{ml})(\nabla_{i}F_{ml})=0$ ,

hence we have $\nabla_{j}F_{i}^{h}=0$ . Converely, in a K\"ahlerian space, since $\nabla_{j}F_{i}^{h}=0$ holds
good, thus from (2.12), we have (2.24). $q$ . $e$ . $d$ .

VI) Diagram.
The relation between these spaces may be seen in the following $diagram^{7)}$ :

\S 3. Curvatures.

In this section, we shall assume we are in an almost semi-K\"ahlerian space.
From (2.14), we have

THEOREM 3.1. In an almost semi-Kahlerian space, if it satisfies
$(\nabla_{h}F_{m}^{l})(\nabla_{l}F^{mh})\geqq 0$ , $(\leqq 0)$ ,

then the inequality $K\leqq H(K\geqq H)$ is valid.
Especially, in an H-space, we have

(3.1) $(\nabla^{h}F^{ml})(\nabla_{i}F_{mh})=\frac{1}{2}(\nabla^{h}F^{ml})(\nabla_{\iota}F_{mh}-\nabla_{m}F_{\iota h})$

$=\frac{1}{2}(\nabla^{h}F^{ml})(\nabla_{h}F_{ml})\geqq 0$ ,

7) Cf., K. Yano [10, p. 231].
8) A semi-K\"ahlerian space has remarkable characters and M. Apte [1] has con-

sidered such a space. We shall discuss this space in another place.
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by virtue of (2.3).

In a K-space, by definition (2.4), we have
(3.2) $(\nabla_{h}F_{m}^{\iota})(\nabla_{l}F^{mh})=-(\nabla^{h}F^{ml})(\nabla_{h}F_{n\iota l})\leqq 0$ .
Thus we have

$CoROLLARY9)$ . In an H-space (a K-space), the relation $K\leqq H(K\geqq H)$ holds.
The equality holds if and only if the space is Kahlerian.

Now, we assume that an almost semi-K\"ahlerian space is conformally flat,
so that the curvature tensor has the $form^{10)}$ ;

(3.3) $2(n-1)K_{1cjih}=(K_{ji}g_{kh}-K_{jh}g_{ki}+K_{kh}g_{ji}-K_{ik}g_{jh})$

$-\frac{K}{(2n-1)}(g_{jt}g_{kh}-g_{ki}g_{jh})$ .

Transvecting this equation with $F^{kj}F^{ih}$ , we find

$(2n-1)(K-H)=2(n-1)K$ .
Thus, using the Theorem 3.1, we have
THEOREM 3.2. In an almost semi-Kahlerian space, if the relation

$(\nabla_{h}F^{ml})(\nabla_{\iota}F_{m}^{h})\geqq 0$ , $(\leqq 0)$ ,

holds, then there does not exist a conformally flat almost semi-Kahlerian space
with $K>0(K<0)$ .

$CoROLLARY11)$ . There does not exist a conformally flat H-space (K-space) with
$K>0(K<0)$ .

$CoROLLARY$ . In an almost semi-Kahlerian space, if the relation
$(\nabla_{h}F^{ml})(\nabla_{\iota}F_{m}^{h})\geqq 0$ , $(\leqq 0)$ ,

holds, then there does not exist an almost semi-Kahlerian space of positive (nega-

tive) constant curvature.
$CoROLLARY11)$ . There does not exist an H-space (K-space) ofpositive (negative)

constant curvature.

\S 4. Almost analytic vectors.

In a $2n$-dimensional Riemannian space, if a vector field $v^{i}$ satisfies eachof-
the following conditions;
(4.1) $Sg_{ji}\equiv\nabla_{j}v_{i}+\nabla_{i}v_{j}=0v$

or
(4.2) $i\epsilon g_{ji}\equiv\nabla_{j}v_{i}+\nabla_{t}v_{j}=2\phi g_{fi}v$

9) S. Tachibana [8] and [9].
10) J. A. Schouten [6].
11) S. Tachibana [8] and [9].
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or
(4.3) $S_{v}\{_{j^{h}i}\}\equiv V_{j}\nabla_{i}v^{h}+K_{lji}^{h}v^{l}=A_{j^{h}}\psi_{i}+A_{i^{h}}\psi_{j}$ ,

then it is called a Killing vector, a conformal Killing vector, a projective Kill-
ing vector, respectively, where

$\phi=\frac{1}{2n}\nabla_{l}v^{\iota}$ , $\psi_{i}=\frac{1}{2n+1}\nabla_{i}\nabla_{l}v^{\iota}$ .
It is a well known fact that, in a compact orientable Riemannian space, a

necessary and sufficient condition that a vector field $v^{i}$ is a Killing vector is
that it satisfies
(4.4) $g^{ml}\nabla_{m}\nabla_{\iota}v^{i}+K_{\iota}^{t}v^{\iota}=0$

and
(4.5) $\nabla_{l}v^{l}=0$ .

Now, in an almost semi-K\"ahlerian space, we shall say that a tensor field
$T_{j_{p}\cdots j_{1}}i_{q}\cdots l_{1}$ which is pure in all its indices, is an almost analytic tensor if it
$satisfies^{12)}$ ;

(4.6) $F_{h}^{\iota}\nabla_{l}T_{jp\cdots j_{1}}i_{q}\cdots i_{1}-\nabla_{h}(F_{j_{1}}^{\iota}T_{jp\cdots j*l^{t_{q}\cdots i_{1}}})$

$+\sum_{r=1}^{p}(\nabla_{j_{r}}F_{h}^{\iota})T_{j_{p}\cdots l\cdots j_{1}}i_{q}\cdots i_{1}$

$-\sum_{s=1}^{q}(\nabla_{l}F_{h}^{\tau}\$-\nabla_{h}F_{\iota}^{i_{S}})T_{j_{p}\cdots j_{1}(s}t_{q}\cdots l_{)}\cdot\cdot 4_{1}=0$ .
We notice that this formula is independent of the connection, that is, it

is a differential concomitanti3).

In the next, we shall consider a contravariant almost analytic vector in a
$2n$-dimensional compact almost semi-K\"ahlerian space.

From (4.6), we have for a contravariant almost analytic vector (or briefly
an analytic vector) $v^{i}$,

(4.7) $SF_{j}^{i}v\equiv v^{\iota}\nabla_{l}F_{j}^{i}-F_{j}^{l}\nabla_{\iota}v^{i}+F_{l}^{i}\nabla_{j}v^{l}=0$ .
If a conformal Killing vector $v^{i}$ is at the same time analytic, then sub-

stituting (4.2) and (4.7) in (2.16), we find

$(n-1)F_{i}^{m}\nabla_{m}\nabla_{l}v^{\iota}=0$ .
From which we get $\nabla_{i}\nabla_{\iota}v^{\iota}=0,$ $(n>1)$ .

As the space is compact, using the Green’s theorem, we deduce $\nabla_{\iota}v^{l}=0$.
Thus we have

12) This definition is valid in an almost complex space.
13) A. Nijenhuis [4]. J. A. Schouten [6].
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THEOREM $4.1^{1\rfloor)}$ . In a $2n$-dimensional compact almost semi-Kahlerian space
$(n>1)$ , if a conformal Killing vector is at the same time analytic, then it is a
Killing vector.

For a projective Killing vector $v^{i}$ which is at the same time analytic, from
(2.15), we find

$F_{i}^{m}St_{m^{l}l}\}-F_{m}^{\iota}Svv\{_{\iota^{m_{i}}}\}=0$ .

Substituting (4.3) in the last equation, we get $\nabla_{i}\nabla_{l}v^{\iota}=0$ , therefore, as the space
is compact, we have (4.4) and (4.5), that is, the vector becomes a Killing one.
Thus we have

THEOREM $4.2^{14)}$ . In a compact almost semi-Kahlerian space, if a projective
Killing vector is at the same time analytic, then it is a Killing vector.

\S 5. Integral formulae.
Now, in a compact almost semi-K\"ahlerian space $X_{2n}$ , we shall obtain a

necessary and sufficient condition that a contravariant vector field $v^{i}$ is ana-
lytic. For analytic vector $v^{i}$, from (4.7), we find

(5.1) $v^{l}\nabla_{l}F^{ji}-F^{jl}\nabla_{l}v^{i}+F_{\iota}^{i}\nabla^{j}v^{l}=0$ .
Operating $\nabla_{j}$ to the last equation and taking account of (2.9) and (2.12), we have
(5.2) $g^{ml}\nabla_{m}\nabla_{\iota}v_{i}+K_{li}v^{l}+F_{i}^{\iota}(\nabla^{s}v^{m})(\nabla_{m}F_{sl}+\nabla_{s}F_{ml})=0$ .

On the other hand, multiplying (5.1) by $\frac{1}{2}(\nabla_{h}F_{ji})+\nabla_{j}F_{ih}$ , and contracting,
we obtain

$\frac{1}{2}v^{s}F_{iml}(\nabla_{s}F^{ml})+(\nabla^{s}v^{m})(F_{s}^{l}\nabla_{i}F_{lm}+F_{s}^{l}\nabla_{l}F_{mi}+F_{i}^{l}\nabla_{s}F_{ml})=0$ .
Subtracting the last equation from (5.2), we have

(5.3) $g^{ml}\nabla_{m}\nabla_{l}v_{i}+K_{li}v^{l}-\frac{1}{2}F_{iml}(SF^{ml})v=0$ .
This equation is a necessary condition for a vector $v^{i}$ to be analytic.

Next, we shall get a sufficient condition. For a vector field $v^{i}$, if we put

$a_{ji}\equiv(_{i}\epsilon F_{j}^{l})F_{li}v=v^{m}(\nabla_{m}F_{j}^{l})F_{li}+F_{j^{m}}F_{i}^{l}\nabla_{m}v_{\iota}-\nabla_{j}v_{i}$

then we have

(5.4) $\frac{1}{2}a_{ji}a^{ji}=(\nabla_{j}v_{i})(\nabla^{j}v^{i})+\frac{1}{2}(\nabla_{s}F_{jt})(\nabla_{m}F^{jt})v^{s}v^{m}$

$+v^{i}F^{jt}(\nabla_{i}F_{j}^{l})(\nabla_{t}v_{l})+F_{i}^{\iota}(\nabla_{s}F_{jl})(\nabla^{j}v^{i})v^{s}-F_{j^{m}}F_{i}^{\iota}(\nabla_{m}v_{\iota})(\nabla^{j}v^{i})$ ,
and

14) For an H-space or a K-space, see S. Tachibana [7] and [8].
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(5.5) $\nabla^{j}(a_{ji}v^{i})=-[g^{ml}\nabla_{m}\nabla_{l}v_{i}+K_{li}v^{l}-(\nabla^{j}v^{m})(\nabla_{m}F_{i}^{\iota})F_{jl}$

$+(\nabla_{m}F_{j}^{l})(\nabla^{j}F_{il})v^{m}-F_{j}^{m}(\nabla^{j}F_{i}^{\iota})(\nabla_{m}v_{\iota})]v^{i}$

$-F_{i}^{l}(\nabla_{m}F_{jl})(\nabla^{j}v^{\uparrow})v^{m}+F_{j}^{m}F_{i}^{l}(\nabla_{m}v_{l})(\nabla^{j}v^{i})-(\nabla^{j}v^{i})(\nabla_{j}v_{i})$ .
From (5.4) and (5.5), we get

$-\frac{1}{2}a_{ji}a^{ji}+\nabla^{j}(a_{ji}v^{i})=-[g^{ml}\nabla_{m}\nabla_{l}v_{i}+K_{li}^{1}v_{2}^{l}---F_{iml}(S_{v}F^{ml})]v^{i}$ .

Hence, applying the Green’s theorem, we hav $e$

LEMMA15). In a compact almost semi-Kahlerian space $X_{2n}$ , the integral formula

(5.6) $\int_{X_{2nv}}[\{g_{m}\nabla_{m}\nabla_{l}v_{i}+K_{li}v^{l}-\frac{1}{2}F_{im\iota}(SF^{ml})\}v^{i}+^{1}-2-a_{ji}a^{ji}]d\sigma=0$ ,

is valid for any vector field $v^{i}$ , where $ d\sigma$ means the volume element of the $X_{2n}$ ,
and $a_{ji}=(SF_{j}^{l})F_{li}v$

From this lemma, we have
THEOREM 5.1. In a compact almost semi-Kahlerian space, a necessary and

sufficient condition that a contravariant vector $v^{i}$ is analytic is that it satisfies
(5.3), i. e.,

1
$g^{ml}\nabla_{m}\nabla_{l}v_{i}+K_{li}v_{2_{v}}^{\iota}---F_{iml}(SF^{ml})=0$ .

In an $*0$-space, for an analytic vector, the third term of (5.3) may be writ-
ten in the form;

1 1
$--2_{v}^{-F_{iml}(SF^{ml})=--}2_{v}^{-F_{iml}F_{s}^{l}Rg^{sm}}$

$=-\frac{1}{2}F_{i}^{\iota}F_{lms}Sg^{sm}v$

$=0$ ,

by virtue of (2.18) and (4.7). Thus we have
THEOREM 5.2. In a compact $*0$-space, a necessary and sufficient condition

that a contravariant vector $v^{i}$ is analytic is that it satisfies
(5.7) $g^{ml}\nabla_{m}\nabla_{\iota}v_{i}+K_{li}v^{\iota}=0$

and
(5.8) $F_{iml}S_{v}F^{ml}=0$ .

Next, in an $*0$-space, for an analytic vector using (5.7), we find

$\nabla^{j}(v^{i}\nabla_{j}v_{i})=(\nabla^{j}v^{i})(\nabla_{j}v_{i})-K_{ji}v^{j}v^{i}$ ,

Hence, by Green’s theorem, we have

15) For an H-space or a K-space, see S. Tachibana [7] and [8], and for K\"ahlerian

case, see A. Lichnerowicz [3], and also K. Yano [10, p. 238].
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THEOREM‘6) 5.3. If a compact $*0$-space has a negative definite Ricci tensor,
there does not exist an analytic vector field other than the zero vector.

From (5.7) and taking account of (4.4) and (4.5), we have
$C\circ ROLLARY$ . In a compact $O$-space, if an analytic vector $v^{i}$ satisfies $\nabla_{\iota}v^{l}=0$ ,

then it is a Killing vector.
In an H-space, $F_{jih}$ is identically zero by the definition, hence we have
$CoROLLARY17)$ . In a compact H-space, a necessary and sufficient condition

that a conlravariant vector $v^{i}$ is analytic is that it satisfies
$g^{ml}\nabla_{m}\nabla_{l}v_{i}+K_{li}v^{\iota}=0$ .

Next, in a K-space, from (2.22) and (2.23), the equation (5.8) becomes

$\frac{1}{2}N_{iml}(\nabla^{m}v^{l})+(K_{li}-F_{\iota^{m}}H_{mi})v^{l}=0$ ,

by virtue of $F_{jih}=3\nabla_{j}F_{ih}$ . Thus we hav $e$

$C\circ ROLLARY^{18)}$ . In a compact K-space, a necessary and sufficient condition
that a contravariant veclor $v^{i}$ is analytic is that it satisfies

$g^{ml}\nabla_{m}\nabla_{l}v_{i}+K_{li}v^{l}=0$

and
$\frac{1}{2}N_{iml}(\nabla^{m}v^{l})+(K_{li}-F_{\iota^{m}}H_{mi})v^{\iota}=0$ .

Niigata University.

Bibliography

[1] Apte, M., Sur certains vari\’et\’es hermitiques, C. R. Acad. Sci. Paris, 241 (1954)‘
1091-1093.

[2] Bochner, S., Vector fields and Ricci curvature, Bull. Amer. Math. Soc., 2 (1946),
776-797.

[3] Lichnerowicz, A., Sur les transformations analytiques des vari\’et\’es k\"ahleriennes
compactes, C. R. Acad. Sci. Paris, 244 (1957), 3011-3013.

[4] Nijenhuis, A., Jacobi-type identities for bilinear differential concomitants of
certain tensor fields, I; II, Indag. Math., 17 (1955), 390-397; 398-403.

[5] Sawaki, S. and Kot\={o}, S., On some $F$-connections in almost Hermitian manifolds,
J. fac. sci. Niigata Univ., 1 (1958), 85-96.

[6] Schouten, J. A., Ricci-Calculus, second edition, Springer, 1954.
[7] Tachibana, S., On almost-analytic vectors in almost-K\"ahlerian manifolds, T\^ohoku

Math. J., 11 (1959), 247-265.
[8] Tachibana, S., On almost-analytic vectors in certain almost Hermitian manifolds,

T\^ohoku Math. J., 11 (1959), 351-363.
[9] Tachibana, S., Note on conformally flat almost-K\"ahlerian space, Ochanomizu

Univ. sci. rep., 10 (1959), 41-43.
[10] Yano, K., The theory of Lie derivatives and its applications, Amsterdam, 1955.

16) For an H-space or a K-space, see S. Tachibana [7] and [8], and for K\"ahlerian
case, see S. Bochner [2], and also K. Yano [10, p. 237].

17) S. Tachibana [7].
18) S. Tachibana [8].


	Some theorems on almost ...
	\S 1. Almost Hermitian ...
	THEOREM 1.1. ...

	\S 2. Almost K\"ahlerian ...
	THEOREM 2.1. ...
	THEOREM 2.2. ...
	THEOREM 2.3. ...
	THEOREM 2.4. ...
	THEOREM 2.5. ...

	\S 3. Curvatures.
	THEOREM 3.1. ...
	THEOREM 3.2. ...

	\S 4. Almost analytic ...
	THEOREM $4.1^{1\rfloor)}$ ...
	THEOREM $4.2^{14)}$ ...

	\S 5. Integral formulae.
	THEOREM 5.1. ...
	THEOREM 5.2. ...
	THEOREM`6) 5.3. ...

	Bibliography


