On a certain system with infinite induction.

By Toshio NISHIMURA

(Received Nov. 13, 1959)

Introduction

K. Schütte gave the system \boldsymbol{Z} of the theory of natural numbers which contains the infinite induction, and he proved that G. Gentzen's elimination theorem holds in Z [1].

To every proof-figure in Z corresponds an ordinal number of the second class which is called the order of the proof-figure. In this paper we prove some metatheorems on Z by applying G. Gentzen's elimination theorem for proof-figures of finite order due to K. Schütte [\[1\].](#page-8-0) Our proofs are not necessarily based on the finite stand-point.

In $\S 1$ we formulate the system \boldsymbol{Z} into G. Gentzen's style.

In $\S 2$ we give another proof of the consistency of \boldsymbol{Z} and G. Gentzen's elimination theorem for proof-figures of any order in Z , which is given in the following stronger form: for every proof-figure in Z we have a proof-figure of finite order to the same end-sequent which contains no cut. Moreover we prove that any arithmetical formula is decidable in \boldsymbol{Z} , i.e. if A is an arbitrary arithmetical formula, then either A or non- A is provable in Z .

In $\S 3$ as an application of results in $\S 1$ we prove the consistency of G. Gentzen's LK with number-theoretic axioms containing the complete induction without use of the transfinite induction to Cantor's first ε_{0} .

§ 1. System.

In this section we formulate an ω -complete system **Z** of arithmetic into G. Gentzen style.

1. Symbols

We use the following fundamental symbols; symbol 0, bound variables x , y, z etc., function symbols ', +, \cdot , predicate symbol =, logical symbols \wedge , \neg , \forall and symbol \rightarrow .

If necessary we use several letters for abbreviation.

2. Terms are constructed as follows:

(1) the symbol 0 is a term; (2) if t is a term, so is t', and if t_{1} and t_{2} are terms, so are $t_{1}+t_{2}$ and $t_{1}\cdot t_{2}$.

In particular terms of the form $0,0^{\prime}, 0^{\prime\prime}, 0^{\prime\prime\prime}, \cdots$ are called *numerals*.

3. Formulas are constructed as follows:

(1) if t_{1} and t_{2} are terms, then $t_{1}=t_{2}$ is a prime formula and a prime formula is a formula; (2) if A is a formula, so is $\overline{7}A$; (3) if A and B are formulas, so is $A \wedge B$, and (4) if $F(t)$ is a formula, so is $\forall x F(x)$.

The number of logical symbols in a formula is called the *degree* of the formula.

4. We call a figure of the following form a sequent, $A_{1}, \cdots, A_{\mu} \rightarrow B_{1}, \cdots, B_{\nu}$ where $A_{1}, \cdots, A_{\mu}, B_{1}, \cdots, B_{\nu}$ are arbitrary formulas. And it may happen that $\mu=0$ or $\nu=0$. We say that A_{1}, \dots, A_{μ} are in the antecedent and B_{1}, \dots, B_{ν} are in the succedent in the sequent.

5. Sequents of the following forms are called *beginning sequents*:

(1) a sequent of the form $\rightarrow P$, where P is a true prime formula, and (2) a sequent of the form $P \rightarrow$, where P is a false prime formula.

6. Rules of inference

If S_{1}, \cdots, S_{m} and S are sequents, then a figure of the form

$$
\frac{S_1, \cdots, S_m}{S}
$$

is called a *rule of inference.* S_{1}, \cdots, S_{m} are called the upper sequents and S is called the *lower sequent* of the rule of inference. In our case \boldsymbol{Z} contains the following rules of inference.

In what follows, capital Greek letters Γ, Π etc. express finite sequences of formulas.

(1) Structural rules of inference

Thinning in antecedent Thinning in succedent

$$
\frac{\Gamma \to \Delta}{D, \Gamma \to \Delta} \qquad \qquad \frac{\Gamma \to \Delta}{\Gamma \to \Delta, D}
$$

Interchange in antecedent Interchange in succedent

$$
\frac{\Gamma, D, C, \Pi \to \Delta}{\Gamma, C, D, \Pi \to \Delta} \qquad \qquad \frac{\Gamma \to \Delta, D, C, \Lambda}{\Gamma \to \Delta, C, D, \Lambda}
$$

Contraction in antecedent Contraction in succedent

$$
\frac{D, D, \Gamma \to \Delta}{D, \Gamma \to \Delta} \qquad \qquad \frac{\Gamma \to \Delta, D, D}{\Gamma \to \Delta, D}
$$

where C and D are arbitrary formulas called *principal formulas* of each rule of inference.

(2) Logical rules of inference

394 T. NISHIMURA

 \wedge -in antecedent \wedge -in succedent

.

$A, \Gamma \rightarrow \Delta$	$B, \Gamma \rightarrow \Delta$	$\Gamma \rightarrow \Delta, A$	$\Gamma \rightarrow \Delta, B$
7-in antecedent	$A \land B, \Gamma \rightarrow \Delta$	$\Gamma \rightarrow \Delta, A \land B$	
7-in antecedent	7-in succedent		
$\Gamma \rightarrow \Delta, A$	$A, \Gamma \rightarrow \Delta$	$\Gamma \rightarrow \Delta, \neg A$	

where A and B are arbitrary formulas called side formulas of each rule of inference. $A \wedge B$ or $\overline{7}A$ is called *principal formula* of each rule of inference.

 \forall -in antecedent

 $\overline{\mathcal{F}(n)}$, $\overline{\mathcal{F}(n)}$, where **n** is an arbitrary numeral. \forall -in succedent

$$
\frac{\Gamma \rightarrow \Delta, F(n) \text{ for every numeral } n}{\Gamma \rightarrow \Delta, \forall x F(x)}
$$

This is called the infinite induction. $F(n)$ is called the *side formula* and $\forall x F(x)$ is called the *principal formula* of each rule of inference.

(3) Cut

$$
\frac{\Gamma \to \Delta, D \quad D, \Pi \to \Lambda}{\Gamma, \Pi \to \Delta, \Lambda}
$$

where D is an arbitrary formula called the *cut-formula*. We define the *degree* of a cut as the degree of the cut-formula of this cut.

7. We introduce a concept "*proof-figure*" into the system. Under a prooffigure we understand a figure of finite or infinite sequents, built up in the following manner: uppermost sequents are always beginning sequents; every sequent is a lower sequent of at most one rule of inference; and every sequent, except just one, the end-sequent, is upper sequent of just one rule of inference. To every sequent of proof-figure corresponds an ordinal number of the second class as follows. (1) The ordinal number of a beginning sequent is zero. (2) The ordinal number of the lower sequent of a structural rule of inference is equal to that of the upper sequent. (3) The ordinal number of the lower sequent of a cut or a logical rule of inference is greater than those of upper sequents.

Only proof-figures which have the maximum of degrees of cut are under our consideration.

8. When a formula A contains no predicate symbol except $=$ and no function symbol except ', $+$, \cdot , A is said to be *arithmetical*. To simplify the treatment, we assume that the system contains only arithmetical formulas.

 $\S 2.$ In this section we give a consistency proof of the system \boldsymbol{Z} and give

a proof of the elimination theorem in general form, starting with K. Schütte's elimination theorem for proof-figures of finite order.

1. Elimination theorem for proof-figures of finite order (due to K. Schütte $\lceil 1 \rceil$).

If a sequent $\Gamma\rightarrow\Delta$ is provable by a finite order, then we have a proof-figure to $\Gamma\rightarrow\Delta$ without cut, having also a finite order.

For simplicity we say that $\Gamma\rightarrow\Delta$ is *finitely provable* or α -provable in case that $\Gamma\!\rightarrow\! \varDelta$ has a proof-figure of finite order or order $\alpha.$

2. LEMMA. If t and s are terms with the same numerical value, then the sequent $F(t) \rightarrow F(s)$ is $2n$ -provable, where *n* is the degree of $F(t)$.

It is easily proved by induction on the degree of the formula $F(t)$.

3. THEOREM. Let $A_1, \cdots, A_{\mu} \rightarrow B_{1}, \cdots, B_{\nu}$ be a sequent where $\mu+\nu\neq 0$ and m_{1} , \cdots , m_{μ} , n_{1} , \cdots , n_{ν} be the degrees of A_{1} , \cdots , A_{μ} , B_{1} , \cdots , B_{ν} respectively. If the sequent $A_1, \dots, A_{\mu} \rightarrow B_1, \dots, B_{\nu}$ is provable without cut, then some sequent $A_i \rightarrow i$ s m_{i} -provable without cut $(1\leq i\leq\mu)$ or some sequent $\rightarrow B_{j}$ is n_{j} -provable without cut $(1 \leq j \leq \nu)$.

PROOF. We prove by transfinite induction on the order of the proof-figure to $A_{1}, \cdots, A_{\mu} \rightarrow B_{1}, \cdots, B_{\nu}$.

If the order is zero, then it is clear. If the last rule of inference (denoted by \mathfrak{L} is a logical rule of inference, then we have six cases, \mathfrak{L} is \wedge -in succedent, \wedge -in antecedent, $\overline{}$ -in succedent, $\overline{}$ -in antecedent, \forall -in succedent and \forall -in antecedent.

In the case where \mathfrak{L} is \wedge -in succedent let it be

$$
\frac{A_1, \cdots, A_{\mu} \rightarrow B_1, \cdots, B_{\nu-1}, C \qquad A_1, \cdots, A_{\mu} \rightarrow B_1, \cdots, B_{\nu-1}, D}{A_1, \cdots, A_{\mu} \rightarrow B_1, \cdots, B_{\nu-1}, C \wedge D}
$$

where $C \wedge D$ is B_{ν} .

If $A_{i}\rightarrow$ is not m_{i} -provable without cut for every $i(1\leq i\leq\mu)$ and $\rightarrow B_{j}$ is not n_{j} -provable without cut for every j (1 $\leq j\leq\nu-1$), then both $\rightarrow C$ and $\rightarrow D$ are $(n_{\nu}-1)$ -provable without cut by the assumption of transfinite induction. Therefore \rightarrow C \land D is n_v-provable without cut.

In the case where $\Ω$ is \wedge -in antecedent, 7-in succedent, 7-in antecedent or \forall -in antecedent we prove in the same way as in \wedge -in succedent.

In the case where \mathfrak{L} is \forall -in succedent let it be

$$
\frac{A_1, \cdots, A_{\mu} \rightarrow B_1, \cdots, B_{\nu-1}, F(n) \text{ for every numeral } n}{A_1, \cdots, A_{\mu} \rightarrow B_1, \cdots, B_{\nu-1}, \forall x F(x)}
$$

.

If $A_{i}\rightarrow$ is not m_{i} -provable without cut for every $i(1\leq i\leq\mu)$ and $\rightarrow B_{j}$ is not n_{j} -provable without cut for every $j(1\leq j\leq\nu-1)$, then $\rightarrow F(n)$ is $(n_{\nu}-1)$ provable without cut for every numeral **n**. Therefore the sequent $\rightarrow \forall x F(x)$

is n_{ν} -provable without cut.

4. THEOREM. Let F be an arbitrary formula. Then it is impossible that both the sequents $\rightarrow F$ and $F\rightarrow$ are provable without cut.

PROOF. If \rightarrow F is provable without cut, then \rightarrow F is finitely provable without cut from Theorem 3. Similary $F\rightarrow$ is finitely provable without cut. Therefore if both \rightarrow F and $F\rightarrow$ were provable without cut, then the sequent ' \rightarrow ' should be finitely provable. This should contradict to Theorem ¹ in this section.

5. THEOREM (Generalization of Theorem 3).

Let $A_{1}, \dots, A_{\mu} \rightarrow B_{1}, \dots, B_{\nu}$ be a sequent where $\mu+\nu\neq 0$ and m_{1}, \dots, m_{μ} , n_{1} , \cdots , n_{ν} be the degrees of A_{1}, \cdots, A_{μ} , B_{1}, \cdots, B_{ν} respectively. If the sequent A_{1}, \cdots , $A_{\mu}\rightarrow B_{1}, \cdots, B_{\nu}$ is provable, then some sequent $A_{i}\rightarrow$ is m_i-provable without cut or some sequent $\rightarrow B_{j}$ is n_j-provable without cut.

PROOF. We prove by transfinite induction on the order of the proof-figure to $A_{1}, \cdots, A_{\mu}\rightarrow B_{1}, \cdots, B_{\nu}$. In case that the last rule of inference is not a cut we can prove in the same way as in Theorem 3. In case that the last rule of inference is a cut, let it be

$$
\frac{A_1,\cdots,A_{\mu_1}\to B_1,\cdots,B_{\nu_1},C\quad C,A_{\mu_1+1},\cdots,A_{\mu}\to B_{\nu_1+1},\cdots,B_{\nu}}{A_1,\cdots,A_{\mu}\to B_1,\cdots,B_{\nu}}.
$$

If $A_{i}\rightarrow$ is not m_{i} -provable without cut for every i (1 $\leq i\leq\mu$) and $\rightarrow B_{j}$ is not n_{j} -provable without cut for every j ($1\leq j\leq\nu$), then both $\rightarrow C$ and $C\rightarrow$ are mprovable without cut by the assumption of transfinite indudtion, where m is the degree of C. This contradicts to Theorem 4.

6. THEOREM (Consistency theorem in general form).

The sequent \rightarrow' is not provable in **Z**.

Proof. If the sequent \rightarrow is provable in \mathbb{Z} , then the last rule of inference to \rightarrow ' is of the form

$$
\frac{\longrightarrow F \qquad F \longrightarrow}{\longrightarrow} \text{cut.}
$$

Therefore both sequents $\rightarrow F$ and $F\rightarrow$ are provable in **Z**. From Theorem 5 then both $\rightarrow F$ and $F\rightarrow$ are finitely provable without cut. This contradicts to Theorem 4.

7. THEOREM (Elimination theorem in general form).

If a sequent $\Gamma\rightarrow\Delta$ is provable in **Z**, then $\Gamma\rightarrow\Delta$ is finitely provable without cut.

Proof. Let $\Gamma \rightarrow A$ be $A_{1}, \cdots, A_{\mu} \rightarrow B_{1}, \cdots, B_{\nu}$. From Theorem 6 it follows that $\mu+\nu\neq 0$. Therefore some sequent $A_{i}\rightarrow$ is finitely provable without cut or some sequent $\rightarrow B_{j}$ is finitely provable without cut. In each case $\Gamma\rightarrow\Delta$ is finitely provable without cut.

8. THEOREM (Decidability Theorem).

Let F be an arithmetical formula of the degree n. Then either \rightarrow F or $F\rightarrow$ is n-provable without cut.

PROOF. By Lemma 2 the sequent $F\rightarrow F$ is $2n$ -provable without cut. Therefore we obtain Theorem 8 from Theorem 3 and Theorem 1.

9. DEFINITION. We say that a system S contains the system Z , when the system S satisfies the following conditions.

(1) Terms and formulas in Z are also terms and formulas in S respectively.

(2) Provable sequents in Z are also provable in S .

10. THEOREM. Let F be an arithmetical formula and S contains the system **Z.** Then \rightarrow F or $F\rightarrow$ is provable in S.

\S 3. A consistency-proof of G. Gentzen's LK with number-theoretic axioms containing the complete induction.

1. We obtain G. Gentzen's LK with number-theoretic axioms containing the complete induction by modifying the system Z as follows.

(1) To symbols we add free variables a, b, c etc.

(2) In the construction rule of terms we add ' free variables are terms '.

(3) Beginning sequents are the following, excluding those of Z .

(3.1) Arithmetical beginning sequents are the following:

$$
\rightarrow t = t; \quad s = t \rightarrow t = s; \quad s = t, t = u \rightarrow s = u;
$$

$$
s' = t' \rightarrow s = t; \quad s = t \rightarrow s' = t';
$$

$$
\rightarrow t + 0 = t; \quad \rightarrow s + t' = (s + t)';
$$

$$
\rightarrow t \cdot 0 = 0; \quad \rightarrow s \cdot t' = s \cdot t + s;
$$

where s, t and u are arbitrary terms.

(3.2) Logical beginning sequents are sequents of the form

$$
D \rightarrow D
$$

where D is an arbitrary formula.

(4) Rules of inference \forall -in antecedent and \forall -in succedent in \boldsymbol{Z} are omitted. And we introduce new rules of inference:

 \forall -in antecedent \forall -in succedent

$$
\frac{\Gamma \to \Delta, F(a)}{\forall x F(x), \Gamma \to \Delta} \qquad \qquad \frac{\Gamma \to \Delta, F(a)}{\Gamma \to \Delta, \forall x F(x)}
$$

where t is an arbitrary term. where α is a free variable not con-

tained in the lower sequent.

398 T. NISHIMURA

CI (complete induction)

 $F(a), I \rightarrow A, F(a^{\prime})$ $\overline{F}(0)$, $\overline{F}(0)$, $\overline{F}(1)$

where t is an arbitrary term and α is a free variable not contained in the lower sequent.

In what follows we denote the system given here by LK. To distinguish between proof-figures in LK and proof-figures in Z we use the terminologies LK-proof-figures and **Z**-proof-figures.

2. In the following manner an ordinal number smaller than ω^{2} corresponds to every sequent in an LK-proof-figure. This is called the order of the sequent. The order of the end-sequent is called the *order of the proof-figure*.

(1) The order of a beginning sequent is ω .

(2) The order of the lower sequent of a structural rule of inference is equal to that of the upper sequent.

(3) In a logical rule of inference with one upper sequent or a rule of inference CI, the order of the lower sequent is $\alpha+\omega$, where α is the order of the upper sequent.

(4) In a logical rule of inference with two upper sequents or a cut the order of the lower sequent is $\max(\alpha_{1}, \alpha_{2})+\omega$, where α_{1} and α_{2} are orders of two upper sequents.

It is clear that order of every LK-proof-figure is smaller than ω^{2} .

3. We transform an LK-proof-figure to a Z-proof-figure.

When Γ is $A_{1}(a_{1}, \cdots, a_{m}), \cdots, A_{\mu}(a_{1}, \cdots, a_{m})$, so we express $A_{1}(t_{1}, \cdots, t_{m}), \cdots$, $A_{\mu}(t_{1}, \cdots, t_{m})$ by $\Gamma(t_{1}, \cdots, t_{m})$.

THEOREM. Let $\Gamma(a_{1}, \cdots , a_{m})\rightarrow\Delta(a_{1}, \cdots , a_{m})$ be a sequent not containing free variables except a_{1}, \dots, a_{m} and be α -provable in LK. If $\mathbf{n}_{1}, \dots, \mathbf{n}_{m}$ are arbitrary numerals, then we have a Z-proof-figure to the sequent $\Gamma(n_{1}, \cdots , n_{m})\rightarrow\Delta(n_{1}, \cdots, n_{m})$ with an order β ($<\alpha$).

PROOF. We prove by induction on the number of rules of inference in the LK-proof-figure to the sequent $\Gamma(a_{1}, \cdots, a_{m})\rightarrow\Delta(a_{1}, \cdots, a_{m}).$

In case that $\Gamma(a_{1}, \cdots , a_{m})\rightarrow\Delta(a_{1}, \cdots , a_{m})$ is a beginning sequent, the sequent $\Gamma(n_{1}, \cdots, n_{m})\rightarrow\Delta(n_{1}, \cdots, n_{m})$ is finitely provable in **Z**. In case that $\Gamma(a_{1}, \cdots, a_{m})$ $\rightarrow \Delta(a_{1}, \cdots , a_{m})$ is not a beiginning sequent, we denote the last rule of inference by \mathfrak{L} . If \mathfrak{L} is a structural rule of inference, then it is clear.

We have only to prove in cases where \mathfrak{L} is \forall -in antecedent, \forall -in succedent, or CI. In other cases we can prove similarly.

In case that \mathcal{L} is \forall -in antecedent, it is of the form

$$
\frac{F(t(a_1, \cdots, a_m), a_1, \cdots, a_m), \Pi(a_1, \cdots, a_m) \rightarrow \Delta(a_1, \cdots, a_m)}{\forall x F(x, a_1, \cdots, a_m), \Pi(a_1, \cdots, a_m) \rightarrow \Delta(a_1, \cdots, a_m)}
$$

If the order of the upper sequent is α_{1} , then $\alpha=\alpha_{1}+\omega$. By the assumption of the induction the sequent

$$
F(t(\boldsymbol{n}_1,\cdots,\boldsymbol{n}_m),\boldsymbol{n}_1,\cdots,\boldsymbol{n}_m),\Pi(\boldsymbol{n}_1,\cdots,\boldsymbol{n}_m)\rightarrow\Delta(\boldsymbol{n}_1,\cdots,\boldsymbol{n}_m)
$$

is γ -provable in \mathbf{Z} ($\gamma < \alpha_{1} < \alpha$). Let \bm{n} be the numerical value of $t(n_{1}, \cdots, n_{m})$. From Lemma 2 in $\S 2$ the sequent

 $F(n, n_{1}, \cdots , n_{m})\rightarrow F(t(n_{1}, \cdots , n_{m}), n_{1}, \cdots , n_{m})$

is 2d-provable in **Z**, where d is the degree of $F(n, n_{1}, \cdots, n_{m})$. Hence the sequent

$$
F(\mathbf{n},\mathbf{n}_1,\cdots,\mathbf{n}_m),\Pi(\mathbf{n}_1,\cdots,\mathbf{n}_m)\rightarrow\Delta(\mathbf{n}_1,\cdots,\mathbf{n}_m)
$$

is $(\max(2d, \gamma)+1)$ -provable in Z $(\max(2d, \gamma)+1<\alpha)$. Therefore the sequent

$$
\forall x F(x, n_1, \cdots, n_m), \Pi(n_1, \cdots, n_m) \rightarrow A(n_1, \cdots, n_m)
$$

is $(\max(2d, \gamma)+1+1)$ -provable in $\mathbf Z(\max(2d, \gamma)+1+1<\alpha)$.

In case that \mathcal{L} is \forall -in succedent, it is of the form

$$
\frac{\Gamma(a_1,\dots,a_m)\to\Lambda(a_1,\dots,a_m),\,F(a,a_1,\dots,a_m)}{\Gamma(a_1,\dots,a_m)\to\Lambda(a_1,\dots,a_m),\,\forall x\,F(x,a_1,\dots,a_m)}.
$$

If the order of the upper sequent is α_{1} , then $\alpha=\alpha_{1}+\omega$. By the assumption of the induction the sequent

$$
\Gamma(\boldsymbol{n}_1,\cdots,\boldsymbol{n}_m)\rightarrow\Lambda(\boldsymbol{n}_1,\cdots,\boldsymbol{n}_m),\,F(\boldsymbol{n},\boldsymbol{n}_1,\cdots,\boldsymbol{n}_m)
$$

is γ_{n} -provable in $\mathbf{Z}(\gamma_{n} < \alpha_{1} < \alpha)$ for every numeral **n**. Therefore we have a \mathbf{Z} proof-figure of the order $\lim_{n} \gamma_{n}+1(\leq \alpha_{1}+1<\alpha)$ to the sequent

$$
\Gamma(\mathbf{n}_1,\cdots,\mathbf{n}_m)\rightarrow\Lambda(\mathbf{n}_1,\cdots,\mathbf{n}_m),\,\forall x\,F(x,\mathbf{n}_1,\cdots,\mathbf{n}_m).
$$

In case that \mathcal{L} is CI, it is of the form

$$
\frac{F(a, a_1, \cdots, a_m), \Pi(a_1, \cdots, a_m) \rightarrow \Lambda(a_1, \cdots, a_m), F(a', a_1, \cdots, a_m)}{F(0, a_1, \cdots, a_m), \Pi(a_1, \cdots, a_m) \rightarrow \Lambda(a_1, \cdots, a_m), F(t(a_1, \cdots, a_m), a_1, \cdots, a_m)}.
$$

If the order of the upper sequent is α_{1} , then $\alpha=\alpha_{1}+\omega$. By the assumption of the induction for every numeral \bm{n} the sequent

$$
F(n, n_1, \cdots, n_m), \Pi(n_1, \cdots, n_m) \rightarrow A(n_1, \cdots, n_m), F(n', n_1, \cdots, n_m)
$$

is γ_{n} -provable in \boldsymbol{Z} ($\gamma_{n} < \alpha_{1} < \alpha$). Now the sequents

$$
F(0, n_1, \cdots, n_m), H(n_1, \cdots, n_m) \rightarrow A(n_1, \cdots, n_m), F(0', n_1, \cdots, n_m)
$$

and

$$
F(0', n_1, \cdots, n_m), \Pi(n_1, \cdots, n_m) \rightarrow A(n_1, \cdots, n_m), F(0'', n_1, \cdots, n_m)
$$

are γ_{0} -and γ_{1} -provable in \boldsymbol{Z} . Therefore the sequent

$$
F(0, n_1, \cdots, n_m), H(n_1, \cdots, n_m) \rightarrow A(n_1, \cdots, n_m), F(0^{\prime\prime}, n_1, \cdots, n_m)
$$

is $(\max(\gamma_{0}, \gamma_{1})+1)$ -provable in $\mathbf{Z}(\max(\gamma_{0}, \gamma_{1})+1<\alpha_{1}+1<\alpha)$. Similarly for every numeral z the sequent

400 T. NISHIMURA

$$
F(0, n_1, \cdots, n_m), H(n_1, \cdots, n_m) \rightarrow A(n_1, \cdots, n_m), F(z, n_1, \cdots, n_m)
$$

is $(\max(\gamma_{0}, \gamma_{1}, \cdots, \gamma_{z}) + z)$ -provable in $\mathbf{Z}(\max(\gamma_{0}, \gamma_{1}, \cdots, \gamma_{z}) + z < \alpha_{1}+z<\alpha)$. Therefore when the numerical value of $t(\boldsymbol{n}_{1}, \cdots , \boldsymbol{n}_{m})$ is \boldsymbol{l} , so the sequent

$$
F(0, n_1, \cdots, n_m), \Pi(n_1, \cdots, n_m) \rightarrow A(n_1, \cdots, n_m), F(l, n_1, \cdots, n_m)
$$

is (max($\gamma_{0}, \gamma_{1}, \cdots, \gamma_{l}$)+l) provable in Z . Hence the sequent

$$
F(0, n_1, \cdots, n_m), \Pi(n_1, \cdots, n_m) \rightarrow A(n_1, \cdots, n_m), F(t(n_1, \cdots, n_m), n_1, \cdots, n_m)
$$

is $(\max(\gamma_{0}, \gamma_{1}, \cdots, \gamma_{l})+l+2d+1)$ -provable in $\mathbf Z(\max(\gamma_{0}, \gamma_{1}, \cdots, \gamma_{l})+l+2d+1<\alpha)$ where d is the degree of $F(l, n_{1}, \cdots, n_{m})$.

4. We assume that the sequent \rightarrow' is provable in LK.

Then we have a Z-proof-figure to ' \rightarrow ' of an order smaller than ω^{2} . For **Z**-proof-figures with order smaller than ω^{2} we can prove Theorems 3, 4 and 5 in § 2 only by using transfinite induction to ω^{2} . For such proof-figures, therefore, we have Theorem 6 in §2 only by using transfinite induction to ω^{2} . This contradicts to the assumption. Hence we proved without use of transfinite induction on ordinal numbers greater than ω^{2} that the sequent ' \rightarrow ' is not provable in LK.

Reference

[1] K. Schütte, Beweistheoretische Erfassung der unendlichen Induktion in der Zahlentheorie, Math. Ann., 122 (1951), 369-389.