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Introduction

K. Sch\"utte gave the system $Z$ of the theory of natural numbers which
contains the infinite induction, and he proved that G. Gentzen’s elimination
theorem holds in $Z[1]$ .

To every proof-figure in $Z$ corresponds an ordinal number of the second
class which is called the order of the proof-figure. In this paper we prove
some metatheorems on $Z$ by applying G. Gentzen’s elimination theorem for
proof-figures of finite order due to K. Sch\"utte [1]. Our proofs are not neces-
sarily based on the finite stand-point.

In \S 1 we formulate the system $Z$ into G. Gentzen’s style.
In \S 2 we give another proof of the consistency of $Z$ and G. Gentzen’s

elimination theorem for proof-figures of any order in $Z$, which is given in the
following stronger form: for every proof-figure in $Z$ we have a proof-figure
of finite order to the same end-sequent which contains no cut. Moreover we
prove that any arithmetical formula is decidable in $Z,$ $i$ . $e$ . if $A$ is an arbitrary
arithmetical formula, then either $A$ or non-A is provable in $Z$.

In \S 3 as an application of results in \S 1 we prove the consistency of G.
Gentzen’s $LK$ with number-theoretic axioms containing the complete induction
without use of the transfinite induction to Cantor’s first e-number $\epsilon_{0}$ .

\S 1. System.
In this section we formulate an $\omega$-complete system $Z$ of arithmetic into

G. Gentzen style.

1. Symbols
We use the following fundamental symbols; symbol $0$ , bound variables $x$,

$y,$ $z$ etc., function symbols /
$,$

$+,$ $\cdot$ , predicate symbol $=$ , logical symbols $\Lambda,$ $7$ ,
$\forall$ and $symbol\rightarrow$ .

If necessary we use several letters for abbreviation.

2. Terms are constructed as follows:
(1) the symbol $0$ is a term; (2) if $t$ is a term, so is $t^{\prime}$ , and if $t_{1}$ and $t_{2}$ are

terms, so are $t_{1}+t_{2}$ and $t_{1}\cdot t_{2}$ .
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In particular terms of the form $0,0^{\prime},$ $0^{\gamma/},$ $0^{\prime\prime\prime},$ $\cdots$ are called numerals.

3. Formulas are constructed as follows:
(1) if $t_{1}$ and $t_{2}$ are terms, then $t_{1}=t_{3}$ is a prime formula and a prime for-

mula is a formula; (2) if $A$ is a formula, so is $7A;(3)$ if $A$ and $B$ are for-
mulas, so is $A$ A $B$, and (4) if $F(t)$ is a formula, so is $\forall xF(x)$ .

The number of logical symbols in a formula is called the degree of the
formula.

4. We call a figure of the following form a sequent, $A_{1},$ $\cdots$ , $A_{\mu}\rightarrow B_{1},$ $\cdots$ , $B_{\nu}$

where $A_{1},$ $\cdots$ , $A_{\mu},$ $B_{1},$ $ d\cdot$ . B. are arbitrary formulas. And it may happen that
$\mu=0$ or $\nu=0$ . We say that $A_{1}$ , $\cdot$ .. , $A_{\mu}$ are in the antecedent and $B_{1}$ , $\cdot$

., , $B_{\nu}$

are in the succedent in the sequent.

5. Sequents of the following forms are called begimzing sequents:
(1) a sequent of the form $\rightarrow P$, where $P$ is a true prime formula, and (2)

a sequent of the form $ P\rightarrow$ , where $P$ is a false prime formula.

6. Rules of inference
If $S_{1},$ $\cdots$ , $S_{m}$ and $S$ are sequents, then a figure of the form

$\frac{S_{1},\cdots,S_{m}}{S}$

is called a rule of inference. $S_{1},$
$\cdots,$

$S_{m}$ are called the upper sequents and $S$ is
called the lower sequent of the rule of inference. In our case $Z$ contains the
following rules of inference.

In what follows, capital Greek letters $\Gamma,$ $\Pi$ etc. express finite sequences of
formulas.

(1) Structural rules of inference
Thinning in antecedent Thinning in succedent

$\frac{\Gamma\rightarrow\Delta}{D,\Gamma\rightarrow\Delta}$ $\frac{\Gamma\rightarrow\Delta}{\Gamma\rightarrow\Delta,D}$

Interchange in antecedent Interchange in succedent

$\frac{\Gamma,D,C,\Pi\rightarrow\Delta}{\Gamma,C,D,\Pi\rightarrow\Delta}$ $\frac{\Gamma\rightarrow\Delta,D}{\Gamma\rightarrow\Delta,C’}\frac{\Lambda}{\Lambda}DC$

,

Contraction in antecedent Contraction in succedent

$\frac{D,D,\Gamma\rightarrow\Delta}{D,\Gamma\rightarrow\Delta}$ $\frac{\Gamma\rightarrow\Delta,D,D}{\Gamma\rightarrow\Delta,D}$

where $C$ and $D$ are arbitrary formulas called principal formulas of each rule
of inference.

(2) Logical rules of inference
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$\wedge$ -in antecedent $\wedge$ -in succedent

$\overline{A\Lambda}BA,\frac{\Gamma\rightarrow\Delta}{\Gamma\rightarrow\Delta}\frac{B,\Gamma\rightarrow\Delta}{A\wedge B,\Gamma\rightarrow\Delta}$ $\frac{\Gamma\rightarrow\Delta,A\Gamma\rightarrow\Delta,-}{\Gamma\rightarrow\Delta,A\wedge B}B$

7-in antecedent 7-in succedent

$\frac{\Gamma\rightarrow\Delta,A}{7A,\Gamma\rightarrow\Delta}$ $\frac{A,\Gamma\rightarrow\Delta}{\Gamma\rightarrow\Delta,7A}$

where $A$ and $B$ are arbitrary formulas called side formulas of each rule of in-
ference. $A\wedge B$ or $7A$ is called principal formula of each rule of inference.

$\forall$-in antecedent
$\overline{\forall x}F(x),\Gamma\Gamma^{r}(n)_{-}\Gamma\frac{\rightarrow\Delta}{\rightarrow\Delta}$ , where $n$ is an arbitrary numeral.

$\forall$-in succedent

$\frac{\Gamma\rightarrow\Delta,F(n)foreverynumera1n}{\Gamma\rightarrow\Delta,\forall xF(x)}$ .

This is called the infinite induction. $F(n)$ is called the side formula and $\forall xF(x)$

is called the principal formula of each rule of inference.
(3) Cut

$\frac{\Gamma\rightarrow\Delta,DD,\Pi\rightarrow\Lambda}{\Gamma,\Pi\rightarrow\Delta,\Lambda}$

where $D$ is an arbitrary formula called the cut-formula. We define the degree
of a cut as the degree of the cut-formula of this cut.

7. We introduce a concept “ proof-figure “ into the system. Under a proof-
figure we understand a figure of finite or infinite sequents, built up in the
following manner: uppermost sequents are always beginning sequents; every
sequent is a lower sequent of at most one rule of inference; and every sequent,
except just one, the end-sequent, is upper sequent of just one rule of inference.
To every sequent of proof-figure corresponds an ordinal number of the second
class as follows. (1) The ordinal number of a beginning sequent is zero. (2)

The ordinal number of the lower sequent of a structural rule of inference is
equal to that of the upper sequent. (3) The ordinal number of the lower sequent
of a cut or a logical rule of inference is greater than those of upper sequents.

Only proof-figures which have the maximum of degrees of cut are under
our consideration.

8. When a formula $A$ contains no predicate symbol except $=$ and no
function symbol except /

$,$
$+,$ $\cdot,$

$A$ is said to be arithmetical. To simplify the
treatment, we assume that the system contains only arithmetical formulas.

\S 2. In this section we give a consistency proof of the system $Z$ and give
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a proof of the elimination theorem in general form, starting with K. Sch\"utte’s
elimination theorem for proof-figures of finite order.

1. Elimination theorem for proof-figures of finite order (due to K. Sch\"utte
[1]).

If a sequent $\Gamma\rightarrow\Delta$ is provable by a finite order, then we have a proof-figure
to $\Gamma\rightarrow\Delta$ without cut, having also a finite order.

For simplicity we say that $\Gamma\rightarrow\Delta$ is finitely provable or $\alpha$-provable in case
that $\Gamma\rightarrow\Delta$ has a proof-figure of finite order or order $\alpha$ .

2. LEMMA. If $t$ and $s$ are terms with the same numerical value, then the
sequent $F(t)\rightarrow F(s)$ is $2n$-provable, where $n$ is the degree of $F(t)$ .

It is easily proved by induction on the degree of the formula $F(t)$ .
3. THEOREM. Let $A_{1},$

$\cdots,$ $A_{\mu}\rightarrow B_{1},$ $\cdots,$
$B_{\nu}$ be a sequent where $\mu+\nu\neq 0$ and

$m_{1}$ , , , $m_{\mu},$ $n_{1}$ , , $n_{\nu}$ be the degrees of $A_{1}$ , , , $A_{j},,$ $B_{1}$ , , $B_{\nu}$ respectively. If the
sequent $A_{1},$ $\cdots$ , $A_{\mu}\rightarrow B_{1},$ $\cdots,$

$B_{\nu}$ is provable without cut, then some sequent $A_{i}\rightarrow is$

$m_{i}$-provable without $c\iota rt(1\leqq i\leqq\mu)$ or some $sequent\rightarrow B_{j}$ is $n_{j}$-provable without
cut $(1 \leqq j\leqq\nu)$ .

PROOF. We prove by transfinite induction on the order of the proof-figure
to $A_{1},$

$\cdots,$ $A_{\mu}\rightarrow B_{1},$
$\cdots,$

$B_{\nu}$ .
If the order is $z$ero, then it is clear. If the last rule of inference (denoted

by $\mathfrak{L}$ ) is a logical rule of inference, then we have six cases, $\mathfrak{L}$ is $\wedge$ -in succedent,
$\wedge$ -in antecedent, 7-in succedent, $7$-in antecedent, $\forall$-in succedent and $\forall$-in
antecedent.

In the case where $\mathfrak{L}$ is $\wedge$ -in succedent let it be

$\frac{A_{1},\cdots,A_{\mu}\rightarrow B_{1},\cdot\cdot.\cdot..’ B_{\nu-1},CA_{1},\cdots,A_{\mu}\rightarrow B_{1},\cdots,B_{\nu-1},D}{A_{1},,A_{\mu}\rightarrow B_{1},\cdots,B_{\nu-1},C\wedge D}$

where $C$ A $D$ is $B_{\nu}$ .
If $A_{i}\rightarrow is$ not $m_{i}$-provable without cut for every $i(1\leqq i\leqq\mu)and\rightarrow B_{j}$ is

not $n_{j}$-provable without cut for every $j(1\leqq j\leqq\nu-1)$ , then $both\rightarrow Cand\rightarrow D$

are $(n_{\nu}-1)$-provable without cut by the assumption of transfinite induction.
$Therefore\rightarrow C$ A $D$ is $n_{\nu}$-provable without cut.

In the case where $\mathfrak{L}$ is $\wedge$ -in antecedent, 7-in succedent, 7-in antecedent
or $\forall$-in antecedent we prove in the same way as in $\wedge$ -in succedent.

In the case where $\mathfrak{L}$ is $\forall$-in succedent let it be

$\frac{A_{1},\cdots,A_{\mu}\rightarrow B_{1}.’.\cdots,B_{\nu-1},F(n)foreverynumera1n}{A_{1},\cdot,A_{\mu}\rightarrow B_{1},\cdots,B_{\nu-1},\forall xF(x)}$ .

If $A_{i}\rightarrow is$ not $m_{i}$-provable without cut for every $i(1\leqq i\leqq\mu)and\rightarrow B_{j}$ is
not $n_{j}$-provable without cut for every $j(1\leqq j\leqq\nu-1),$ $then\rightarrow F(n)$ is $(n_{\nu}-1)-$

provable without cut for every numeral $n$ . Therefore the $sequent\rightarrow\forall xF(x)$
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is $n_{\nu}$-provable without cut.

4. THEOREM. Let $F$ be an arbitrary formula. Then it is impossible that both
the $sequents\rightarrow F$ and $F\rightarrow are$ provable without cut.

PROOF. $If\rightarrow F$ is provable without cut, $then\rightarrow F$ is finitely provable with-
out cut from Theorem 3. Similary $F\rightarrow is$ finitely provable without cut. There-
fore if $both\rightarrow F$ and $F\rightarrow were$ provable without cut, then the sequent $‘\rightarrow$

should be finitely provable. This should contradict to Theorem 1 in this
section.

5. THEOREM (Generalization of Theorem 3).

Let $A_{1}$ , $A_{\mu}\rightarrow B_{1}$ , $B_{\nu}$ be a sequent where $\mu+\nu\neq 0$ and $\prime n_{1}$ , $m_{\mu},$ $n_{1}$ ,
... , $n_{\nu}$ be the degrees of $A_{1},$ $\cdots$ , $A_{\mu},$ $B_{1},$

$\cdots,$
$B_{\nu}$ respectively. If the sequent $A_{1},$ $\cdots$ ,

$A_{\mu}\rightarrow B_{1},$ $\cdots,$
$B_{\nu}$ is provable, then some sequent $A_{i}\rightarrow ism_{i}$-provable without cut or

some $sequent\rightarrow B_{j}$ is $n_{j}$-provable without cut.
PROOF. We prove by transfinite induction on the order of the proof-figure

to $A_{1},$
$\cdots,$ $A_{\mu}\rightarrow B_{1},$ $\cdots$ , $B_{\nu}$ . In case that the last rule of inference is not a cut

we can prove in the same way as in Theorem 3. In case that the last rule of
inference is a cut, let it be

$\frac{A_{1},\cdots,A_{\beta_{1}}\rightarrow B_{1},\cdots,B_{\nu_{1}}}{A_{1}}\frac{CC,A_{l\ell_{1+1}}\ldots’\cdots A_{\mu}\rightarrow B_{\nu_{1+1}},\cdots,B_{\nu}}{A_{\mu}\rightarrow B_{1},,B_{\nu}’}$ .

If $A_{i}\rightarrow is$ not $m_{i}$-provable without cut for every $i(1\leqq i\leqq\mu)$ and $\rightarrow B_{j}$ is not
$n_{j}$-provable without cut for every $j(1\leqq j\leqq\nu)$ , then $both\rightarrow C$ and $C\rightarrow are$ m-
provable without cut by the assumption of transfinite indudtion, where $m$ is
the degree of $C$. This contradicts to Theorem 4.

6. THEOREM (Consistency theorem in general form).

The sequent $‘\rightarrow‘$ is not provable in $Z$.
PROOF. If the sequent $‘\rightarrow’$ is provable in $Z$, then the last rule of infer-

ence to $‘\rightarrow’$ is of the form
$\underline{\rightarrow FF\rightarrow}\rightarrow$ cut.

Therefore both $sequents\rightarrow F$ and $F\rightarrow are$ provable in $Z$. From Theorem 5
then $both\rightarrow F$ and $F\rightarrow are$ finitely provable without cut. This contradicts to
Theorem 4.

7. THEOREM (Elimination theorem in general form).

If a sequent $\Gamma\rightarrow\Delta$ is provable in $Z$, then $\Gamma\rightarrow\Delta$ is finitely provable without cut.
PROOF. Let $\Gamma\rightarrow\Delta$ be $A_{1},$ $\cdots$ , $A_{\mu}\rightarrow B_{1},$ $\cdots$ , $B_{\nu}$ . From Theorem 6 it follows

that $\mu+\nu\neq 0$ . Therefore some sequent $A_{i}\rightarrow is$ finitely provable without cut or
some $sequent\rightarrow B_{j}$ is finitely provable without cut. In each case $\Gamma\rightarrow\Delta$ is
finitely provable without cut.
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8. THEOREM (Decidability Theorem).

Let $F$ be an arithmetical formula of the degree $n$ . Then $either\rightarrow F$ or $ F\rightarrow$

is n-provable without cut.
PROOF. By Lemma 2 the sequent $F\rightarrow F$ is $2n$-provable without cut. There-

fore we obtain Theorem 8 from Theorem 3 and Theorem 1.

9. DEFINITION. We say that a system $S$ contains the system $Z$, when the
system $S$ satisfies the following conditions.

(1) Terms and formulas in $Z$ are also terms and formulas in $S$ respectively.
(2) Provable sequents in $Z$ are also provable in $S$.

10. THEOREM. Let $F$ be an arithmetical formula and $S$ contains the system
Z. $Then\rightarrow F$ or $F\rightarrow is$ provable in $S$.

\S 3. A consistency-proof of G. Gentzen’s LK with number-theoretic axioms
containing the complete induction.

1. We obtain G. Gentzen’s LK with number-theoretic axioms containing
the complete induction by modifying the system $Z$ as follows.

(1) To symbols we add free variables $a,$ $b,$ $c$ etc.
(2) In the construction rule of terms we add ‘ free variables are terms ‘.
(3) Beginning sequents are the following, excluding those of $Z$.
(3.1) Arithmetical beginning sequents are the following:

$\rightarrow t=t$ ; $s=t\rightarrow t=s$ ; $s=t,$ $t=u\rightarrow s=u$ ;
$s^{\prime}=t^{\prime}\rightarrow s=t$ ; $s=t\rightarrow s^{\prime}=t^{\prime}$ ;

$\rightarrow t+0=t$ ; $\rightarrow s+t^{\prime}=(s+t)^{\prime}$ ;
$\rightarrow t\cdot 0=0$ ; $\rightarrow s\cdot t^{\prime}=s\cdot t+s$ ;

where $s,$
$t$ and $u$ are arbitrary terms.

(3.2) Logical beginning sequents are sequents of the form
$D\rightarrow D$

where $D$ is an arbitrary formula.
(4) Rules of inference $\forall$-in antecedent and $\forall$-in succedent in $Z$ are omitted.

And we introduce new rules of inference:
$\forall$-in antecedent $\forall$-in succedent

$\frac{F(t),\Gamma\rightarrow\Delta}{\forall xF(x),\Gamma\rightarrow\Delta}$ $\frac{\Gamma\rightarrow\Delta,F(a)}{\Gamma\rightarrow\Delta,\forall xF(x)}$

where $t$ is an arbitrary term. where $a$ is a free variable not con-
tained in the lower sequent.
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CI (complete induction)

$F(a),$ $\Gamma\rightarrow\Delta,$ $F(a^{\prime}\underline{)}$

$\overline{F(0),\Gamma\rightarrow\Delta,}F(t)$

where $t$ is an arbitrary term and $a$ is a free variable not contained in the lower
sequent.

In what follows we denote the system given here by LK. To distinguish
between proof-figures in LK and proof-figures in $Z$ we use the terminologies
LK-proof-figures and Z-proof-figures.

2. In the following manner an ordinal number smaller than $\omega^{2}$ corresponds
to every sequent in an LK-proof-figure. This is called the order of the sequent.
The order of the end-sequent is called the order of the proof-figure.

(1) The order of a beginning sequent is $\omega$ .
(2) The order of the lower sequent of a structural rule of inference is

equal to that of the upper sequent.
(3) In a logical rule of inference with one upper sequent or a rule of in-

ference CI, the order of the lower sequent is $\alpha+\omega$ , where $\alpha$ is the order of
the upper sequent.

(4) In a logical rule of inference with two upper sequents or a cut the
order of the lower sequent is $\max(\alpha_{1}, \alpha_{2})+\omega$ , where $\alpha_{1}$ and $\alpha_{2}$ are orders of
two upper sequents.

It is clear that order of every LK-proof-figure is smaller than $\omega^{9}$ .

3. We transform an LK-proof-figure to a Z-proof-figure.
When $\Gamma$ is $A_{1}(a_{1}, \cdots, a_{m}),$ $\cdots$ , $A_{\mu}(a_{1}, \cdots, a_{m})$ , so we express $A_{1}(t_{1}, \cdots , t_{m}),$ $\cdots$ ,

$A_{\mu}(t_{1}, \cdots, t_{m})$ by $\Gamma(t_{1}, \cdots, t_{m})$ .
THEOREM. Let $\Gamma(a_{1}, \cdots , a_{m})\rightarrow\Delta(a_{1}, \cdots, a_{m})$ be a sequent not containing free

variables except $a_{1},$ $\cdots,$ $a_{m}$ and be a-provable in LK. If $n_{1},$ $\cdots,$ $n_{m}$ are arbitrary
numerals, then we have a Z-proof-figure to the sequent $\Gamma(n_{1}, \cdots , n_{m})\rightarrow\Delta(n_{1}, \cdots, n_{m})$

uith an order $\beta(<\alpha)$ .
PROOF. We prove by induction on the number of rules of inference in

the LK-proof-figure to the sequent $\Gamma(a_{1}, \cdots, a_{m})\rightarrow\Delta(a_{1}, \cdots, a_{m})$ .
In case that $\Gamma(a_{1}, \cdots , a_{m})\rightarrow\Delta(a_{1}, \cdots , a_{m})$ is a beginning sequent, the sequent

$\Gamma(n_{1}, \cdots, n_{m})\rightarrow\Delta(n_{1}, \cdots , n_{m})$ is finitely provable in $Z$. In case that $\Gamma(a_{1}, \cdots, a_{m})$

$\rightarrow\Delta(a_{1}, \cdots , a_{m})$ is not a beiginning sequent, we denote the last rule of inference
by $\mathfrak{L}$ . If $\mathfrak{L}$ is a structural rule of inference, then it is clear.

We have only to prove in cases where $\mathfrak{L}$ is $\forall$-in antecedent, $\forall$-in succedent,
or CI. In other cases we can prove similarly.

In case that $\mathfrak{L}$ is $\forall$-in antecedent, it is of the form

$\frac{F(t(a_{1},\cdots,a_{m}),.a_{1},\cdots,a_{m}),\Pi(a_{1}}{\forall xF(x,a_{1},\cdot\cdot,a_{m}),\Pi(a_{1},\cdots,a_{m})}\frac{a_{m})\rightarrow\Delta(a_{1},\cdots,a_{m})}{\rightarrow\Delta(a_{1},\cdots,a_{m})}$
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If the order of the upper sequent is $\alpha_{1}$ , then $\alpha=\alpha_{1}+\omega$ . By the assumption
of the induction the sequent

$F(t(n_{1}, \cdots , n_{m}), n_{1}, \cdots , n_{m}),$ $\Pi(n_{1}, \cdots , n_{m})\rightarrow\Delta(n_{1}, \cdots , n_{m})$

is $\gamma$ -provable in $Z(\gamma<\alpha_{1}<\alpha)$ . Let $n$ be the numerical value of $t(n_{1}, \cdots, n_{m})$ .
From Lemma 2 in \S 2 the sequent

$F(n, n_{1}, \cdots , n_{m})\rightarrow F(t(n_{1}, \cdots , n_{m}), n_{1}, \cdots , n_{m})$

is $2d$-provable in $Z$, where $d$ is the degree of $F(n, n_{1}, \cdots, n_{m})$ . Hence the sequent

$F(n, n_{1}, \cdots, n_{m}),$ $\Pi(n_{1}, \cdots , n_{m})\rightarrow\Delta(n_{1}, \cdots, n_{m})$

is $(\max(2d, \gamma)+1)$-provable in $Z(\max(2d, \gamma)+1<\alpha)$ . Therefore the sequent

$\forall xF(x, n_{1}, \cdots, n_{m}),$ $\Pi(n_{1}, \cdots , n_{m})\rightarrow\Delta(n_{1}, \cdots n_{m})$

is $(\max(2d, \gamma)+1+1)$-provable in $Z(\max(2d, \gamma)+1+1<\alpha)$ .
In case that $\mathfrak{L}$ is $\forall$-in succedent, it is of the form

$\frac{\Gamma(a_{1},..\cdot.\cdot\cdot,a_{m})\rightarrow\Lambda(a_{1},..\cdot.\cdot\cdot,a}{\Gamma(a_{1},,a_{m})\rightarrow\Lambda(a_{1},,a_{m}}m\frac{),F(a,a_{1},\cdot\cdot.\cdot.’.a_{m})}{\forall xF(x,a_{1},,a_{m})})$

,

If the order of the upper sequent is $\alpha_{1}$ , then $\alpha=\alpha_{1}+\omega$ . By the assumption
of the induction the sequent

$\Gamma(n_{1}, \cdots , n_{m})\rightarrow\Lambda(n_{1}, \cdots , n_{m}),$ $F(n, n_{1}, \cdots, n_{m})$

is $\gamma_{n}$-provable in $Z(\gamma_{n}<\alpha_{I}<\alpha)$ for every numeral $n$ . Therefore we have a Z-
proof-figure of the order $\lim_{n}\gamma_{n}+1(\leqq\alpha_{1}+1<\alpha)$ to the sequent

$\Gamma(n_{1}, \cdots, n_{m})\rightarrow\Lambda(n_{1}, \cdots, n_{m}),$ $\forall xF(x, n_{1}, \cdots, n_{m})$ .
In case that $\mathfrak{L}$ is CI, it is of the form

$\frac{F(a,.a_{1},\cdots,a_{m}),\Pi(a_{1},\cdots,a_{m})\rightarrow\Lambda(}{F(0,a_{1},\cdot\cdot,a_{m}),\Pi(a_{1},\cdots,a_{m})\rightarrow\Lambda(a_{1}}\frac{a_{1},\cdots a_{m}),F(a^{\prime}.’ a_{1},\cdots,a_{m})}{a_{m}),F(t(a_{1},\cdot\cdot,a_{m}),a_{1},\cdots,a_{m})}$

If the order of the upper sequent is $\alpha_{1}$ , then $\alpha=\alpha_{1}+\omega$ . By the assumption
of the induction for every numeral $n$ the sequent

$F(n, n_{1}, \cdots, n_{m}),$ $\Pi(n_{1}, \cdots, n_{m})\rightarrow\Lambda(n_{1}, \cdots, n_{m}))F(n^{\prime}, n_{1}, \cdots, n_{m})$

is $\gamma_{n}$-provable in $Z(\gamma_{n}<\alpha_{1}<\alpha)$ . Now the sequents

$F(O, n_{1}, \cdots, n_{m}),$ $\Pi(n_{1}, \cdots, n_{m})\rightarrow\Lambda(n_{1}, \cdots, n_{m}),$ $F(O‘, n_{1}, \cdots , n_{m})$

and
$F(O^{\prime}, n_{\rfloor}, \cdots , n_{m}),$ $\Pi(n_{1}, \cdots , n_{m})\rightarrow\Lambda(n_{\rfloor}, \cdots , n_{m}),$ $F(O^{\prime\prime}, n_{1}, \cdots , n_{m})$

are $\gamma_{0}$ -and $\gamma_{1}$ -provable in $Z$. Therefore the sequent

$F(O, n_{I}, \cdots , n_{m}),$ $\Pi(n_{1}, \cdots , n_{m})\rightarrow\Lambda(n_{I}, \cdots , n_{m}),$ $F(0^{\prime\prime}, n_{1}, \cdots, n_{m})$

is $(\max(\gamma_{0}, \gamma_{1})+1)$-provable in $Z(\max(\gamma_{0}, \gamma_{1})+1<\alpha_{1}+1<\alpha)$ . Similarly for every
numeral $z$ the sequent
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$F(O, n_{1}, \cdots , n_{m}),$ $\Pi(n_{1}, \cdots, n_{m})\rightarrow\Lambda(n_{1}, \cdots , n_{m}),$ $F(z, n_{1}, \cdots, n_{m})$

is $(\max(\gamma_{0}, \gamma_{1}, \cdots, \gamma_{z})+z)$-provable in $Z(\max(\gamma_{0}, \gamma_{1}, \cdots, \gamma_{z})+z<\alpha_{1}+z<\alpha)$ . There-
fore when the numerical value of $t(n_{1}, \cdots , n_{m})$ is $l$ , so the sequent

$F(O, n_{1}, \cdots, n_{m}),$ $\Pi(n_{1}, \cdots, n_{m})\rightarrow\Lambda(n_{1}, \cdots, n_{m}),$ $F(l,n_{1}, \cdots, n_{m})$

is $(\max(\gamma_{0}, \gamma_{1}, \cdots, \gamma_{\iota})+l)$-provable in $Z$. Hence the sequent

$F(O, n_{1}, \cdots , n_{m}),$ $\Pi(n_{1}, \cdots , n_{m})\rightarrow\Lambda(n_{1}, \cdots, n_{m}),$ $F(t(n_{1}, \cdots , n_{m}), n_{1}, \cdots , n_{m})$

is $(\max(\gamma_{0}, \gamma_{1}, \cdots, \gamma_{l})+l+2d+1)$-provable in $Z(\max(\gamma_{0}, \gamma_{1}, \cdots, \gamma_{l})+l+2d+1<\alpha)$

where $d$ is the degree of $F(l, n_{1}, \cdots, n_{m})$ .

4. We assume that the sequent $‘\rightarrow’$ is provable in LK.
Then we have a Z-proof-figure to $‘\rightarrow’$ of an order smaller than $\omega^{o}\lrcorner$ For

Z-proof-figures with order smaller than $\omega^{2}$ we can prove Theorems 3, 4 and 5
in \S 2 only by using transfinite induction to $\omega^{2}$ . For such proof-figures, there-
fore, we have Theorem 6 in \S 2 only by using transfinite induction to $\omega^{2}$ . This
contradicts to the assumption. Hence we proved without use of transfinite
induction on ordinal numbers greater than $\omega^{2}$ that the sequent $‘\rightarrow$ ‘ is not
provable in LK.
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