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On the Goldbach problem in an algebraic number field I.
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§1. Introduction.

The famous but yet unsolved problem of Goldbach is to decide whether
the following conjecture is true: every even positive rational integer except
2 and 4 will be represented as the sum of two odd prime numbers.

Concerning this problem, Vinogradov proved in 1937 that every large
odd integer is represented as the sum of three prime numbers, and obtained
also an asymptotic formula for the number of representations. Estermann
proved then, in 1938, using the result of [7], that almost all even rational
integers are represented as the sum of two prime numbers.

The purpose of this paper is to generalize these results to the case of
algebraic number fields. Our final results will be stated as Theorem 10.1
and Theorem 11.1 in §10 and §11 respectively, but we shall give here an
outline of our results.

Let K be an algebraic number field of degree n. This and the following
notations will be used throughout this paper.

KW K@ ... K are the real conjugates of K; K+D, ... | KT1#70) K TutratD
= Ko+0 . K™ = K"+ gre the complex conjugates of K.

We denote by o the ideal consisting of all integers of K, by b the differ-
ente of K and by D= N(®) (norm of d) the absolute value of the discriminant
of K.

Let v be a number of K and put by =b/a with integral ideals a and b
such that (a,5)=1. We call a the denominator of y and denote this relation
by r—a.

If # is a number of K, we have an #n-dimensional complex vector (u®,
2D e u™) with real u@ (¢=1,2,-,7) and complex p®*" = g® (p=r,+1,
-, 71+7,), where 4@ is the conjugate of # in K ((=1,2,---,%n). We shall
denote this vector also by x. We shall consider more generally any #=-
dimensional complex vector & = (&, &, ---, &,) with real &, -+, &,, and complex
Epirn=Ep (p=r+1, -, 7, +r). For such & we write

S(¢) = Jﬁl £, N©)= iHI 3
and put
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X&) =¢, (g=1,2-,1)
X&) =R, XpnlD)=J¢,) (b=ri+1, 1470
‘We denote by x(£) the u-dimensional real vector:
x(&) = (Xi(£), X5(8), -+, Xu(€)).

We call an integer w of K a prime number, if the principal ideal (w) is
a prime ideal.

We call a number 7 of K toially positive number, if r®, 7, ...y are
positive. When », =0, totally positive number means non-vanishing number.

Now let oy, 9,, -, 0, be a basis of d™! and put

n ;- .
Rj= Exiai(]) (]:1) 2! oo ?n)
&
for real numbers x,, x,, <=+, x,. We define a set £ of z=(z,,2,,--,2,) as fol-

lows:

E={z;2,=2x0; —1/2<%,=1/2  (i=1,2,n)}
i=1

and denote by € a set in n-dimensional euclidean space as follows:
C={x(2);ze E}.

Let 2 be a totally positive integer of K and £2(2) be the set of prime
numbers @ such that

0 <P <@ (g=1,2,-,7)

0P| < [ AP G=ri+1 -7 +7).
We define a trigonometrical sum as follows:
(1.1) S(z; A) = wez!;wemsmz) .

Then the integral

IS(X) :5‘ ‘/2 5.5(2’”’ X)ge_Q”iSW)dxldxg dxn
-1/2
1.2)
=2vD | o [ S@; prermsuoaX,(2) -+ dX, (@)

with rational integer s=>3 is equal to the number of the s-tuples (»,, w,, -,
w,) of prime numbers such that

A=w;+ @y + - + o
Q),EQ(Z) (j:1,2,"',3)-
Assuming that N(X) is sufficiently large, we shall obtain in §10 an

asymptotic formula for I, (1), which is a generalization of Vinogradov’s
theorem.
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An integer of K will be called even, if it is divisible by every prime
ideal of K, whose norm is exactly 2, and odd if it is prime to any such.
prime ideal. Then we shall prove in §11 that almost all totally positive
even integers of K are represented as the sum of two totally positive odd
prime numbers of K.

We shall now sketch the contents of §§2-10. But before doing this, we
shall first give an outline of the proof of Vinogradov, which will help
understanding of the whole arguments.

We denote by Sy(x) a trigonometrical sum of the following form:

(1.3) Sy(x) = ZNez"" pr, O=x=1)

where p runs through all prime numbers not exceeding a large integer N.
Then the integral

(1.4) I(N) = j OlsN(x)Be-zﬂi Nagy

is equal to the number of representations of N as the sum of three prime
numbers.

In order to estimate /(V), we consider the Farey dissection of the interval
[0,1]. In our case, however, it is convenient to take [—r7,1—7] with 7=
(log N)**/N (h=3) instead of [0,1] and divide [—r,1—7] into two parts I[;
and 7, as follows: [, is the sum of subintervals [—c+a/q, t+a/q], where a
and ¢ are integers such that 0 <a <qg <(log N)»** and (a,q)=1.

L=[—71—7]—1.

If x belongs to [,, then, writing x:%—i—y, |y| =, we have

a q-1 . la .
(5) Sy =Sy(g+y)= & ¢ 3 Loz D).
0(g)

<

I

(t.q:)=1 D

To estimate the inner sum, we apply the prime number theorem for an
arithmetic progression. This is stated as follows:

If we denote by zn(x; &, [) the number of the prime numbers p such that
p=x and p=/ (mod k) with (&, /)=1, then we have

. . 1 T dt —c/log x
(1.6) n(x; k,1)= o) J, Togt + O(xe~*¥1o8x)  (¢>0).

Moreover, the constants in the error term are independent of k&, provided
that & = (log x)4 for a positive constant A.
This important form of prime number theorem was proved by Siegel

and Walfisz [8]
By [(1.6), the inner sum of the right-hand side of is approximated by
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N ein’i yi

@0 o], Sogs 4= 90 1

and finally we have

SN(—a— + y) — 9 J(»)+ O( (log ﬁ)luh-ﬂ )

q »(q)
and so
T+a/q .
J‘ SN(x)se—zm Ny
-T+al/q
1.8)
B é%? e Nj _T J(y)e™™ ¥¥dy 4-error term.

If x belongs to I,, we cannot make use of function-theoretical methods,
and it was for the treatment of this case that Vinogradov originated a new
method.

We put D= II p, then we have

N

P=V1I

Sy = 3 emne OV

m=2
(m,D)=1

= 3w 3 emne o OWND.

d=N, d|D m=2, dlm

After some techniques and the refined estimations of some trigonometrical
sums, Vinogradov obtained

Hence we have

L SN<x)3e—27ri Nody =0 \(log N)h j ]SN(“{M dx)

=g Ny

and so
a
(1.10) I(N)= R(N) E g%d >_] e~ ¢ ¥ Lerror term.
1

a=

‘h
1=g=log M) (@=1

In order to determine R(N), Vinogradov considered a sum

(1.11) T(N)= ?VD I(Ny),

where N, runs through the integers such that

N

N— (log N)W

<N, =N.
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Then we have

(1.12) T(N) = RON)(ag pryme +OW) +0( (10‘;\] o)

On the other hand, we know that 7'(N) is the number of triples (py, ps, ps)
of the prime numbers such that

N — Tog N)'72 <pitptps=N.

Now we denote by p(k) the k-th prime number. The correspondence:
between p(k) and & is one-to-one. If p(k) < N, then

. log log N
pk)=Fklog N+ 0CN — log N

with a suitable positive constant C and || =1.
Therefore, T(N) does not exceed the number T, of the triples (&, k,, ks3)
of positive integers such that

N g NloglogN Nloglog N
N— (Tog Ny 3C log N <(k,+ky+ ky)log N N+3C log N
and will not be less than the number T, of the triples (&, &y, k;) such that
;. N Nloglog N Nloglog N
N— (log N)”2 +3C log N <(ki+ky+k)log NS N—3C log N *

Thus the estimation of 7T'() is reduced to that of 7, and T, which are:
much easier. In fact, after some calculations, we have

n_ N B loglog N
(1.13) T(N)= 2(log N)s+12 (1 + O( (log’N)x/T)> ’
Comparing this results [(1.1I3) with [1.12), we obtain
; N2 loglog N
Ty — atdl=Ninind.= il
RN = Si10g NyT (1 +O<(10g M)

and consequently we have the desired asymptotic formula for I(N):

N? N?log log N
( N)d S(N)+O< (log N)3+1/z )

S(N) is the singular series. It is written in the form of an infinite-

product :
=1 (1=~ ) 1 0 o)

N ptN
If N is even, then S(V)=0, and if N is odd, then S(V)=c¢>0.
Therefore I(N) is positive for sufficiently large odd number N and IN)
has an asymptotic formula [T.14). This is the theorem of Vinogradov.

(119 I(N)=
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Now we return to the sketch of our §§2-10. We begin with some
explanations of notations.

Let X and Y be two quantities and Y >0. If an inequality |X|<AY
is true for a suitable positive constant 4 depending on K alone, then we:
write

X=0(Y) or XKY.

A small Romen letter ¢ means positive constants, the wvalues of which
may vary but depend on K alone. We also use ¢, c,, -+ in the same meaning..

We denote by | x| for a real number x the least difference between x
and rational integers.

In §2, we shall define, using a pair of two numbers A and 7, a division
of E, which is a generalization of [0,1] in rational case to the case of K,
into E° and £, (r €I"), where I' is a certain set of the numbers of K. This
division of £ originated by Siegel [6] is sufficient for our purpose. In fact,
is very useful for our study of trigonometrical sums.

We shall call this division the Farey division of E with rvespect to (H, T).

In §3, we shall prove some results concerning trigonometrical sums.
and are mere preliminaries, but is more
important in the sense that it will be more contributive to the proof of
Theorem 3.1l

Let M be a set of positive rational integers m; (i=1,2,---,s) not exceed-
ing 7. Then it is obvious that

m;

EJ— < log(T+1).

is a simple extension of this inequality.

is to estimate the sum Z of following type:
(1.15) Z= min (U, | S |7,

p 1=j=n

where z belongs to E° which is defined by the Farey division with respect
to (H, T), 74,79, -+, 7n a basis of a,, a product of ideals, such that |7,¥] <
cNOV" (j,1=1,2,---,n), U=1 and u runs through a certain set of the elements:
of g,

To prove this Theorem, we shall make full use of The:
proof is partly due to Siegel, but we shall need more detailed technique.

After two Theorems and three Lemmas, we shall estimate, in
34, a trigonometrical sum of the following form:
(1.16) S= 3 3 Q2mSwa)

be M, e
(p)ebs M,
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where z < E°, M, and M, are some sets of ideals and M is a set of integers
v such that
J\TO<V((D§NQ (q=1a2,"‘,7’1)

Ny <[yP| <N, (p=r+1,-,r+7y).

Making use of Lemmas and some techniques, we shall be able to
reduce the estimation of S to that of the sums like Z in [Theorem 3.1. This
plays a fundamental role in the sequel and will also be applied
to the study of the problems of Waring and Goldbach-Waring etc.

From §4 on, we shall consider S(z; ). It is obvious that I(2)=1,(72)
for any totally positive unit 7, therefore we may assume that

NV < | 29| = ¢, N()V™ G=1,2,,n).
We put
N = max(xﬂ), “ee ,{(T:), M(T’H) I; e M(n)l)
and
- N _ s
H= (log N)a, ’ T~—(10g N)

with suitable positive constants o, and ¢, Then we consider the Farey
division with respect to this pair (H, T).
For the later use, we shall have to define an integral

1/2
I(us A) :j_';;z _f S(z ; A)%e™ S gx dxy -+ dxy

+with a totally positive integer u.

In §4, we shall define a division of £ into B° and B; (y &I') such that
B'CEY ExCBy (r€l') and B, N\Br,=¢ (ri# 7., which will be more con-
-venient than the Farey division defined in §2.

In §5, we shall estimate S(z; 1) for z< E?° which corresponds to Sy(x)
for x= I,. Our result is that

(117) Sz 2 < (15;'\”’2\’/’)7’” (0=3),

provided that we choose suitably ¢, and o, for ¢. The proof is partly

analogous to that of Vinogradov [7]. As the estimations of the fundamental

parts will have been obtained in § 3, the contents of §5 will not be so long.
In §6, we shall estimate S(z; A) for 2= By with y—a. Let £2,(1) be the

;set of the prime numbers ® such that

VN < 0@ < @ g=12,-,7r)

,\/N"<|w(p)]§|l(:ﬂ)l (.b:7’1+1:""7’1+7’2)’
then we have
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S(Z ; A= 2L S0T) » g sy O(Nn—l/z) ,
0 w=p(a)
o< 2,0

where y is a point of B, and p in the first sum runs through the complete

system of residues mod a which are totally positive and prime to a.
The inner sum will be approximated by

w -
FRRA(a) J(y; ),

where it is easily seen that
. N’Vl

The exact form of J(y; A) will be given in §6, but for the moment it
will not interest us. In the proof of Vinogradov, it is necessary to estimate
J(» in more exactly, but, as it will be shown later, the estimation
will be sufficient for us. This is a little profit of our method in §§ 6-9.

As in the case of rational number field, we shall have to make use of
the prime number theorem in K which will be quoted from as Lemma 6.1.

We shall not stop here to describe the details on this theorem, but we
shall have

D)= WO Nt
S(Z > ’I) - 2T1/1R§0(ﬂ) ](y ’ x) + O( (log N)a,—-b+1 ) )

where p =(m—1)o,+0, and ¢ is a sufficiently large constant.
Collecting the results up to §6, we shall have in §7

= 2"VD Qe N
Q19 L D= R D) VZW ooy @ M+0( qog pyer)

where W=2"AR/w and
G, p)= 3 e miswn

7—a
7 n:oa 7!

R, W= [ o [ Jes o504 X,(@) - dXo(@) -

In order to determine R(4, 1), we shall sum up the both sides of
over all integers u such that

N

@ __ m < pw < @ g=1, 2,0, 71)
iX(p)__ﬂ(p)|< ,N,,f,, (p:y +1 e 7 +7‘)
= (log N)lc 1 ’ » 71 2/

where k= b(n+1)+1.
Then we shall have, after some calculations,
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_ 2 N"R(4, ) (log N)**t.
T ="p51og Ny (1ro(TE 7))
(1.20)
an
+ O( (log N)mc+s+1 )
On the other hand, T'(1) is the number of the s-tuples (w,, ®,, -, ®,) of

prime numbers which satisfy the following conditions

KD TngZVN)” 0@ 4 @, P} oo f @@ <D (g=1,2,--,7),

(Co) _
| 2P — (@, P @) P o f 0P| < ‘(1‘65\/‘)‘ (p=r+1,-,ri+7r),

w; < 2(4) (G=12,--,9).
Similarly to the case of rational number field, we shall have to reduce
the conditions (C,) to those connected with integers.
If =2, however, there will be no one-to-one correspondence between
the integers and the prime numbers which is suitable for our purpose.
To avoid this difficulty, we shall, in § 8, construct two sets £, and ¥, of

integers and the mappings ¢: 2(1)— &, and 1/7: L,— £(2), which satisfy the
following conditions

B(w) # §(@)) if o+o,

1/7@) + ) if vy,
@ — — ¢(co) < (log%)ﬁl for we L2Q),
V() — -y < (log]jVV)"*l for ved,,

where

Y =CyNy(log Ny'»,  Z=Y <1 + (fco +1) 13;(;1(1)(;%\]; )

with C, = Q" z" nW/NVD )V, k,= fc+1+7 and N, = N/(log N)*.

In order to obtain such sets and mappings, we shall again make use of
the prime number theorem in K.

By the help of this technique, we shall be able to estimate 7'(4) from
above and below: T,=T@)=T, each of T, and 7, is the number of the
s-tuples of integers which satisfy some conditions. To obtain asymptotic
formulas for 7, and 7, is reduced to a special case of Waring’s problem in
K, which is more easily treated than that for 7'(2).

In §9, we shall treat this problem generally and in later part of this
paragraph we shall arrange the results to a form which is easily applicable
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to the estimations of 7, and 7,. Similar problems concerning integers were
partly solved by Siegel [6]

In the beginning of §10, we shall see that 7, and T, have the same
asymptotic formula, and we shall finally obtain an asymptotic formula for
T(2), that is,

l—sn-l—so. 73 n s—1
(1.21) T = é—zw—«s“—_%?)— ‘ ?fgg%l))* (1+ 0@%5%%)) ’
where o(s) is a positive constant depending on s alone.

Comparing this result with (1.20), we shall have an asymptotic
formula for R(A, ) and then that for I,(1; 1) = I(2), which is a generalization
of Vinogradov’s theorem to an algebraic number field.

Our results will be collected and stated in Theorem 10.1 at the end of
§ 10.
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§2. Farey division.

Let 0,,9,, -, 08, be a basis of b™1. We put
2.1 2; = 2,0,P 4 2,0,P 4 oo 4 %,0,P (G=1,2,-,n)

for real numbers x,, x,, -+- , x, and define a set E of z=(z,,2y ,2,) as fol-
lows:

n y 1 1 .
2.9 — = R C) << —
2.2 E {z 5 25 Ei %0, ; 5<H=- (=12, -, n)} )

Let H and T be real numbers such that
2.3) H>2DT, T>1
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and let I be the set of numbers y of K such that (7@, y®, ..., 7™ c E and
y—a with N(o) < 7"
For every r eI with y—a we define a subset E; of £ as follows.

1
2.4) Ey :{z; ze B, Nmax(Hlz—7r,, T" )< Ny for any r;, =7 (mod b‘l)}
and put
E'=F— \J E;.
rer

This division of £ into E° and E; (r €I') depends on the pair (A, 7). We
shall call this division the Farey division of E with respect to (H,T).

The following Lemmas 2.1 and .2 were proved by Siegel [6], which will
play a fundamental role in the following paragraphs.

Lemma 21, If 7, and 1, belong to I' and 7, 71, then we have

ErmeTa:¢’

Lemma 22, If z=(z,,,2,) is a point of E°, then there exist an integer
a <o agnd a numbey B €07 satisfying the following four conditions :

(2.5) laPz;— P < H, 0 < |a®| < H (G=1,2,-,m),
(2.6) max(|a®|, |a®], -, |a™[)> T,

@.7) max(H|a®z;— g9 |, |aP|) = D~ (G=1,2-,7),
2.8) N(a, pp)) =D'2.

§ 3. Trigonometrical sums.

Lemma 31, Let | be a fractional or integral ideal. Then we can take «
basis Ay, Agy coc s An of 1 Such that

(3.1) [ ;2] = cN(HV» (4, k=1,2,--,n).
Moreover, we can choose a basis 71,7y =+, 0, 0of ()71 such that
1 if i=j o
S(4:7m5) = o Gj=1,2,-,n)
0 if 1¥#7]
and
lﬂj(k)lé(:N(T)_”n (]',k:1,2, ot yn)'

Proor. Let G be the ideal class containing f. Then { is a product of a
fixed ideal a, in € and a number «a of K;i=wqa, Let a,a,--,a, be a
basis of aj, then 1;=aa; (j=1,2,---,%) is a basis of {.

On the other hand, by the theory of units, we may assume that

¢y {N(a)]l/" < ]a(j)] §(,‘2|N(a)|]/" (j:1,2, ,1/17)
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with positive constants ¢, and ¢, depending on K alone. Therefore we have
| 2,0 =]a®a,;®| < c| N) ' = cN(HV (5, k=1,2,---,n).
Now let B, 85, -+, 8, be a basis of (a,0)7! such that

1 if i=j )
S(alﬂ]): { . . . (z,j:l,.?,,---,n).
0 if i#j5
Then 7;=8;/a (7=1,2,---,n) is a basis of (jb)~! and we have

1 if i=j .
S(Am ;) = S(a;8;) = { L (tGi=12-,n)
0 if i#5
and

[ON!
lnj(k)! = ]*g](’kj*j § CiN(a) l—l/n é CN(T)_I/H (]: k= 1; 2; ey n) -

Thus we complete the proof.

In the following lines, we shall often make use of this [Lemma 3.1,
without special references. Besides, we shall use a notation p’ in the meaning
P =p+r, (p=r,+1) when p and p’ appear in the same expression.

Lemma 3.2. Let | be a fractional ov integral ideal. We take positive numbers
Ay Ay, oy Ay such that Ay, = A, (p=r+1, - ,r+r) and ay By (p=1+1--,
v+, such that

Bp<ap§27f+ﬂp (p:7’1+1,"',7’1+7’2)-

We denote by n(i; A,a, ) the number of the elements v of Y satisfying the
conditions

O<V(Q)§Aq (q=1,2,“'a7’1),

| <A,
p=r+1, -, +7).

By Sargv? =«
Then we have

) o 1¥7 n ~ Ty+ry B ,éoni-l_“
3.2) ni A = A, L (@ 8 +0( Nﬁ)l_lm),

where .
Ay =max(N[DH'", (A4, - AV
Proor. By the theory of units, we can choose a unit ¢, such that
c(AA, - AP S Al P Z (A4, - ADYP (7=12,---,m).
It is obvious that
n(f; A, a, ) =n(; Alel, atarge, f+arge,).

Therefore, taking A;|e,| instead of A; we may assume that
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Cl(‘41A2 An)l/" é Aj g Cg(AlAQ ot An)”n (.7 = 17 2, Tty n) .
Let A4, Aq -+, 4, be a basis of | such that
l]j@)l;iCN(T)l/n (j’k:]ﬂz"",n)-

The vectors x(4,), x(2,), -, x(4,) in n-dimensional euclidean space E" are linearly

diameter is less than ¢,N()"» with a positive constant c,.
We shall define a domain V, in E™ by the following conditions

OéxfléAq (CI=1,2,"',7’1)
Vo: Xp? a7 = A2

. (p=7’1+1,"',7’1+7’2),
Bp § arg(xp + zxp’) = Ay

(%1, Xqy -++ » %) being the points of E”. Then xn(}; A, «, f) is equal to the num-
ber of the lattice points in V, with respect to vectors x(1,), x(4,), -, 2(An).

We denote by po(x;,r,) the distance between two points gy, and p, in E®
and define two domains V; and V, in E™ as follows:

Vi=1{t1; 01, ) = c,N(DV» for any 1, € V,},
Veo={t;0€ Vo 0@, 1) =coNHY* for all 1, & V).

Denoting the volumes of V,, V; and V, by o(V,), o(V;) and o(V,) respectively,
we have, by a simple calculation,

3:3) a(V) —a(Vy) < A IN(HY"
and
(34) (Vo) =g 4, T @,— 8.

On the other hand, we see that

(3.5) o(Vo) =n(f; A, @, p) =

A
= N(%WD a(Vy).

2"
NOWVD
Therefore we obtain the proof.

Lemma 3.3, Let Ty, T4, -+, Tyn m=1) be rational integers and M be the set
of the m-tuples (t,,ts, -+ ytn) of rational integers such that

T, =4=T;,+T, (G=L12--,m),
(tly t2, Tty tm) +* (07 0’ Tty 0) .
We take a subset M, of M and define a sum S as follows :

. 1 1 1
©H s= ) min{gp e pa)-

(tly"'rlm)EMo
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Then we have
(3.7) S < Arvmlog(l+ Ty,
where A is the number of the elements of M,.
Proor. Without the loss of generality, we may assume that 7, =0 (j =1,

--,m). Let M, A=k=m) be the subset of M, consisting of (¢, %, -, tn)
such that #,=¢# (/=1,2,---,m). We put

(Eassty) EMy
and
. 1 1 1
Sk"" E mlr].(-t;—’—tz—,---’-};n—)-
(L1,memsty) EMy

First we shall consider S; and prove
(3.8) S € A log(l+ Ty) .

We shall consider m-dimensional euclidean space E™ and denote by

{uy, %y, -+ , ;) the points of E™ Taking a positive number ¢, we denote by
D(#) a domain in E™ which is defined by the conditions

t=wu, >0

D(@):

#y = wu,; =0 (=23, ,m),
by M(¢#) the set of the points in D(¢) with integral coordinates and by #n(f)
the number of the elements of M(#). Moreover, let My (¢) be a subset of M,
consisting of (#,%,--,¢t.) such that #=¢ and #n,¢) be the number of the
elements of M (?).

It is obvious that for any ¢

n(t) = ny(t) .
Therefore, if we choose a rational integer ¢, such that
nty) = A = no(To) <nt,+1),

then we can construct a mapping ¢ from M(T,) to M(,+1) which satisfies
a condition that, for every (¢,%, -**,tn) € My(T,), the first coordinate of
(¢4, 22, -+, ) 1s not less than that of ¢-image @((#, %5, *+* , £m)) = (S1, Sgs *+* » Sm) OF

(tiy b5y -+ tw), that is, s, =¢,. Hence we have
1 1
S= 2w X
(tsrost) EM,y Ly, tm) EMo(T,)
1 m—1
= > =G+t logl+ 1)
Sy

(S35, 8) EM (Lo +1)
Since
A = nty) =2m 14 3mml o L (f R D™ = e, + D™,
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we have
S € AV™log(l+t¢) +1) € Al V™ log(l-+ Ty) -

In the similar way, we obtain
Se € At~ Vmlog(l 4 T) (k=1,2,--,m).

Therefore we complete the proof, since S<S,+ S, + -+ + S
Tucorem 3.1. Let a, be an ideal fixed together with K, c be an ideal and
NirNas o s M b @ basis of a,¢ which satisfy the inequalities

17,1 = eN(a,)'" (5 k=1,2,-,m).

Let M be a parallelotope in n-dimensional euclidean space E™ which is defined
as follows :

Mz{(xl!xz;"')xn); aj§x1'§bj (j:1’2)"')n)}'

We take a point z=(z, 2y, -+, 2,) of E° which is defined by the Farey division
with respect to (H,T). We put

V =max (11 bl —ay, bz —dy, "0, b'n, - (ln)
and assume that

H
(3.9 V< gsnDN@oy» °
Now we define a sum of the following form:
(3.10) Z= 2% min (U, [Sku) ™,
peEa,"t 1=j=n
r(pyeMm

where U is a given number =1 and the sum is taken over all p< a,™! such that
x(u) € M.
Then we have
1 1 log H
(3.11) Z<<PWLUK®<7ﬁT%~%r+~é%iﬁi§;~+49%7u>.
Proor. We write S(p;uz)=s;+d; (j=1,2,--,n) with rational integers
s;and —1/2=d;<1/2 (j=1,2,--,n) and put

(3.12) S=Ns2;, C=2dd;,
j=1 j=1
where 1., 4,, --+, 4, is a basis of (a,cd)"! such that
1 if j=% ‘
S(Zjnk): . . (])k=1’2:"':%)
0 if j+%
and
llj(k)lé(;N(c)_l/n (j,k=1,2,---,n).

9 and ¢ are the functions of x and we have
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3 € (a,ed)7!, pnz=49+¢,

”S(ﬂjﬂz)H:W;] (j=1721"')n)x
X012 3P SeNO™ B ldel (G=1,2,m).

Hence we have
Z <3 min (U, |d;™) € 3 min (U, N~ | X))

o 1=j=n © 1=j=n

< Ny 3 1min (UN@©Y™, | XD,
n 1=

=j=n

where the summation 3} has the meaning stated in [Theorem 3.1
Fa

Therefore, it suffices for us to estimate a sum

. - N
(3.13) %= gﬁ(U’ lXj(c)l)’

1

=0y
(M

By suitable choice of a positive constant b,, we obtain the inequality

(3.14) | XD = b N (7=1,2,+,m)
for all 2 in the sum Z*. We shall put

(3.15) by = 2b,(DN(ag)'™ .

Taking b, suitably, we may assume that

(3.16) b, > D\ .

We know, by that there exist « =0 and g = d~! which satisfy
25), [2.6), [(2.7) and [2.8) for (z, 25, -**, 2,) in our Theorem.

To each u# in the sum Z* we assign a vector

(317 () = (C. X (0, CoXo(0), -, CuXR(0))
in E™ with
Cj = Z(DN(OOC))Un l a<j)| (j = 1) 2y Tty n) .
All y(u) are contained in a parallelotope
{(xl’ KXoy xn) 5 Ix]! g bo!a(j>' (]: 17 2: B n)} .

Now we shall divide a set {1,2,---,#n} into three parts J,,/, and J; by
the conditions as follows:

(3.18) i/, if and only if % (DN@0)» = 2by | a®|

(3.19) i<J, if and only if L = »i~ V n
. je/, if and only if 2‘:2b0|a | > [f(DN(aoc)) ,

(3.20) k<], ifand only if 2b,|a®|> -k

2,< .
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Jy or J, may be empty, but J; is not empty on account of [2.6). Moreover,
we see from (3.19) and [3.16) that
(3.21) laP] < b, < D712 Gelit+l).
Therefore, putting
8D = qthz; — fP (Gj=1,2,--,n),
we have by

(3.22) |6P |1 < DV2H Geli+/7).
We shall put

(3.23) 7= 2 (DN@o» Gel),
3.24) t;=4b,| a?| (jel).
Since

II Tjkle—.lr (bl a®|) = b" | N(a)| 2 b)" =11,

JET +,
we can choose positive numbers 7, for k2 </, such that
(3.25) byl a®| = 7, = 2727 (kels),
Tpr = Tp (pzn+1, pely,
TyTy ooe Tp=27277%,

Let g,4,,8, be rational integers and B(g)= B(g, g, -*-,&) be a
parallelotope in E™ which is defined as follows:

326) B ={@m 55 ole—5) <u=u(g+5), G=12-,m}.

We shall consider B(g) containing at least one y(u).
If y(u) and y(u,) are contained in the same B(g), then, decomposing uz
and g,z as in pz=239+¢ and pz=19,+4¢,, we have

|CAXH() — XN <7y (7=1,2,--,n)

so that
(3:27) 62X — XD < gpylgym G=12 .

On the other hand, in view of [3.23), [3.24), [3.25) and [3.9), we have
(3.28) [0P(Xj(p) — Xj(u )| S H'V = W (G=L2-,n).

We now put
£=a(d—3¢)— plu—u),
then
£ < (ayeh)t,

k=—a(l—{)+o(u— u)
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and we have, by [3.27) and [3.28),

1< DNy @b,
V2
I (p)l<(DN(Q Z-)Z),l/n (1):7’1"]—1,-",7’1‘{"1’2)
so that
21T Ty e Ty 1
(3:29) INOT<"DN@o < DN -

Since £ < (a,d)~!, this inequality implies £=0.

Hence
(3.30) a(l — ) =o(u— py)
and
«
(3.31) Bla—pm)=a@—3) & 5

We denote by a the denominator of 4/a, that is, #/a—a. Then means

that
| N(@)| = DV2N(a) .

Since df and ayc(u—pu,) are integral ideals, it follows from that

(3.32) ape(p— p;) Ca
and
a;aoc(2t — 1) C (@),

where a, = (a)/a. Therefore we have

(3.33) ol — py) € ()
with a suitable element o of ¢ such that
(3.34) | 0P| = ¢ N(o)'/m (=12, ,m).

Now we denote by W(g) = W(g,, 25, -+, &, the number of x# such that
(3.35) nea™, aw)eM, y(u) s B(g) = B(g, g &) -
If we choose a number g, satisfying [3.35), then we see from that
W(g) does not exceed the number of integers v such that

(l)(u(l) 7 (l)) (l:1 2 .

(3.36) YOl =max | 500 6 T e )

n
where g runs through all numbers of K satisfying the condition [3.35).
We shall estimate the right-hand side of (3.36). If j=J,+/; then we

have by
,O(j)(ﬂ(j)‘"ﬂ1(j)) 1 VN(C)I/n
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and if i< J,, then we have, by [(3.30), [3.22), [3.34) and (3.14),
(3.38) max (,P(l)(ﬂ(t)—lf, fi)‘_ ma [,Om(Cm () < H.

“ a® P ; FCH
From [3:37), [3:38) and Lemma 3.2 follows
(3.39) W(g) € 1+ HaN()- v/ - 1 la@P|" !,

JES 4+

where g, is the number of the elements of /. We put
(3.40) Wy=HuN@t- e/ I [a@|™t,

JEJ i +dy

Now we shall return to Z*. We write
. 1
=2 2 mn (T xr):
-, &n Y(p)EB(L)

where g, 2, ++, &, TUN through all » rational integers for which each B(g)
contains at least one y(#) and the inner sum is taken over all x such that

rveal, xw)e M, yu) e B(g).
Let G; be the least rational integer satisfying the inequality

) 1 .
bla?| <o(Gi+5)  A=i=m.
Since the j-th coordinate C,;X;({) of the vector y(x) satisfies the inequality-
lCin(g)l<bOIa(j)| (]‘:172,"':71),
the range of g,4, -+,&, in Z* is roughly given by the conditions
IgJ1§Gj (j:]-)z)"')n)'
FEasily we have
G;=0 Geli+7),
(341) ! ) S
(€2
126, 2L ey,
k

Therefore, we can write

ze=% % min (U i)

{gr} v(wEB(g)

where 3 means that this sum is taken over all g with k<],
gt

We shall divide Z* into two parts:
Z* = > + 2 2 =2+ 2.

y()EBO,~,0)  {gg}=#{0} yv(weEBlg)
First we shall estimate Z,.

If J,+/J,= ¢, then it follows from and (3.20) that | M) | =c¢7T. There-
fore, by [3.39) and [3.40), we have
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Z, < (1 + WU < U+ V'UNE) Tzwlaﬁ

(3.42)
< s VIUNO.
Now we assume that J,+/,# ¢. Then
. 1
(343) z< Y min (U juop)
¥ () EB(0)

since-an inequality

Il/\

min( g i) V“Zi
[RE)] 3] [€]

is true for any complex number E#0.
If W(0)<2, then Z, is trivially estimated; Z, < U.

309

We assume that W(0)=2. If we fix a number g, such that »(x,;) € B(0),

then other x4 with y(u) € B(0) satisfies following relations:
a(l—{)=0(u—p),

ﬂ_/hea*zi-

g
Therefore we have from

YARY E mm U, L)

J,+J, [ L9
y(u)€B(0)
(U EM
(3.44)
]
< E mm<, iﬁww—u%+cw
. JEJ +J2 J
n- pieat
x(u)EM

We define an #n-dimensional cube

Mlz{(xlyxzy'”)xn); !x]I:<: If; (j:172""

and put

5(]) Cl() if Je ‘l‘]z

E,D =
0 if iel;.

Then we have from (3.44), [3.21) and [(3.22)

Z< S min (U, o)

~  JEL+T, | WP +EP]
x(l;z)cenﬂx
{3.45)
. H
< Z, gf}}?{,,(U’ “1"X,W+fo>f)‘
usa*

.Z‘(/,()EJ[,

.
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The last inequality follows from the inequality
1—§min( 1 1 )

for any complex number & +0.
Let ¢, ¢, -+, ¢, be rational integers and define an n#-dimensional cube

B*(#) = B*(t, ty, - , tn)
*\1/n *\1/n
= {(xl’ Kgy *** xn) 5 L\&aé )'*’(tj— - é*) < Xj .é N(a?))*(tj "{"%) (.7=]-’ 2; Ty n)} o

For every B*(¢) the number of u < a* such that x(u4-£&,) = B*(¥) is at most
one. Moreover we have

. 1 . 1
3. e — e
(546 i (Cxerear) € min (G e)
for p+é&, such that x(u+§&,) € B*®).
Therefore we have from (3.45) and [(3.46)
. H
34 R =
( 7) Zl <<t Zt JéT’l}E’z<U; ltle(C!*)l/n> ’
where ¢, 4, -, %, run through all » rational integers for which there exists

#<a* such that

x(n+&)e BB, x(w) e M.

The range of {¢,,¢, --,%#,} is given as follows:

|4
(3.48) [t « T, =1+ Ny € VN(OV» kels),
(349) Tj =451/ (J EL +7,)

with T/—Tj 4 To (] E]1+f2)-
We shall divide the sum in the right-hand side of [3.47) into two parts:

(3.50) 2 =2+ 2,

[ FARREN Y
where >, is the sum taken over all ¢4, - ,¢, with £;=0 for all j&/,+/;
and >, consists of other terms.
Since J; is not empty, it follows from that
(3.51) 2H L UT* 1« VP tUN(c) .

As for 3,, noting the existence of an index /&/,+J, for which #+#0,

we have by

ZQ <L ‘zwfijﬁ; ' min ( 1 ),

e +as N ]
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where Y’ means a sum taken over all possible » rational integers ¢ (k=

2, ---,m) whose range is given by [3.49).
Therefore we have, by

(3.52) 5 < oy T~ 10g(L+ T) < V*IN©H log H.
From and follows

(353) Z, < V*UNQ (-3 +-FI08 H)

and consequently, by (3.42) and [(3.53),

(3.54) 2, < V*UNO(~o+-5 + O H Y

This is the desired estimation for Z,.
Now we shall estimate

z= > min (U gep)-

(gt #10) y(u)EB(g)

By the definition of y(u), we have, for g4 such that y(u) € B(g),

k
min (1x(pr) € min (2 ) < Mo min(L520),

which gives

a®|
(3.55) Z, < N(QV» Wi(g) mm( )

ks, \ Tk | g%l
{gy) = {0}

First we assume that W,>1. Then gives

(3.56) Z < N@¥W, > min( la®] ).

ked, Tklgkl
(g =10}

Since the range of g; is given by (341), we have

. a®| | a®|
nlerh) < 3 85 teot
E %Jn( T | &% > T 8%
g1 # 0 = A

Q)
where > means a sum taken over g (l /s, I # k). Therefore

{ggt+1{0} kEJ,

< H E log(L+Gy) < H ' log H.

kEJT, PESR KET,

31k

1,
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Putting this result in and using [3.40), we obtain

Z, & NV W, H 1P| yog H

@® |
Tk

KEJ,

= NV HE:N( )~ e/n -t log H-TT1o'II Ia(j)|—1

kEES, jeT,
LNV HEN@emry=elog H T 7; 11 |a®|™t,
JEJ +J, T JET,
which gives
(3.57) Zy, & V*N(c)**" log H,
since

L N Gel),

7; K la(j)‘ (Gel).

Finally we assume that
Wy=1.

Then there exists a positive constant C, such that
W(g) =G,
for all W(g). Let G, be the set of {g; (k</,)} such that

W(g)#0,  {g}=+1{0}.
Then, noting that

Ia(j)]<H (j:].,Z,"',n),

and
Ty 2 2737 (kels),
‘we have from
Z, & N@OV"H S‘ min —1v> .
Ll ked, | &l

{gglebo

The sum in this right-hand side is of the similar type as in

The value of |g.| in G, does not exceed Gy« H. Therefore
Lemma 3.3,
Z, K N(OV*"H - A*™V*log H,

where A is the number of the elements of G,.

A is, however, easily estimated;
As 2 W= 2 1<Ve.
{gg) =10} pEa,™
z(WEM
Thus we obtain

(3.58) Zy K N(o)V»HV 1 1log H.
Combining and we have

we have, by
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., (Hlog H | N©'*log H
(3.59) Z, < V'UNQ( 7 5" + U—)

so that
360) Z*=Z+2Z,< V"UN(C)/ (+

v v
Replacing U by UN(@)V* in this right-hand side and then multiplying

N(@©)~V¥» to the whole, we obtain the desired estimation for Z:

n HlogH | logH
Z<VUNO(p++ VNGt )

1 Hlog H i NV log H )
U

Thus we complete the proof of our Theorem.

Tueorem 3.2. We take ideals o, and ¢, @ basis 1,,7,, «** 7. 0f 6, @ domain
M and a point z< E° as in Theorem 3.1 and we assume that the inequality (3.9)
kolds. Morever, we assume that M is contained in an n-dimensional cube

{(xl’x2""7xn); 1xJI§ V/2 (j‘:l’z)"';n)}
and that

(3.61) Vr< T

4b)™ VD Nage)

Now we take a positive number V, and define a sum as follows :

(3.62) 7= 3 min (U, || Sm;#2) 17,
A

where the sum is taken over all elements p of a,™' such that x(u) < M and

[P = T, (7=1,2,---,m).
Then we have
, " H HlogH | logH
(3.63) 'LV UN(C)( V,UN(0)/ + VUN()7» + U )

Proor. Similarly to Z* Z, and Z, in the proof of Theorem 3.1, we
define sums Z¥*, Z,’ and Z,’. We shall also use the same notations.
As for Z,/, we obtain the same estimation as (3.59), that is,

i/n
(3.64) 7z < VnUN<C)< HlogH , N Ulog H)

Assume that y(x) € B(0). Then we have

]CJXJ(C)lgéj_ (j:1,2,---,n),
that is,

@PXOI= ypngops  G=BEW-

On the other hand, by our assumption about the domain A4, we have
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V Tj .
h — SRS SR =

Therefore, by the same way as we derived [(3.30) and [3.32) from and
we see that

a
—_— * — -
al =ou, LEaQ o

If J,+J, + ¢, then we have

/ \ ; _H
peat, r(u)em :

Tulzve
(3.65)
VPN H g H

Finally we assume that J;+J,=¢. Then it follows from and (3.20)
that

N9 =N (2 )z MO - T

a¢ / = /D Nage) — (4b)» v/ D N(aye) ’
since means that |Ma)|=D"?N(a). Therefore, if x(x) (#+0) were a
point in A and corresponding point y(x) belonged to B(0), then the following
two inequalities

INw|=V",

NG | 2 N9z o
- = (4by)* 'V D N(ayc)
would be obtained. But these contradict to [3.61).

Hence Z,/ is empty when J,+/,=¢. Therefore our Theorem follows from
(3.64) and (3.65).

Tueorem 3.3. We take ideals a, and ¢, a basis 7,7y -+, Ny Of G and &
point z of E° as in Theorem 3.1 and we assume that
H
(3.66) (DN, L

Let Q be an n-dimensional cube in E™:

Q={(xp %y, %) =W (7=1,2,-,n)}

with W=1.
Now we define a sum of the following form :
(3.67) L= %  min (U, [Su2) ™,
pEa I=j=n
r(p)EQ

where U is a given number =1 and the sum is taken over all p < a,™' such that

x(u) € Q.
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Then we have
1 1 1/n
368) LW UNO(7+p+ 2o+ e + 25
Proor. If

H

2W< 723"’“”(DN'(66€))“"; ’

then we have by [Theorem 3.1

(3.69) LW UNO(+ 7 + o + 5 -
Suppose that
owz= ... 2o
= 9st13(D N(ae))'
We put
v=max(1, 2““(D]E\;(a(,c))”” )

and cover @ with at most O(W"/V™) parallelotopes the sides of which do
not exceed V. Then we can divide the sum L into at most O(W™/V™) parts,
each of which is of the same type as the sum Z inf[Theorem 3.1. Therefore
we have

W™ rrirm 1,1 HlogH | logH
L<—m UV'NO(p+ 37+ vUNO T U )

1/n
WP UN©( e+ N7y JogH

Our Theorem follows from this result and [3.69).
Lemma 34. Let ay, ay -+ 5 @y be positive numbers such that
aa, - a, =1,
Ay =y (P=r+1 7 +7)
and N, be the number of the units € which satisfy the conditions
|| < a; (7=12,---,m).

Then
Ny < (1 +log(a,a@, -+ an))",
where r=r,+7r,—1.
Proor. It suffices to prove our Lemma under the assumption
alzaz: eee :an:aogl .

The unit ¢ in question satisfies inequalities

:. n - - .
az|e? = I [P za!™  (=12-,m).

kg
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Let ¢, ¢, -,¢6, be the fundamental units of K, then N, is equal to the
product of the number of the roots of unity in K and the number of the
r-tuples (¢, £y, ++- , 1,) of rational integers which satisfy the following conditions
r
ay=| ) &' = a,' ™" (G1=12,-,m)
k=1
or

(3.70) log = 3 telogle® = —mloga, (G=1,2,m).

k=

—

Since the rank of a matrix
log |6, log |&,?], -, log | ;|
A= | log|e ™|, log|e®], -, log |e,™|

............

log |&,V], log|e,®], -, log | &,
is equal to 7, there exists a matrix
bll) b12, E) blr
B= ba1s bagy ++ 5 bor

.........

bn]y bnzy B bn'r

such that the product AB is the unit matrix of degree 7.
Therefore we have by [3.70)

=15 ba 3 tlogle] |=n| B balloga, (=12,
so that
N, <1 +1og a))” < (14 log(a,a; - ay,)) .
Thus we complete the proof.

Lemma 35. Let &, &, -+ ,&,, be v, real numbers, &, 41, Erivay v »En be 21,
complex numbers such that &,=E&, (p=r+1,-,r+r) and Ay Ay -, A, be
bositive numbers such that Ay, = A, (p=r+1, - ,7,+7y).

We define a trigonometrical sum I as follows :

— NG
I= S gmiscae

ac

where 1 is an integral or fractional ideal and the summation means that o runs
through all a =Y such that

O<a(q)§Aq (q=1,2,“' 77/1)1
|a(p)|§Ap (p:rl+11""71+7'2)'

3.71)
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Then we have

7 _Ao”fl - i 4@_ -1
(3:72) 1<y min(gitm > 1S@017)
where

AO = maxXx (Aly AQ; R Am N(T)I/n)
and Ay, Ry, -+, A, 1S @ basis of 1 which satisfy the inequality

(3.73) [2,#] = cNHV» (5, k=1,2,--,m).
Proor. First we have by Lemma 3.2
3.74) ¢ Aids- A 4"

ORI O
Let 2 be one of the 2,,2,,-+,2,, a basis of {, satisfying (3.73), then
12809 — [ Z‘* i sém ,
where 3* is a sum taken over all « &} which satisfy the conditions
0<a(q)_x(‘D§Aq (q:l’z,...,rl),
la® — 2P| < A, (p=ri+1,-,r+7)

(3.75)

but do not satisfy at least one of the inequalities in (3.71).
In view of Lemma 3.2, we see that the number of « =} which satisfies
the conditions (3.75) and for a certain index ¢, 1 =g, =<7,

a(QO) < 0 or a((ln) > Aqo

is
Ay Ay 129] _of A
o( Ay, Noy T 1)=0( )-

Similarly, applying Lemma 3.2, we see that the number of a=f which
satisfies (3.71) and

Ay < |a®| < Ay, A | AP0
for a certain index p, (i +1=p, <7 +7y) is

O( AAy - A, Ay, |29 >

A . Aon—l
Ap? N(D)

=0 aiyew) -

Therefore we have

Aon—l

(3.76) I (e SA® __ 1« -jV(f)wlflf/ﬁ‘ .

Since
[e2iS4O — 1| = [ S(AE) |l ,

(3.72) follows from (3.74) and (3.76).
From this Lemma 3.5 follows:
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Levmma 3.6. We take &,,&,,,&, and A, A, --,A, as in Lemma 3.5.

Moveover we take n real numbers B, By, -+, B, such that
0§B]<A] (j:1,2:"'7n)’
Bp/:Bp (p=7’1+1,"':7’1+72)'

We define a trigonometrical sum

J=3V g2 séw ,
a<f

where the summation means that & runs through all « €31 such that

B, <a® =< A, (@=1,2-,1),

B, <|aP|£ A, (p=r+1, -, +r).
Then we have

T < g min (i, 15@O1),
where Ay and Ay, Ay - 5 An have the same meaning as in Lemma 3.5.
Tueorem 3.4. Let Ny, N,, -, N, and N, be positive numbers such that

N, < N; (1=1,2-,m),

N, =N, (p=ri+1,-,7,+7,).
Let M be the set of integers p of K such that

Ny < ¢ = Nqg (g=1,2,---,17),

Ny <Pl =N, (Pp=r+1-,r+r).

Let M, and M, be the sets of some ideals satisfying the following inequalities:
1=U0,=Na=U, 22U, (M),
1=V =N =V, =2V, (beM,).

(3.77)

Moreover, we take an ideal ¢ and a point z = (2, 2y -+ , 2,) 0f E° which is defined
by the Farey division with vespect to (H, T) and we assume that the inequality
(3.66) is true.

Now we define a trigometrical sum of the following form:

S = E E eQWiS(Vz) )
beM, =i

)
o5 =M
where the inner sum is taken over all integers v such that

(3.78) ye M, é%)ﬂ e M,.

Then we have
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s/ N O Hlogﬂ

4 1 1
. S, r/4 >
S<K Ny AN (log N+ 1) ( T + Vi + JZi i N

(V .N()™ log H\*
+ N )
where v =r,+v,—1 and N=max(N,, N,, ---, N,).
Proor. Let 6,,€,,---,€, be the ideal classes of K and put

M;,;=M;NG; (i=1,2;j=1,2,---,h).
We can write
h

S — E E E eﬂﬂ'iS(Vz) ,

Jik=1%€M,,; pEM
(v
Vet

where the innermost sum is taken over all integers v such that

(3.79) ye M, (T’“c) eM,, (b6cM,).

If there exists an integer v satisfying (3.79), then the second relation of
(3.79) means that
(MY OES Gy,

where €, is the principal ideal class and €(c¢) is the class containing c.
Therefore it suffices to consider the sum S with additional conditions:
(i) AIll ideals in M, and A, belong to classes €; and €, respectively,
(i) €,C,C)=6,.
If we fix the ideals q, in €, and %, in €,, then we can put

a=aa; asa! (ae M),

b=pb; L™ (b M,).

(3.80)

We denote by A,° the set of the principal ideals (a) and by A, the set of
B, both of which are defined by (3.80).

Putting
Caobo = (?’) ’
we can write
(381) S = 2 E 282 |
B4, Vue‘m
(BT')EA,"

Therefore, denoting by A, the set of @ =a,™! derived from (3.80), the sum S
is written as follows:

(3.82) S=3 3 3 miscafra

ped;, ¢ @

where the sum 3 is taken over all units ¢ for which there exists at least
e
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one « such that
(3.83) acs A, eafiy =M,

and after taking g€ A, and a unit ¢, the innermost sum ) is taken over

a
all a satisfying [3.83).
By multiplying a suitable unit, if necessary, we can assume that y and
a e A, satisfy the following inequalities:

coN(@)V? < |a®P| < ¢, N(a)/» (a=aay; 7=1,2,---,m),
CON(C)I/n- < |T(j)| < CIN(C)I/" (]' —_ 1, 2, cee n) ,

(3.84)

where ¢, and ¢, are suitable positive constants. We may also assume that
¢ <1.

We now put
- N N
K= Ny T T e U N
and define a set € of ve¥b,”! such that
Vi Vs
—N(—bo—)‘élN(V)i§ NGy
X, << X, (7=12,-,n).

We see that the product €8 of a unit ¢ and a number g A4, in the
sum satisfies the inequalities

Noﬁr < I€(j),3(j)| <- NJ‘

W ! E(j)r(j)'l” (] = 17 27 Tt n)

with a certain number a € A,. Therefore, noting (3.84), we have

(3.85) X, <|ePpP| < X, (j=1,2,--,m),
which means that
efes.

Therefore, applying the Schwarz’s inequality to the right-hand side of [(3.82),
we have

|SI2§ % 2 1,% Z ] Z eZh’iS(EdBTz) |2
g E 1 2 [Z/ eZTL’iS(olsz) l‘l’

ves VES o
where the last sum X/ is taken over all « such that
(3.86) ac A, vareMl (es).
It follows from Lemma 3.4 that
3.87) %}@ 1 € Vy(log N+ 1)
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so that
S?L Vy(log N1 3 3 emiseri@-ava
vES @,
We shall change the order of the double sum in this right-hand side;
(3.88) SPL V,Jog N+1y S X gmiser@-and

@, @1 VES(a,@:)

where &(a, @,) is the set of numbers v such that

(3.89) ve®, vareM, va,rst.
shows that a« (or a,) in the sum of satisfies the inequality
N™ N™

< <. .
INEOT= N T = VNG
Therefore, if we define a set A of 2 such that
-1 & <U,,,7C1N - P —
leao ’ I’{ l: (VIN(C))I/n (.7 1’2’ ’n)7
then we see from (3.84) that a@ and «, in thé sum run through a
certain subset of A.
We can define the subset €(a,«,) of © over all pairs (a,a,) with
a,a, € A by the condition [3.89) Hence we have, using again Schwarz’s
inequality,

[ 2/ Z eQn’iS(V?’(d—d:)z) [2
@ & vES(a.a;)

(3.90) SISV ]S gmiseT@-ans |
@ a1 @a veBlw @)

<= > 1- X | > e?m‘swr(a—m)z)]z.

@.a, €4 a.w,C4 vES(a,a1)
Since we consider the case when the sum S has at least one term, there
exists v M such that

A

v) = c¢ba be M, ac M).

Therefore, the following two inequalities
(3.91) VIUN(C)=N",
(3.92) Ny = V,U,N(©)
are true. If we put

W=y
then shows that W= U, =1, which gives

a‘%jeAl < W2,

Therefore, putting
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Sl o E ' Z e?n’iS(VT(n!—th)s) 2’

#,0,E4 pES(a,0,)
we have, from and
ST Vyog N+H1)(S,- X D~

@, &4
N*
3 1/2

< Vylog N4-1) VNG© Sy

l\rn
€ NE

As for the sum S,, we write

(log N+1)7-S,12 .

Sy = = £2TES(W =YY (@—a1)2)
a.@,€E4 y,1,E6(a,a1)

— / 778 S((V -y -
— E Z Z* eZ 1 S(( D7(@-a;)z) ,
@, €4 y,y: @

where the sum 3 means that v and v, run through a certain subset of &

Y,V1

and the innermost sum X* is taken over all « such that
@

(3.94) acs A, vareM, v,aresIN.
These conditions for « in are also written as follows:

aesay !,

Ny N, ) j . N; N;
max(w - o ) < la? Smm(c Wm0 e )
(VDD | [, @y la?] = 1 (VDD |y, Py

(j:]-yzy"'in)'
Therefore we have, applying to the sum X%,
o

IS]' é 2 E/ I Z* e27‘tiS(T(V—V1)0lz) I

@, €4 v,y @

L WeEvr 3 min (Win, || S(oiv —vra)[™,

Vv,nEG 1=j=n
where py, 0q, -+, 0o, is @ basis of a,~! such that
lo/®|=¢ (j,k=1,2,-,m).
If we put n;,=p0,7r (j=1,2,-+,n), then 7,7, -+, 7, is a basis of b,¢c such that
|7,%| = eN(e)V» (G=12--,m)
and we have by
Sy L W % min (WY, || SO —v)2) [7)

v eG 1sjsn

K WEmy,(log N+1)" 23 min (WY, | S(puz) 17,
uch,"t 1sjsn
| ul=2x,

(3.95)
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where the last sum is taken over all g < b,~! such that
l#(j)| =2X, (G=12,--,m).
We know from [(3.91) that
S

(3.96) X, =l > V=1,
o’
Therefore, applying to the last sum of (3.95), we have
S K« WV,(log N+ 1)" X,"N(¢)
1 N(c)“" Hlog H log i
X( T + X2 + + X Wl/nN(C)l/n + Wl/n )
Moreover, using and the following inequality
: N N
Xg <<X1 N <<Vl/n—N;‘
which is obtained from [3.92), we have
N.‘}n
- 1 T
Sl < NonN<C) (10g N+ )
1 1 NovY» | Hlog H | (ViN@)"log H
L e S s N )-

Our Theorem follows from this result and (3.93).

Tueorem 3.5. We take positive numbers Ny, Ny, ---, N,, a set WM of integers
of K, an ideal ¢ and a point z= E° as in Theovem 3.4 and we assume the
inequality (3.66). We consider two sets M* and M,* of ideals which satisfy the

following inequalities
1=UF < Nao) s Uy* (ae M*),
I=V*=NOb=V* (b My*).

Now we define, similarly as the sum S in Theovem 34, a trigonometrical

sum S* as follows :

S¥= 3 E Q2 Swa) |

be M * yeEM
(v) *
Tt

Then we have

S* L "]XN(C)W“ (log N + 1) (log U,* + 1)(log Vy*+1)
(3.97)
Ao 1 N@Y | HlogH | (Vy*N(0)" log H \'*
X<T+(V1*)1/’*+ g T N T N )
wheve v =r,+r,—1 and N=max(N,, Ny, -+, N,).

Proor. We divide two intervals [U*, U,*] and [V *, V,*] as follows:
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U=U*<2U<22U< -+ L2UK UL 2MU,
V=V*2V<2V < - 2"V K V¥ =217,

Then S$* becomes the sum of (/41)(m+1) sums of the types in Theorem 3.4
Therefore we obtain (3.97).
(To be continued)

Gakushuin University.
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