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Some properties of the Stone-\v{C}ech compactification.
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In this note, we shall investigate some topological and uniform pro-
perties of Tychonoff space $X$ (completely regular $T_{1}$ -space) in connection
with the properties of the $Stone-\check{C}ech$ compactification $\beta X$.

The existence of compactification, the complete regularity and the uni-
formizability are equivalent each other, so that the Stone-Cech compacti-
fication may reasonably be expected to play an important role in the theory
of uniform spaces. The consideration of uniformity $c_{U}=\{V_{a}\}$ in $\beta X\times\beta X$

leads us to consider the set $R=\bigcap_{\alpha}V_{\alpha}$ , where $V_{\alpha}$ denotes the interior of the

closure of $V_{\alpha}$ taken in $\beta X\times\beta X$. The set $R$ defined above will be called
throughout as the radical of uniform space (X, $c_{U)}$ . We shall show that the
radical determines topologically the completion $\hat{X}$ of (X, $q]$ ). In fact, $\hat{X}$ is
obtained as a quotient space $\overline{X}/9\mathfrak{i}$ $($with the quotient $topology)_{j}$ where $\overline{X}=$

$\{p\in\beta X;(p, p)\in R\}$ and $\Re$ is the relation on $\overline{X}$ defined by the radical $R$ .
The completeness will be characterized in terms of the radical as follows:
(X, $\epsilon_{U)}$ is complete if and only if $R=\Delta_{X}$ . As a direct consequence of this,
we shall obtain a necessary and sufficient condition for an entirely normal
space to be topologically complete (Theorem 2.2). (We call the space $X$

entirely normal if the family of all neighborhoods of the diagonal of $X\times X$

forms a uniformity for $X.$ ) The condition is stated as a property of points
contained in $\beta X-X$ (points at infinity). A slightly stronger condition will
be examined as well, and the relationship between entire normality and
paracompactness will be made clear in a simple form (Tileorem 2.3).

The idea to treat the completion of uniform space in connection with
the compactification is due to H. Nakano [11]. We shall be concerned with
the completion of uniform space in \S 3 and discuss some topological pro-
perties of the completion of uniform space in terms of the radical.

I wish to express my deep gratitude to Prof. A. Kobori and Prof. A.
Komatsu for their kind encouragements. Also, I express my hearty thanks
to Prof. M. Yamaguchi and Prof. T. Mori for their valuable remarks.
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\S 1. Preliminary.

In the first place, we shall state some lemmas concerning reguiariy open
sets, which will be used in the following arguments. For the sake of
convenience, we shall use the following notations. Let $X$ be a subspace of
a topological space $Y$, and $A$ a set in $X$, then the closure of $A$ taken in $X$

(or in $Y$ ) will be denoted by $C1_{X}(A)$ (respectively, $C1_{Y}(A)$). Similarly, the
interior of $A$ will be denoted by $Int_{X}(A)$ or $Int_{Y}(A)$ according as it is taken
in $X$ or in $Y$. A set $F$ in a topological space $X$ is said to be regularly open
if the interior of the closure of $F$ is identical with $F$, that is, $F=Int_{X}(C1_{X}(F))$ .
Evidently, it is an open set.

LEMMA 1.1. Let $X$ be a topological space and $A$ a regularly open set in $X$.
Let $B$ be an open set which is not contained in A. Then there is an open set $C$

contained in $B$ such that $ C_{\cap}A=\phi$ .
PROOF. If $B\subset C1_{X}(A)$ , then $B\subset Int_{X}(C1_{X}(A))=A$ . Therefore we have

$Bc\not\subset C1_{X}(A)$ , and $C=B\cap[C1_{X}(A)]^{C}$ is obviously a desired one.
LEMMA 1.2. Let $X$ be a dense subspace of a topological space $Y$ and $A$ a

set in X. Then $Int_{X}(C1_{X}(A))=Int_{Y}(C1_{Y}(A))_{\cap}X$.
PROOF. The inclusion $Int_{X}(C1_{X}(A))\supset Int_{Y}(C1_{Y}(A))_{\cap}X$ is obvious. There-

fore we have only to prove the reversed inclusion. If $p$ is any point of
$Int_{X}(C1_{X}(A))$ , then there is in $Y$ an open set $U(p)$ containing $p$ such that
$U(p)_{\cap}X\subset C1_{X}(A)=C1_{Y}(A)_{\cap}X$. It follows that $U(p)\subset C1_{Y}(A)$ and $p$ is there-
fore contained in $Int_{Y}(C1_{Y}(A))_{\cap}X$. For, if $U(p)\subseteq[C1_{Y}(A)$ , then $U(p)_{\cap}[C1_{Y}(A)]^{G}$

is a non-void open set in $Y$ and since $X$ is dense in $Y$ it must contain a
point of $X$, which contradicts the above fact that $U(p)_{\cap}X\subset C1_{Y}(A)_{\cap}X$.
Thus we have $Int_{X}(C1_{X}(A))\subset Int_{Y}(C1_{Y}(A))_{\cap}X$, and the proof is completed.

LEMMA 1.3. Let $X$ be a dense subspace of a topological space $Y$.
(a) If $A$ is regularly open in $Y$, then $A_{\cap}X$ is also regularly open in $X$

(b) $B(\subset X)$ is regularly open in $X$ if and only if $B=Int_{Y}(C1_{Y}(B))_{\cap}X$.
(c) If $A$ is regularly open and $B$ is open in $Y$ and if $A\cap X\supset B_{\cap}X$, then

$A\supset B$. Therefore two regularly open sets $A,$ $B$ in $Y$ are identical if and only if
$A_{\cap}X=B_{\cap}X$.

PROOF. In view of Lemma 1.2, statement (a) follows easily by a direct
computation: $A_{\cap}X\subset Int_{X}(C1_{X}(A_{\cap}X))=Int_{Y}(C1_{Y}(A_{\cap}X))_{\cap}X\subset Int_{Y}(C1_{Y}(A))_{\cap}X$

$=A_{\cap}X$, hence $Int_{X}(C1_{X}(A_{\cap}X))=A_{\cap}X$. Statement (b) is also an immediate
consequence of Lemma 1.2. We now establish the statement (c). Suppose
that $A$ ]$\supset B$, then there will be an open set $C\subset B$ such that $ C_{\cap}A=\phi$ , by
Lemma 1.1. Since $X$ is dense in $Y$, it follows that there is a point $p\in X$

such that $p\not\in A$ and $p\in B$, which contradicts the assumption that $ A\cap X\supset$

$B_{\cap}X$. Thus we have $A\supset B$. Moreover, if both $A$ and $B$ are regularly open
and $A_{\cap}X=B_{\cap}X$, then we have $A\supset B$ and $B\supset A$ and hence $A=B$. On the
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other hand, it is evident that $A=B$ implies $A_{\cap}X=B_{\cap}X$. The proof is
compIeted.

Throughout the sequel, we shall limit ourselves to consider the Tychonoff
spaces (completely regular $T_{1}$ -spaces). Let $X$ be a Tychonoff space. A com-
pactification $BX$ of $X$ is a compact Hausdorff space containing a dense
subspace homeomorphic with $X$. The $Stone-\check{C}ech$ compactification $\beta X$ is
the space of all maximal ideals in the ring $C(X)$ of all real-valued continuous
functions on $X$, whose topology base is given by the family of open sets
$\wp_{=}$ $\{^{c}U_{f} ; f\in C(X)\}$ , where $\wp_{f}$ denotes the set of all maximal ideals which
do not contain $f^{1)}$ It is characterized among the compactifications of $X$ by
the fact that every bounded continuous function $f\in C^{*}(X)$ has a unique
continuous extension over $\beta X^{2)}$ where $C^{*}(X)$ denotes the ring of bounded
real-valued continuous functions on $X$. The cluciai properties of the Stone-
$\check{C}ech$ compactification are provided by the following theorems.

THEOREM 1.1 $(\check{C}ech)$ . Any compactification $BX$ of $X$ is the image of $\beta X$

under a (unique) continuous map $\varphi$ such that $X^{\prime}=\varphi(X)$ is homeomorphic to $X$

and $\varphi(\beta X-X)=BX-X^{\prime}$ .
For the proof, see [2, p. 831].

THEOREM 1.2 (Stone). If $f$ is any continuous map of a Tychonoff space $X$

into a compact Hausdorff space $Y$, then $f$ has a (unique) continuous extension $f^{*}$

which carries $\beta X$ into $Y$.
For the proof, see [9, p. 153]. (cf. [16, Theorem 88.])

There exists an important subspace $\nu X$ of $\beta X$, which is called sometimes
real compactification of $X$. It is a subspace of $\beta X$ consisting of all real
ideals in $C(X)$ , which is defined to be a maximal ideal $\mathfrak{M}$ such that the
quotient field $C(X)/\mathfrak{M}$ is isomorphic to the real number field. $\nu X$ is charac-
terized by the following properties: (1) $X\subset\nu X\subset\beta X;(2)$ every continuous
function on $X$ has a continuous extension over $\nu X;$ (3) for each point
$p\in\beta X-\nu X$ there is a continuous function $f\in C(X)$ such that $f$ can not be
continuously extended over the point $p$ (cf. [8, p. 90]).

Upon applying the above theorem (Theorem 1.2) to $f\in C(X)$ and any
compactification $BR$ of real number space $R$ , we have a continuous exten-
sion3) $f^{\gamma_{\backslash }^{\prime}}$ of $f$ over $\beta X$. Let $X_{f}$ be the set of points $p\in\beta X$ such that $f^{*}(p)$

$\in R$ , then $X_{f}$ is the maximal subspace of $\beta X$ over which $f$ can be continu-
ously extended. It is easy to see that $X_{f}$ is open (dense) in $\beta X$ and that
$\nu X=$ $\cap X_{f}$ . A space such that $\nu X=X$ is called a $Q$ -space4). As is weil

$f\in C(X)$

1) Cf. [8].
2) Cf. [2].

3) BR-valued extension ( $f^{*}$ is a function on $\beta X$ to $BR$).
4) Cf. [8], [14].
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known, there is another definition of Q-space due to L. Nachbin, which may
be stated as follows: $X$ is a Q-space if and only if it is complete relative
to the weakest uniformity for $X$ with respect to which every continuous
function is uniformly continuous. The equivalence of these two definitions
will be established in the next section. At this moment, we prove the
following

PROPOSITION 1.1. Let $V_{f}=\{(p, q)\in X\times X;|f(p)-f(q)|<1\}$ and let $\tilde{V}_{f}$ be
the interior of the closure of $V_{f}$ taken in $\beta X\times\beta X$. Then $X_{f}=\{p\in\beta X;(p,p)$

$\in\tilde{V}_{f}\}$ . Therefore we have $\Delta_{\nu X}=\bigcap_{f\in C(X)}\tilde{V}_{f}$ , where $\Delta_{\nu X}=\{(p,p)\in\beta X\times\beta X;p\in\nu X\}$ .
PROOF. Let $f^{0}$ be the extension of $f$ over $X_{f}$ and let $V_{f}^{0}=\{(p, q)\in X_{f}$

$\times X_{f}$ ; $|f^{0}(p)-f^{0}(q)|<1$ }. Since $\tilde{V}_{f}$ is regularly open in $\beta X\times\beta X,\tilde{V}_{f}\cap(X_{f}\times X_{f})$

is aiso regularly open in $X_{f}\times X_{f}$ by Lemma 1.3, (a). It is evident that
$[\tilde{V}_{f}\cap(X_{f}\times X_{f})]_{\cap}(X\times X)=\tilde{V}_{f}\cap(X\times X)\supset V_{f}=V_{f^{0}}\cap(X\times X)$ , and therefore we
have $\tilde{V}_{f}\cap(X_{f}\times X_{f})\supset V_{f^{0}}$ by Lemma 1.3, (c). Put $\Delta_{x_{f}}=\{(p, p)\in\beta X\times\beta X;p\in X_{f}\}$ ,
then clearly $\Delta_{X_{f}}\subset V_{f^{0}}$ and we have $\Delta_{x_{f}}\subset\tilde{V}_{f}$ . On the other hand, if $(p, q)\in$

$\beta X\times\beta X$ is contained in $\tilde{V}_{f}$ , then there is in $\beta X\times\beta X$ an open neighborhood
of $(p, q)$ of the form $U(p)\times W(q)$ such that $U(p)\times W(q)\subset\tilde{V}_{f}$ . Let $x$ be a point
of $U(p)\cap X$ and put $f(x)=a$ , then $|f(y)-a|\leqq 1$ for each $y\in U(p)_{\cap}X$ and
therefore $f$ must be bounded on $U(p)\cap X$. It follows that $p\in X_{f}$ , for if
$p\not\in X_{f}$ , then for each $U(p)\cap X$ and for each positive integer $n$ there is
$z\in U(p)_{\cap}X$ such that $f(z)>n$ . Similarly, we have $q\in X_{f}$ , and therefore
$(p, q)\in X_{f}\times X_{f}$ for each $(p, q)\in\tilde{V}_{f}$ . Thus, we have $\tilde{V}_{f}\subset X_{f}\times X_{f}$ and hence
$\tilde{V}_{f\cap}\Delta_{\beta X}\subset(X_{f}\times X_{f})_{\cap}\Delta_{\beta X}=\Delta_{x_{f}}$ . Consequently $\Delta_{x_{f}}=\tilde{V}_{f\cap}\Delta_{\beta X}$ , and it follows
that $X_{f}=\{p\in\beta X;(p,p)\in\tilde{V}_{f}\}$ . Finally, it is easy to see that $\bigcap_{f\in C^{\eta}(X)}\tilde{V}_{f}=\Delta_{\beta X}$,

and the last statement follows immediately from the fact that $\nu X=\bigcap_{f\in C(X)}X_{f}$ .

\S 2. Characterization of complete uniform spaces and some topological
spaces.

Let $X$ be a Tychonoff space. Let $\{V_{a}\}$ and $\{V_{\beta^{\prime}}\}$ be two equivaient
uniformities for $X$ Then for each $V_{\alpha}$ there is a $V_{\beta^{\prime}}$ contained in $V_{a}$ , and
it follows that $\tilde{V}_{\beta^{\prime}}\subset V_{a}$ for some $V_{\beta^{\prime}}$ , where $\tilde{V}_{\alpha}$ and $\tilde{V}_{\beta^{\prime}}$ are the interiors
of the closures of $V_{\alpha}$ and $V_{\beta^{\prime}}$ respectively taken in $\beta X\times\beta X$ Similarly, for
each $V_{\beta^{\prime}}$ there is a $V_{\gamma}$ such that $\tilde{V}_{\gamma}\subset\tilde{V}_{\beta^{\prime}}$ . Therefore $R=\bigcap_{a}V_{\alpha}$ is identical

with $R^{\prime}=\bigcap_{\beta}\tilde{V}_{\beta^{\prime}}$ , and consequently the set $R$ is determined by the uniform

structure for $X$ The set $R$ defined above will be called throughout this
research the radical of uniform space (X, $\{V_{\alpha}\}$ ). In this section we treat
the characterization of the completeness in terms of the radical. A neces-
sary and sufficient condition for the completeness will be given in Theorem
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2.1. However, the proof of the sufficiency of the condition requires some-
what intricate considerations, so it will be given in the next section. We
shall use the notations and the basic results concerning Cauchy filters that
are used in A. Weil’s monograph [18].

$p_{ROPOSITION}2.1$ . Let $\{C_{a}\}$ be a Cauchy filter of a complete uniform space
(X, $\{V_{\alpha}\}$ ) and let $C_{a}$ denote the closure of $C_{\alpha}$ in a compactification $BX$ of $X$

Then $\bigcap_{\alpha}C_{\alpha}$ is a point of $X$

PROOF. If (X, $\{V_{\alpha}\}$ ) is complete, then there is a point $p\in X$ such that
the Cauchy filter $\{p\}$ is equivalent to $\{C_{a}\}$ . It follows that $p\in\bigcap_{\alpha}C_{\alpha}$ and

that for each $V_{a}$ there is a $C_{\alpha}$ such that $C_{\alpha}\subset V_{a}(p)$ , in view of the definition
of equivalent Cauchy filters. Let $q(\neq p)$ be any point of $BX$, then there is
obviously a neighborhood $U(p)$ of $p$ such that $C1_{\beta X}(U(p))\exists\ni q$ . On the other
hand, it is clear that $V_{\alpha}(p)\subset U(p)_{\cap}X\subset U(p)$ for some $V_{\alpha}$ , and it follows
that $q$ is not contained in $C_{\alpha}$ for some $\alpha$ . This proves the proposition.

PROPOSITION 2.2. Let $X$ be a dense subspace of a Tychonoff space $Y$ and
let $\{V_{a}\}$ be a uniformity for $X$, where each $V_{\alpha}$ is assumed to be symmetric and
regularly open in $X\times X$ Let $\tilde{V}_{\alpha}$ be the interior of the closure of $V_{\alpha}$ taken in
$Y\times Y$. Then $V_{\alpha}\circ\tilde{V}_{\alpha}\subset\overline{V_{\alpha}\circ V}_{\alpha}$ , and therefore $V_{\beta}\circ V_{\beta}\subset V_{\alpha}$ implies that $\tilde{V}_{\beta}\circ\tilde{V}_{\beta}\subset\tilde{V}_{\alpha}$.

PROOF. Suppose that $V_{\alpha}\circ\tilde{V}_{a}$ ct $\overline{V_{\alpha}\circ V}_{a}$ . Then there is by Lemma 1.1 an
open set $C\subset V_{\alpha}\circ\tilde{V}_{\alpha}$ such that $ C_{\cap}\overline{V_{\alpha}\circ V}_{\alpha}=\phi$ , since $\overline{V_{\alpha}\circ V}_{\alpha}$ is regularly open
and $\tilde{V}_{\alpha}\circ\tilde{V}_{a}$ is open in $Y\times Y$. Let $(p, q)$ be a point of $C\cap(X\times X)$ , then $(p, r^{\prime})$

$\in\tilde{V}_{\alpha}$ and $(r^{\prime}, q)\in\tilde{V}_{\alpha}$ for some point $r^{\prime}\in Y$. Since $X$ is dense in $Y$ and since
$\tilde{V}_{\alpha}$ is open in $Y\times Y$, there is a point $r\in X$ such that $(p, r)\in V_{\alpha}$ and $(r, q)\in$

$\tilde{V}_{\alpha}$ . It follows that $(p, r)\in\tilde{V}_{\alpha}\cap(X\times X)=V_{\alpha},$ $(r, q)\in\tilde{V}_{\alpha}\cap(X\times X)=V_{\alpha}$ by
Lemma 1.3, (b), and therefore $(p, q)\in V_{a}\circ V_{\alpha}$ . But this contradicts the fact

that $ C_{\cap}\overline{V_{\alpha}\circ V}_{a}=\phi$ , and therefore we have $V_{a}\circ\tilde{V}_{a}\subset\overline{V_{a}\circ}V_{\alpha}$ . The last state-
ment is an immediate consequence of this fact.

As the radical is determined by the uniform structure for $X$, we may
assume throughout, without loss of generality, that each member $V_{a}$ of a
uniformity $c_{U}=\{V_{\alpha}\}$ is symmetric and regulariy open.

THEOREM 2.1. A uniform space (X, $\{V_{\alpha}\}$ ) is complete if and only if the
radical is identical with the diagonal $\Delta_{X}$ . That is, $\cap\tilde{V}_{\alpha}=R=\Delta_{X}$ , where $\Delta_{X}=$

$\{(p, p)\in\beta X\times\beta X;p\in X\}$ .
PROOF. (Necessity.) As it is evident that $\Delta_{X}\subset R$ , it is only necessary

to show that $\Delta_{X}\supset R$ . If $(p, q)\in R$ , then $(p, q)\in V_{a}$ for each $V_{\alpha}$ , and since
$\tilde{V}_{\alpha}$ is open there are open neighborhoods $U_{a}(p),$ $W_{\alpha}(q)$ of $p$ and $q$ respectively
such that $U_{\alpha}(p)\times W_{a}(q)\subset V_{a}$ . By virtue of Proposition 2.2, there is for each
$V_{\beta}$ a $V_{\alpha}$ such that $V_{\alpha}\circ\tilde{V}_{\alpha}\subset\tilde{V}_{\beta}$ . It follows that $U_{\alpha}(p)\times U_{\alpha}(p)\subset\tilde{V}_{\alpha^{o}}\tilde{V}_{\alpha}\subset\tilde{V}_{\beta}$
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and $W_{a}(q)\times W_{a\backslash }^{(}q)\subset\tilde{V}_{\alpha}\circ\tilde{V}_{a}\subset\tilde{V}_{\beta}$ , and therefore $[(U_{\alpha}(p)UW_{a}(q))\cap X]\times[(U_{a}(p)\cup$

$W_{\alpha}(q))_{\cap}X)]\subset(V_{\alpha}\circ\tilde{V}_{\alpha})\cap(X\times X)\subset\tilde{V}_{\beta}\cap(X\times X)=V_{\beta}$ . This implies that $\{C_{\alpha}\}=$

$\{(U_{\alpha}(p)\cup W_{\alpha}(q))_{\cap}X\}$ is a Cauchy filter relative to the uniformity $\{V_{\alpha}\}$ . By
virtue of Proposition 2.1, it follows that $p=q\in X$, since $p\in\bigcap_{a}C_{\alpha}$ and $q\in\bigcap_{\alpha}\overline{C}_{\alpha}$ ,

and therefore $\Delta_{X}\supset R$ . Thus we have $\Delta_{X}=R$ , and the necessity of the
condition is proved.

Proof of the sufficiency will be given in the next section.
COROLLARY 1. A complete metric space is a $G_{\delta}$ in $\beta X$

PROOF. Let $\{V_{n}\}$ be the metric uniformity for $X$ and let $X_{n}=\{p\in\beta X$ ;
$(p, p)\in\tilde{V}_{n}\}$ . Then $X_{n}$ is open and dense in $\beta X$ and it follows from the

above theorem that $X=\{p\in\beta X;(p, p)\in\bigcap_{n=1}^{\infty}\tilde{V}_{n}\}=\bigcap_{n=1}^{\infty}\{p\in X;(p, p)\in\tilde{V}_{n}\}=$

$\bigcap_{n=1}^{\infty}X_{n}$ . Hence $X$ is a $G_{\delta}$ in $\beta X$

REMARK. It is worth while to notice that each locally compact space
$X$ is open and dense in $\beta X^{5)}$ and that each complete metric space $X$ is an
intersection of a countable number of open dense subsets of $\beta X$ as we have
just observed. These are deservedly the situtation that Baire’s theorem
should hold; namely, each countable intersection of open dense subset of
$X$ is itself dense in $X$

COROLLARY 2. $X$ is a Q-space if and only if it is complete relative to the
weakest uniform structure with respect to which every continuous function is
uniformly continuous.

PROOF. The uniform structure stated in this proposition is given by
the uniformity generated by $\{V_{f.n}\}_{f\in C(X)}$ , where $V_{f.n}=\{(p, q)\in X\times X;|f(p)-$

$f(q)|<1/2^{n}\}$ . The proof may easily be completed by Theorem 2.1 and Pro-
position 1.1.

A space $X$ is said to be topologically complete if there is a uniformity $c_{U}$

such that $(X,$ $\subset U)$ is complete. We now discuss some topological properties
which are closely related to topological completeness. If the family of all
neighborhoods of the diagonal of $X\times X$ forms a uniformity for $X$, then we
shall say that the space $X$ is entirely normal. It is well known that each
paracompact space is entirely normal6) and that each entirely normal space
is collectionwise normal hence is normal. J. Kelley [9] suggests the pos-
sibiiity of characterizing paracompactness by the entire normality plus
another condition similar to topological completeness, and an answer was
given by H. Corson [4]. We are now able to give another result on this
problem. First, we observe the relationship between entire normality and

5) See [7].
6) See [6].
7) See [3].
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topological completeness.
THEOREM 2.2. An entirely normal space $X$ is topologically complete if and

only if there is for each point $p\in\beta X-X$ a regularly open set $\tilde{V}$ in $\beta X\times\beta X$

containing $\Delta_{X}$ such that $\tilde{V}$

\yen $(p, p)$ .
PROOF. By virtue of Theorem 2.1, it follows that $X$ is topologically

complete if and only if there is a uniformity $\{V_{a}\}=c_{U}$ such that $\bigcap_{\alpha}V_{\alpha}=\Delta_{X}$ ,

and therefore the necessity of the condition is clear. Suppose conversely
that for each $p\in\beta X-X$ there is $\tilde{V}_{P}\supset\Delta_{X}$ such that $\tilde{V}_{P}\exists\ni(p, p)$ . Then
$(\bigcap_{P\in\beta X-X}V_{P})_{\cap}\Delta_{\beta X}=\Delta_{X}$ and it follows immediately that $X$ is complete relative
to the universal uniform structure, by Theorem 2.1.

EXAMPLE. There is an example of entirely normal space which is not
topologically complete. Let $\Omega_{0}$ be the set of all ordinals less than the first
uncountable ordinal $\Omega$ , and let $\tau$ be the order topology for $\Omega_{0}$ . Then the
topological space $(\Omega_{0}, \tau)$ is entirely normal as may easily be seen from the
fact that $\tilde{V}\supset\Delta_{\beta x}$ for each neighborhood $V$ of the diagonal of $X\times X$ Simi-
larly, it is clear that $(\Omega_{0}, \tau)$ is not topologically complete (see [5]).

The following theorem establishes a relationship between paracompact-
ness and entire normality.

THEOREM 2.3. A space $X$ is paracompact if and only if it is entirely normal
and there is for each compact set $G$ in $\beta X-X$ a regularly open set $\tilde{V}$ containing
$\Delta_{X}$ such that $\tilde{V}_{\cap}\Delta_{c}=\phi$ , where $\Delta_{G}=\{(p, p)\in\beta X\times\beta X;p\in G\}$ .

PROOF. (Necessity.) To prove the necessity, we have only to construct
a regularly open set $\tilde{V}$ in $\beta X\times\beta X$ containing $\Delta_{X}$ such that $\tilde{V}_{\cap}\Delta_{c}=\phi$ . For
each point $p\in X$, there is in $\beta X$ an open neighborhood $U(p)$ of $p$ such that
$C1_{\beta X}(U(p))_{\cap}G=\phi$ . Consider a covering $\{U^{\prime}(p)\}$ , where $U^{\prime}(p)=U(p)_{\cap}X$, and
take a locally finite refinement $\{U_{\lambda}\}$ of $\{U^{\prime}(p)\}$ . Let $\sum\varphi_{\lambda}=1$ be a locally
finite partition of unity subordinate to the refinement $\{U_{\lambda}\}$ and put $d(p, q)$

$=\sum|\varphi_{\lambda}(p)-\varphi_{\lambda}(q)|$ . Then $d(p, q)$ defines a pseudo-metric for $X$ Put $V=$

$\{(p, q)\in X\times X;d(p, q)<1/2\}$ and let $\tilde{V}$ be the interior of the closure of $V$

taken in $\beta X\times\beta X$ We shall show that $(z, z)\not\in\tilde{V}$ for each $z\in G$ . which will
complete the proof. Suppose that there is $z\in G$ such that $(z, z)\in\tilde{V}$, then
$W(z)\times W(z)\subset\tilde{V}$ for some neighborhood $W(z)$ of $z$ . Let $p$ be a point of
$W(z)_{\cap}X$, then there exists only a finite number of $\varphi_{\lambda}’ s$ , say $\varphi_{1}$ , $\cdot$ .., $\varphi_{n}$ , which
do not vanish at $p$ . We put $H_{\lambda}=\{x\in X;\varphi_{\lambda}(x)>0\}$ . Since $q\not\in\bigcup_{k=1}^{n}H_{k}$ implies

that $d(p, q)\geqq 1$ , it follows that $W(z)_{\cap}X\subset\bigcup_{k=1}^{n}H_{k}$ and hence $z$ is contained in

$C1_{\beta x}(\bigcup_{k=1}^{n}H_{k})$ . But $H_{k}$ is clearly contained in some $U(p)$ , since $\{U_{\lambda}\}$ is a

refinement of $\{U^{\prime}(p)\}$ , and therefore $C1_{\beta X}(\bigcup_{k=1}^{n}H_{k})$ is disjoint from $G$ . Thus,

we have a contradiction, and the necessity is then proved.
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(Sufficiency.) Let $\{U_{\nu}\}$ be any open covering of $X$ For each U. there
Is $U_{\nu^{*}}$ which is open in $\beta X$ such that $U_{\nu^{*}}\cap X=U_{\nu}$ . Put $F_{\nu}=(U_{\nu^{*}})^{C}$ and put
$F=\bigcap_{\nu}F_{\nu}$ , then $F$ is a compact set which is contained in $\beta X-X$ There is

a regularly open set $\tilde{V}$ containing $\Delta_{X}$ such that $\tilde{V}_{\cap}\Delta_{F}=\phi$ , in view of our
assumption. Put $V_{1}=\tilde{V}\cap(X\times X)$ , then since $X$ is assumed to be entirely
normal there is a $V_{2}$ such that $V_{2}\circ V_{2}\subset V_{1}$ . It follows that there is a
countable family $\{V_{n}\}$ such that $V_{n}\circ V_{n}\subset V_{n-1}$ . We now consider the space
(X, $\tau$) topologized by the uniformity $\{V_{n}\}$ . Obviously, (X, $\tau$) is pseudo-
metrizable hence is paracompact.8) Let $d$ be the pseudo-metric such that
$d(p, q)=1$ whenever $(p, q)\not\in V_{1}$ , and consider a covering $\{G(p)\}$ of $X$, where
$G(p)=\{q\in X;d(p, q)<1/2^{3}\}$ . Let $\{W_{\lambda}\}$ be a locally finite open refinement
of $\{G(p)\}$ , then $C1_{\beta X}(W_{\lambda})_{\cap}F=\phi$ as we now verify. Since the original topo-
logy for $X$ is strbnger than $\tau,$ $\{W_{\lambda}\}$ is necessarily an open locally finite
refinement with respect to the original topology. By the same reason,
$d_{P}(q)=d(p, q)$ is a bounded continuous function on $X$ with respect to the
original topology and hence it has a continuous extension $d_{I^{J}}^{*}$ over $\beta X$, in
view of Theorem 1.2. Suppose that $C1_{\beta X}(W_{\lambda})\cap F\neq\phi$ for some $W_{\lambda}$ , and let $\gamma$

be a point of $C1_{\beta X}(W_{\lambda})_{\cap}F$. Since $W_{\lambda}\subset G(p)$ for some $p\in X$, there is for
each neighborhood $U(r)$ of $\gamma$ a point $q\in U(r)_{\cap}X$ such that $d_{P}(q)<1/2^{3}$ . It
follows that $d_{P}^{*}(r)\leqq 1/2^{2}$ and therefore $W(r)_{\cap}X\subset V_{2^{*}}(p)$ for some neighborhood
$W(r)$ of $r$, where $V_{2^{*}}=\{(p, q)\in X\times X;d(p, q)<1/2\}$ . It is clear that $V_{2^{*}}\circ V_{2^{*}}$

$\subset V_{1}$ . Therefore $(W(r)_{\cap}X)\times(W(r)_{\cap}X)\subset V_{2^{*}}\circ V_{2^{*}}\subset V_{1}\subset\tilde{V}$, and we have
$W(r)\times W(r)\subset\tilde{V}$. This implies that $(r, r)\in\tilde{V}$ and hence $\tilde{V}_{\cap}\Delta_{p}\neq\phi$ , which is
a contradiction. Consequently, we have a locally finite covering $\{W_{\lambda}\}$ of
$X$ consisting of open sets $W_{\lambda}$ in $X$ such that $C1_{\beta X}(W_{\lambda})\cap F=\emptyset$ . Returning
to the covering $\{U_{\nu}\}$ of $X$ we find that $\{U_{\nu^{*}}\}$ covers $\overline{W}_{\lambda}=C1_{\beta X}(W_{\lambda})$ , for
$\{U_{\nu^{*}}\}$ covers $\beta X-F$ and $\overline{W}_{\lambda}\subset\beta X-F$. Since $\overline{W}_{\lambda}$ is compact, there is a
finite number of $U_{\nu^{*}}$ , say $U_{\nu,1}^{*},$

$\cdots,$
$U_{\nu,n}^{*}$ which cover $\overline{W}_{\lambda}$ . Putting $W_{\lambda}\cap U_{\nu.k}^{*}=H_{\lambda,k}$ ,

and constructing a finite open sets $H_{\lambda,k}$ , for each $\lambda$ in this way, we have a
locally finite refinement $\{H_{\lambda.k}\}$ of $\{U_{\nu}\}$ . The proof is completed.

From the proof of the preceding theorem, we have:
$CoROLLARY^{9)}$ A space $X$ is $paraco^{7}mpact$ if and only if for each compact

set $F\subset\beta X-X$, there is an “ entourage” $V$ such that $\tilde{V}_{\cap}\Delta_{F}=\emptyset$ .
We now give a characterization of the topological completeness.
THEOREM 2.4 A space $X$ is topologically complete if and only if for each

point $p\in\beta X-X$, there is a locally finite partition of unity $\Sigma\varphi_{\lambda}=1$ such that
$0\leqq\varphi_{\lambda}\leqq 1$ and $\varphi_{\lambda^{*}}(p)=0$ for each $\lambda$ , where $\varphi_{\lambda}\in C(X)$ and $\varphi_{\lambda^{*}}$ denotes the

8) See [9, p. 160] or [14].
9) J. Nagata’s result [10, Corollary] may be derived from this corollary.

10) Cf. [17].
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continuous extension of $\varphi_{\lambda}$ over $\beta X$

PROOF. From the proof of the sufficiency of the preceding theorem, it
follows that if $X$ is topologically complete, then for each point $p\in\beta X-X$,

there is a covering $\{W_{\lambda}\}$ such that $C1_{\beta X}(W_{\lambda})\exists\ni p$ . It should be noticed here
that the space (X, $\tau$) mentioned above is paracompact and that $\{W_{\lambda}\}$ is a
locally finite covering of (X, $\tau$). It follows that there is a locally finite
partition of unity $\sum\varphi_{\lambda}=1$ subordinate to $\{W_{\lambda}\}$ . Since the original topology
for $X$ is stronger than $\tau,$ $\varphi_{\lambda}$ is continuous and $\sum\varphi_{\lambda}=1$ is a locally finite
partition of unity with respect to the original topology for $X$ The necessity
is then proved. Conversely, if the condition of the present theorem is
satisfied, then there is for each point $p\in\beta X-X$ an “ entourage ” $V$ such
that $\tilde{V}\exists\ni(p,p)$ . (Let $V=\{(x, y)\in X\times X;\sum_{\lambda}|\varphi_{\lambda}(x)-\varphi_{\lambda}(y)|<1/2\}$ , then $\tilde{V}$ \yen $(p,p)$

as may easily be seen from the proof of the necessity of the above theorem.\rangle
It follows that $X$ is topologically complete, in view of Theorem 2.1.

A space $X$ is said to be pseudo-compact if and only if $C(X)=C^{*}(X)$ ; in
other words, every continuous function on $X$ is bounded.

$C\circ R\circ LLARY$ . Every pseudo-compact topologically complete space is compact.
PROOF. Suppose that $X$ is topologically complete and is not compact,.

then there will be a point $p\in\beta X-X$ We have by Theorem 2.4 a locally
finite partition of unity $\sum\varphi_{\lambda}=1$ such that $\varphi_{\lambda^{*}}(p)=0$ for each $\lambda$ . It is ciear
that the number of $\varphi_{\lambda}’ s$ is infinite, since $\sum_{k=1}^{n}\varphi_{k}=1$ implies that $\sum_{k=1}^{n}\varphi_{k^{*}}=1$ on
$\beta X$ which is impossible. Choose an enumerable infinite number of $\varphi_{\lambda}’ s$ , say

$\varphi_{1},$ $\cdots,$ $\varphi_{k},$ $\cdots$ , and put $h=\sum_{k\subset 1}^{\infty}a_{k}\varphi_{k}$ , where $a_{k}$ is a constant such that there is
$p\in X$ for which $a_{k}\varphi_{k}(p)>k$ . Then $h$ is evidently an unbounded continuous
function on $X$, and therefore $X$ can not be pseudo-compact. It follows that
every pseudo-compact topologically complete space must be compact.

We now give a characterization of the pseudo-compactness in terms of
the uniformity.

THEOREM 2.5 A space $X$ is pseudo-compact if and only if each uniformity

for $X$ is totally bounded.
PROOF. Notice first that if $X$ is a dense subspace of $Y$ and if $X$ is

pseudo-compact, then $Y$ must be pseudo-compact. Let $c_{U}$ be any uniformity
for $X$ and let $\hat{X}$ be the completion of (X, $c_{U)}$ Then $\hat{X}$ is obviously a pseudo-
compact topologically complete space. Therefore $\hat{X}$ must be compact in
view of the preceding corollary. It follows that $c_{U}$ is totally bounded.
Conversely, if each uniformity for $X$ is totally bounded, then we have
$\nu X=\beta X$ by corollary 2 of Theorem 2.1. It is clear that $\nu X=\beta X$ implies.

11) This is a generalization of P. Samuel’s result [12, Theorem XV].



Some properties of the $Stone-\check{C}ech$ compactification. 113

$C(X)=C^{*}(X)$ , since $C(X)=C(\nu X)$ and $C^{*}(X)=C(\beta X)$ . This completes the
proof.

\S 3. Completion of uniform space.

Let (X, $\{V_{\alpha}\}$ ) be a uniform space and let $(\hat{X}\{\hat{V}_{\alpha}\})$ be its completion.
Let $\beta X$ and $\beta\hat{X}$ be the $Stone-\check{C}ech$ compactification of $X$ and $\hat{X}$ respectively.
Then $\beta\hat{X}$ is also a compactification of $X$, and therefore there is by Theorem
1.1 a continuous map $\varphi$ of $\beta X$ onto $\beta\hat{X}$ such that $\varphi$ induces a homeomor-
phism on $X$ and $\varphi(\beta X-X)=\beta\hat{X}-X^{\prime}$ , where $X^{\prime}=\varphi(X)$ . Putting $\Phi(p, q)=$

$(\varphi(p), \varphi(q))$ , we have a continuous map $\Phi$ of $\beta X\times\beta X$ onto $\beta\hat{X}\times\beta\hat{X}$ such that
$\Phi$ induces a homeomorphism on $X\times X$ and $\Phi^{-1}(X^{\prime}\times X^{\prime})=X\times X$ We put
$\varphi(X)=X^{\prime}$ and $\Phi(X\times X)=X^{\prime}\times X^{\prime}$ , and the image of $V_{\alpha}$ with respect to the
map $\Phi$ will be denoted by $V_{\alpha^{\prime}}$ . It will be assumed throughout that each

$\hat{V}_{a}$ is symmetric and regularly open in $\hat{X}\times\hat{X}$ and also that $V_{\alpha^{\prime}}=\hat{V}_{\alpha}\cap(X^{\prime}\times X^{\prime})$ .
Then, we have:

LEMMA 3.1. The interior of the closure of $V_{\alpha^{\prime}}$ taken in $\beta\hat{X}\times\beta\hat{X}$ is identical
with that of $\hat{V}_{\alpha}$ .

PROOF. To prove that $Int_{\beta\hat{X}\times\beta\hat{X}}(C1_{\beta\hat{X}\times\beta\hat{X}}(V_{\alpha^{\prime}}))=Int_{\beta\hat{X}\times\beta\hat{X}}(C1_{\beta\hat{X}\times\beta\hat{X}}(\hat{V}_{\alpha}))$ , it is
only necessary to show that the restrictions on $X^{\prime}\times X^{\prime}$ of both sides of this
equality is identical, by virtue of Lemma 1.3, (c). Since $\hat{V}_{\alpha}$ is assumed to be
regularly open and since $V_{a^{\prime}}=\hat{V}_{\alpha}\cap(X^{\prime}\times X^{\prime})$ , it follows that $V_{\alpha^{\prime}}$ is regularly
open in $X^{\prime}\times X^{\prime}$ by Lemma 1.3, (a), and therefore $V_{\alpha}’=Int_{\beta\hat{X}\times\beta\hat{X}}(C1_{\beta\hat{X}\times\beta\hat{X}}(V_{\alpha^{\prime}}))_{\cap}$

$(X’\times X^{\prime})$ by Lemma 1.3, (b). Similarly, we have $Int_{\beta\hat{X}\times\beta\hat{X}}(C1_{\beta\hat{X}\times\beta\hat{X}}(\hat{V}_{\alpha}))_{\cap}(X^{\prime}\times X^{\prime})$

$=Int_{\beta\hat{X}\times\beta\acute{X}}(C1_{\beta\hat{X}\times\beta\acute{X}}(\hat{V}_{\alpha}))_{\cap}(\hat{X}\times\hat{X})_{\cap}(X^{\prime}\times X^{\prime})=\hat{V}_{a}\cap(X^{\prime}\times X^{\prime})=V_{\alpha^{\prime}}$ , and the proof
is completed.

PROPOSITION 3.1. Let $\tilde{V}_{a}$ and $V^{*}$ be the interiors of the closures of $V_{a}$

and $\hat{V}_{\alpha}$ taken in $\beta X\times\beta X$ and $\beta\hat{X}\times\beta\hat{X}$ respectively. Then, $V_{\alpha}\supset\Phi^{-1}(V_{\alpha^{*}})$ .
PROOF. It is evident that $\tilde{V}_{a}$ is regularly open and $\Phi^{-1}(V_{\alpha^{*}})$ is open in

$\beta X\times\beta X$ By virtue of Lemma 1.3, (c), it is sufficient to show that $\tilde{V}_{a\cap}$

$(X\times X)\supset\Phi^{-1}(V_{\alpha^{*}})\cap(X\times X)$ . Since $\Phi$ induces a homeomorphism on $X\times X$, it
follows from Lemma 3.1 that $\Phi^{-1}(V_{\alpha^{*}})\cap(X\times X)=\Phi^{-1}(V_{\alpha^{*}})\cap\Phi^{-1}(X^{\prime}\times X^{\prime})\subset$

$\Phi^{-1}((V_{a^{*}})\cap(X^{\prime}\times X^{\prime}))=\Phi^{-1}(V_{\alpha^{\prime}})=V_{\alpha}=\tilde{V}_{a}\cap(X\times X)$ . The proof is completed.
The following proposition shows that the radical $R$ is identical with

the complete inverse image of $\Delta_{\hat{X}}$ (in $\beta\hat{X}\times\beta\hat{X}$ ) with respect to the map $\Phi$ .
PROPOSITION 3.2. A point $(p, q)\in\beta X\times\beta X$ is contained in $R$ if and only if

$\varphi(p)=\varphi(q)\in\hat{X}$.
PROOF. If $(p, q)\in R$ , then $(p, q)\in V_{\alpha}$ for each $\alpha$ , and there are open

neighborhoods $U_{\alpha}(p),$ $W_{\alpha}(q)$ of $p$ and $q$ respectively such that $U_{a}(p)\times W_{\alpha}(q)$

$\subset V_{a}$ , since $\tilde{V}_{\alpha}$ is open. The similar argument done in the proof of Theorem
2.1 yields the fact that $\{C_{\alpha}\}=\{(U_{a}(p)UW_{\alpha}(q))_{\cap}X\}$ is a Cauchy filter relative
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to the uniformity $\{V_{a}\}$ for $X$ Therefore $\{\varphi(C_{\alpha})\}=\{C_{\alpha^{\prime}}\}$ is also a Cauchy
filter relative to the uniformity $\{\hat{V}_{a}\}$ for $\hat{X}$. Since $\varphi:\beta X\rightarrow\beta\hat{X}$ is continuous
and since $p\in C1_{\beta X\backslash }^{(}C_{a}$), $q\in C1_{\beta X}(C_{\alpha})$ both $\varphi(p)$ and $\varphi(q)$ are contained rn $C1_{\beta\hat{X}}(C_{\alpha^{\prime}})$ ,
and it follows that $\varphi(p)=\varphi(q)\in\hat{X}$ by Proposition 2.1. Conversely, if $\varphi(p)=$

$\varphi(q)\in\hat{X}$, then $(\varphi(p), \varphi(q))$ is contained in $V^{*}$ and hence $(p, q)\in\Phi^{-1}(\varphi(p), \varphi(q))$

$\subset\Phi^{-1}(V_{\alpha^{*}})\subset V_{a}$, for each $\alpha$ , by Proposition 3.1. It follows that $(p, q)\in R$ ,
and the proof is completed.

We are now able to complete the proof of Theorem 2.1.
PROOF OF THEOREM 2.1. (Sufficiency.) Suppose that (X, $\{V_{\alpha}\}$ ) is not com-

plete, then there will be a point $q^{\prime}\in\hat{X}$ which is not contained in $X^{\prime}=\varphi(X)$ .
Let $q$ be a point in $\beta X$ such that $\varphi(q)=q^{\prime}$ , then $(q, q)\in R$ by Proposition 3.2,
and since $q\not\in X$ it follows that $R\neq\Delta_{X}$ , which contradicts the assumption of
the theorem. Thus, the sufficiency of the condition of Theorem 2.1 is proved.

We now give a new construction of the completion of a uniform space,
which has close connection with that of H. Nakano [11]. To this end, we
prepare a lemma which concerns with the closed relations.

LEMMA 3.2. Let $9\mathfrak{i}$ be a closed relation on $Y$, and let $X$ be a subspace of
$Y$ such that $\varphi^{-1}(\varphi(X))=X$, where $\varphi$ denotes the canonical map of $Y$ onto $ Y/\Re$ .
Let $R_{X}$ be the restriction of $9l$ on X Then the quotient space $X/\Re_{X}$ is homeo-
morphic with $\varphi(X)$ and $R_{X}$ is a closed relation on $X$

For the proof, see [1, p. 85, Proposition 2].

THEOREM 3.1. Let $\hat{X}$ be the completion of a uniform space (X, $\{V_{a}\}$ ) and
let $\overline{X}$ be the subspace of $\beta X$ consiting of the point $p\in\beta X$ such that $(p,p)\in R$ ,

where $R$ denotes the radical of (X, $\{V_{\alpha}\}$ ). Then $R$ defines a closed relation $R$

on $\overline{X}$, and the completion $\hat{X}$ is homeomorphic with the quotient space $\overline{X}/\Re$ .
PROOF. First, we observe that $R$ defines a relation $R$ on $\overline{X}$. According

to Proposition 2.2, there is for each $V_{\alpha}$ a $V_{\beta}$ such that $\tilde{V}_{\beta}\circ\tilde{V}_{\beta}\subset V_{a}$ . It
follows that $R\circ R=R$ and therefore $R$ defines a relation on $\overline{X}$, since $R$ is
obviously symmetric and $R\supset\Delta_{\hat{X}}$ (cf. [9, p. 9]). Next, the map $\varphi$ of $\beta X$

onto $\beta\hat{X}$ defines a closed relation $\ovalbox{\tt\small REJECT}*$ on $\beta X$ and $\varphi$ is precisely the canonical
map of $\beta X$ onto $\beta X/R^{*}(=\beta\hat{X})$ . On the other hand, Proposition 3.2 shows
that $p\in\overline{X}$ if and oniy if $\varphi(p)\in\hat{X}$. Therefore $\overline{X}=\varphi^{-1}(\hat{X})$ and consequently
we have $\varphi^{-1}(\varphi(\overline{X}))=\overline{X}$. Finally, it follows from Proposition 3.2 that the
relation $9t$ on $\overline{X}$ defined by the radical $R$ is identical with the restriction
on $\overline{X}$ of the relation $R^{*}$ . Now, the proof may easily be completed by
Lemma 3.2.

REMARK 1. By virtues of Proposition 2.2 and Lemma 3.1, we can see
that the family $\{\hat{V}_{\alpha}\}$ , where $V_{\alpha}=Int_{\hat{X}\times\hat{X}}(C1_{\hat{X}\times\hat{X}}(V_{\alpha^{\prime}}))$ , defines a uniformity for
$\hat{X}$, and therefore $(\hat{X}, \{\hat{V}_{a}\})$ is precisely the completion of (X, $\{V_{\alpha}\}$ ).

REMARK 2. It is easy to see that the restriction of $\varphi$ on $\overline{X}$ is a closed
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map. Therefore, if $\overline{X}$ is normal (or paracompact), then $\hat{X}$ is also normal
(respectively, $paracompact^{12)}$ ) as may easily be seen.

$CoROLLARY$ . Let $c_{U}$ and $c_{U^{\prime}}$ be two uniformities for X Then, the comple-
tions of $X$ relative to these two uniformities are homeomorphic each other if and
only if the radicals are homeomorphic.

PROOF. By virtue of Proposition 3.2, it follows that $R$ is determined by
the map $\varphi$ as follows: $R=\{(p, q)\in\beta X\times\beta X;\varphi(p)=\varphi(q)\in\hat{X}\}$ , and the neces-
sity of the condition is then clear. The converse follows immediately from
the preceding theorem.

We now discuss the possibility of extending continuous functions on $X$

over the completion $\hat{X}$ in terms of the radical.
THEOREM 3.2. Let $\hat{X}$ be the completion of a uniform space (X, $cU$). $T/len$ ,

a continuous function $f\in C(X)$ has a continuous extension over $\hat{X}$ if and only

if $\tilde{V}_{f,n}$ contains the radical $R$ for each $n$ , where $\tilde{V}_{f,n}$ is the interior of the
closure of $V_{f.n}$ taken in $\beta X\times\beta X$ and $V_{f,n}=\{(p, q)\in X\times X;|f(p)-f(q)|<1/2^{n}\}$ .

PROOF. Suppose that $f$ has a continuous extension $f$ over $\hat{X}$. Then,
since $\overline{X}=\varphi^{-1}(\hat{X})$ (by Proposition 3.2), $\overline{f}=f\circ\varphi$ is a continuous function on
X. Let $f^{0}$ be the extension of $f$ over $X_{f}$ , then clearly $\overline{X}\subset X_{f}$ and we have
$\overline{f}(p)=f\circ\varphi(p)=f^{0}(p)$ for each $p\in\overline{X}$. Reviewing the proof of Proposition 1.1,
we can see that $(p, q)\in\tilde{V}_{f,n}$ if $(p, q)\in X_{f}\times X_{f}$ and $|f^{0}(p)-f^{0}(q)|<1/2^{n}$ . If
\langle $p,$ $q$) $\in R$ , then $\varphi(p)=\varphi(q)\in\hat{X}$ by Proposition 3.2 and hence $f^{0}(p)=f^{0}(q)$ ,
which implies that $(p, q)\in\tilde{V}_{f,n}$ . Thus, we have $R\subset\tilde{V}_{f,n}$ for each $n$ . Con-
versely, if $R\subset\tilde{V}_{j,n}$ for each $n$ , then $\overline{X}\subset X_{f}$ by Proposition 1.1, and therefore
$f^{0}(p)=f^{0}(q)$ for each point $(p, q)\in R$ . It follows that there is a function $f$

on $\hat{X}$ such that $f\circ\varphi=\overline{f}(=f^{0})$ on $\overline{X}$. Since the restriction of $\varphi$ on ff is
identical with the canonical map of $\overline{X}$ onto $\overline{X}/R=\hat{X}$ and since $\overline{f}$ is con-
tinucus, it follows that $f$ is a continuous function on $\hat{X}^{13)}$ . It is clear that
$f$ is the desired extension of $f$, and the proof is completed.

COROLLARY 1. Every uniformly continuous function has a continuous exten-
sion over $\hat{X}$, and the extension is also uniformly continuous.

PROOF. If $f$ is uniformly continuous, then $V_{f,n}\supset V_{\alpha}$ for some $V_{\alpha}$ and
therefore we have $\tilde{V}_{f,n}\supset V_{a}\supset R$ . This shows that $f$ has a continuous ex-
tension over $\hat{X}$. Let $\hat{f}$ be the extension of $f$ over $\hat{X}$, and put $\hat{V}_{f.n}=\{(p, q)$

$\in\hat{X}\times\hat{X};|\hat{f}(p)-\hat{f}(q)|\leqq 1/2^{n}\}$ . Then $\hat{V}_{f,n}\supset Int_{\hat{X}\times\hat{X}}(C1_{\hat{X}\times\hat{X}}(V_{f.n}))$ by Lemma 1.3,
(b), and since $\tilde{V}_{f,n}\supset\tilde{V}_{a}$ implies that $Int_{\hat{X}\cdot\hat{X}}(C1_{\hat{X}\times\hat{X}}(V_{f,n}))\supset Int_{\hat{X}\times\hat{X}}(C1_{\hat{X}\times\hat{X}}(V_{a}))$

$=\hat{V}_{\alpha},f$ is uniformly continuous. (cf. Remark 1 of Theorem 3.1.)

COROLLARY 2. Let $\hat{X}$ be the completion of a uniform space (X, $c_{U)}$ . Then,
every bounded continuous function on $X$ has a continuous extension over $\hat{X}$ if

12) See [12].
13) See [1, p. 75, Th\’eor\‘eme 1].
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and only if the radical is contained in the diagonal $\Delta_{\beta X}$ of $\beta X\times\beta X$

PROOF. It is easy to see that $\bigcap_{f\in c*(X)}(\bigcap_{n=1}^{\infty}V_{f,n})=\Delta_{\beta X}$ , and therefore $the_{l}^{-}pre-$

sent corollary follows immediately from Theorem 3.2.
COROLLARY 3. Let $\hat{X}$ be the complelion of a uniform space (X, $c_{U)}$ . Then

every continuous function on $X$ has a continuous exlension over $\hat{X}$ if and only
if $R\subset\Delta_{\nu X}$ , where $R$ is the radical of (X, $c_{U)}$ and $\Delta_{\nu X}=\Delta_{\beta X}\cap(\nu X\times\nu X)$ .

PROOF. In view of Proposition 1.1, it follows that $\Delta_{\nu X}=$
$\cap(\cap^{\sim}V_{f,n})$ ,

$f\in C(X)n=1$

and the proof may easily be completed by Theorem 3.2.
Finally, we observe another property of the radical of uniform space.

We have seen that there is a continuous map $\varphi$ of $\beta X$ onto $\beta\hat{X}$ and that $\varphi$

defines a closed relation $R^{*}$ on $\beta X$ Recall that the set defined by the closed
relation on a compact space $E$ is closed in $E\times E$ (see, [1, p. 97, Proposition
8]). The set $R^{*}$ defined by $\Re*$ is closed in $\beta X\times\beta X$, and we have $R^{*}\cap(\overline{X}\times\overline{X})$

$=R$ by Proposition 3.2. It might be expected that the set $R^{*}$ shouid be
characterized by the radical $R$ . The following proposition establishes a
relationship between $R^{*}$ and the radical $R$ .

PROPOSITION 3.3. $R^{*}$ is minimal with respect $lo$ the following properlies:

(a) $R^{*}\cap(\overline{X}\times\overline{X})=R$ ,
(b) $R^{*}$ is the set defined by the relation on $\beta X$ Thal is, it salisfies the follow-
ing conditions: (1) $R^{*}\supset\Delta_{\beta X}$ ; (2) $R^{*}$ is symmetric; (3) $R^{*}\circ R^{*}=R^{*}$ .

PROOF. If $R^{\prime}$ is any set in $\beta X\times\beta X$ satisfying the above conditions,
then $R^{0}=R^{\prime}\cap R^{*}$ satisfies these conditions as well. Let $\varphi^{0}$ denotes the
canonical map of $\beta X$ onto $\beta X/R^{0}$ , where $\Re^{0}$ is the relation on $\beta X$ defined by
$R^{0}$ . It is easy to see that $\varphi^{0-1}(\varphi^{0}(\overline{X}))=\overline{X}$, and it follows from Lemma 3.2
that $\beta X/\Re^{0}$ is a compact Hausdorff space containing $\beta\overline{X}/\Re=\beta\hat{X}$ as a dense
subspace. Therefore $\beta X/\Re^{0}$ is a compactification of $\hat{X}$. On the other hand,

we have $\beta X/\Re*=(\beta X/R^{0})/(\Re^{*}/R^{0})$ , in view of the definition of $R^{0}$ (see, [1,

p. 78, Proposition 3]). It therefore follows that $\beta X/9t^{0}=\beta X/9\mathfrak{i}^{*}$ , by Theorem
1.1, and consequently we have $R^{0}=R^{*}$ . This implies that $R^{\prime}\supset R^{*}$ , and the
proof is completed.

It is not known to the writer whether the closure $\overline{R}$ of the radical $R$

taken in $\beta X\times\beta X$ is identical with $R^{*}$ or not.

Kyoto University.
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