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Introduction.

Let $\mathfrak{g}$ be a group, $\mathfrak{h}$ its normal subgroup, and $M$ a g-module. If $H^{1}(\mathfrak{h}, M)$

$=0$ , then the sequence
$\lambda$

$\rho$

$0\rightarrow H^{2}(\mathfrak{g}/\mathfrak{h}, 1W^{\{)})\rightarrow H^{2}(\mathfrak{g}, j\psi)\rightarrow H^{2}(\mathfrak{h}, 1\psi)$

is exact, where $\lambda$ is the lift, $\rho$ the restriction, and $M^{\mathfrak{h}}$ the submodule of $M$

consisting of $\mathfrak{h}$ -invariant elements. This is the so-called fundamental exact
sequence, the importance of which is recognized in connection with the theory
of simple algebras and the theory of algebraic number fields. Many inter-
esting and useful generalizations have been made of it: Using the mechanism
of spectral sequences Hochschild and Serre obtained in [8] an exact sequence
involving the transgression, and in [9] its analogue in the cohomology of
Lie algebras. Adamson [1], who initiated the relative cohomology theory of
groups with respect to not necessarily normal subgroups, generalized it to
the case of non-normal subgroups but missing the transgression, and a recent
work of Nakayama [10] proved it in general form with transgression.

Our purpose in the present paper is to prove a quite general proposition
of such nature in the framework of the relative homological algebra due to
Hochschild [6], and to show that the known results cited above appear as
its special cases. Our result is proved in Theorem 1 of \S 1 in the form
without transgression, and in Theorem 2 of \S 3 in the form with transgres-
sion. The proof of Theorem 2 is immediate using Theorem 1, once the
subgroup $[Ext_{s}(A, B)]^{R}$ of $Ext_{s}(A, B)$ ($S$ is a subring of $R$) and the notion of
transgression are appropriately defined. The introduction of such notions is
done in \S \S 2, 3, while \S \S 4, 5 treat explicitly the case of groups and Lie al-
gebras respectively.

In dealing with $Ext$ , we use mainly projective resolutions of contravariant
variables, taking account of the adaptation to the usual treatment of coho-
mology groups of groups and Lie algebras. All our arguments can be
dualized to obtain exact sequences of $Tor$, and specifically of the homology
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groups of groups, Lie algebras, etc. It is quite plausible that our exact
sequences will be deduced from an appropriate spectral sequence.

The author is quite indebted to Prof. Nakayama of Nagoya University
who kindly introduced him to the study of non-normal case, giving valuable
suggestions. Mr. Hirata has also assisted him through frequent discussions,
and in fact the present work can be regarded as a continuation of his paper
[5].

\S 1. Lift and restriction.

1.1. Throughout the paper $R$ is a ring with an identity, and $S$ a subring
containing the identity. Let $A$ and $B$ be R-modules. Let $Y$ be an R-projec-
tive resolution of $A$ and $Z$ an $(R, S)$ -projective resolution of $A$ . Then by
definition

$Ext_{R}^{n}(A, B)=H^{n}(Hom_{R}(Y, B))$ ,

$Ext_{R,S}^{n}(A, B)=H^{n}(Hom_{R}(Z, B))$ .
Since $Z$ is acyclic, there exists a map $Y\rightarrow Z$ over the $1_{\Delta}$ , the identity homo-
morphism of $A$ , and it induces canonically homomorphisms of homology
groups:

$\lambda_{R,S}^{n}$ : $Ext_{R.S}^{n}(A, B)\rightarrow Ext_{R}^{n}(A, B)$ , $n\geqq 0$ ,

which will be called the lift homomorphisms (or the inflation homomorphisms).
$\lambda^{0}$ reduces to the identity of $Hom_{R}(A, B)$ . Let $0\rightarrow B_{1}\rightarrow B_{2}\rightarrow B_{3}\rightarrow 0$ be an
exact sequence of R-modules. Then the diagram

$\Delta_{R,S}^{n}$

$\rightarrow Ext_{R,S}^{n}(A, B_{2})\rightarrow Ext_{R,S}^{n}(A, B_{3})\rightarrow Ext_{R.S}^{n+1}(A, B_{1})\rightarrow Ext_{R.S}^{n+1}(A, B_{2})\rightarrow\cdots$

$\downarrow\lambda$ $\downarrow\lambda$ $\downarrow\lambda$ $\downarrow\lambda$

$\Delta_{R}^{n}$

$\rightarrow Ext_{R}^{n}(A, B_{2})\rightarrow Ext_{R}^{n}(A, B_{3})$ $\rightarrow Ext_{R}^{n+1}(A, B_{1})\rightarrow Ext_{R}^{n+1}(A, B_{2})\rightarrow\cdots$

is commutative, where $\Delta$ in both lines denote the respective connecting
homomorphisms.

The restriction homomorphisms

$\rho_{R,S}^{n}$ : $Ext_{R}^{n}(A, B)\rightarrow Ext_{s}^{n}(A, B)$ , $n\geqq 0$ ,

are defined similarly. Namely, if $X$ is an S-projective resolution of $A$ , there
is a map of S-complexes $X\rightarrow Y$ over $1_{A}$ , and it induces $\rho$ . $\rho^{0}$ is the natural
injection $Hom_{R}(A, B)\rightarrow Hom_{s}(A, B)$ , and $\rho$ commutes with the connecting
homomorphism etc., similarly as $\lambda$ .

By definition, the $(R, S)$-resolution $Z$ is S-trivial, and it follows that

(1) $\rho^{n}\cdot\lambda^{n}=0$ , $n\geqq 1$ .
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Put $A^{o}=R\otimes_{s}A$ , the tensor product being taken with respect to the
natural right S-module structure of $R$, and its R-module structure being
defined with respect to the left R-module structure of $R$ (the covariant ex-
tension of $A$); let $\pi$ be the natural epimorphism $R\otimes_{s}A\rightarrow R\otimes_{R}A=A,$ $A_{*}$ the
kernel of $\pi$ , and rc the natural injection $A_{*}\rightarrow A^{o}$ . The resulting exact sequ-
ence

$0\rightarrow A_{*}\rightarrow^{\kappa}A^{O}\rightarrow^{\pi}A\rightarrow 0$

is S-trivial, since we have an S-homomorphism $f;A\rightarrow A^{O}$ satisfying $\pi\cdot f=1_{A}$ ;
take for example $f(a)=1\otimes a$. Since $A^{0}$ is ($R$, S)-projective, we have

$Ext_{R,S}^{n}(A^{o}, B)=0$, $n\geqq 1$ ,

for every $B$. We denote generally any natural isomorphism of type
$Hom_{Q}(M, Hom_{P}(L, N))\rightarrow Hom_{P}(L\otimes_{Q}M, N)$ , where $P$ and $Q$ are rings, $N$ a left
P-module, $M$ a left Q-module and $L$ a left P-and right Q-module, by $s$ .
For example

$s^{-I}$ : $Hom_{R}(X^{o}, B)\cong Hom_{s}(X, Hom_{R}(R, B))=Hom_{s}(X, B)$ .
Since $X^{O}$ is an R-projective complex over $A^{O}$ , we have a canonical homo-
morphism $Ext_{R}(A^{o}, B)\rightarrow H(Hom_{R}(X^{o}, B))$ . This, followed by the homomorphism
induced by the above $s^{-1}$ yields homomorphisms

$\mu^{n}$ ; $Ext_{R}^{n}(A^{o}, B)\rightarrow Ext_{s}^{n}(A, B)$ , $n\geqq 0$ .
$\mu^{1}$ is always a monomorphism, since there exists an R-projective resolution
$\tilde{Y}$ of $A^{o}$ such that $\tilde{Y}_{0}=R\otimes_{S}X_{0},\tilde{Y}_{1}=R\otimes_{S}X_{1}$ . Since $H(X^{o})=Tor^{s}(R, A)$ , all
$\mu^{n}(n\geqq 0)$ are isomorphisms if $Tor_{p}^{s}(R, A)=0(p\geqq 1)$ .

Dually, put $B^{\prime}=Hom_{s}(R, B)$ considered as an R-module by $(rb^{\prime})(r_{1})=b^{\prime}(r_{1}r)$

\langle $b^{\prime}\in B^{\prime},$ $r,$ $r_{1}\in R$) (the contravariant extension of $B$), denote the natural
injection $B=Hom_{R}(R, B)\rightarrow Hom_{s}(R, B)$ by $\alpha$ , the residue class module $B^{\prime}/\alpha B$

by $B^{*}$ , and the natural epimorphism $B^{\prime}\rightarrow B^{*}$ by $\beta$ . The resulting exact
sequence

$0\rightarrow B\rightarrow^{\alpha}B^{\prime}\rightarrow^{\beta}B^{*}\rightarrow 0$

is $aIso$ S-trivial, an S-homomorphism $\gamma:B^{\prime}\rightarrow B$ with $\gamma\cdot\alpha=1_{B}$ being given
by $\gamma(b^{\prime})=b^{\prime}(1)(b^{\prime}\in B^{\prime})$ . Since $B^{\prime}$ is (R. S)-injective, we have

$Ext_{R,S}^{n}(A, B^{\prime})=0$, $n\geqq 1$ ,

for every $A$ . Now we have a canonical homomorphism $ H(Hom_{s}(Y, B))\rightarrow$

$Ext_{s}(A, B)$ since $Y$ is acyclic. This, combined with the homomorphism
induced by the natural isomorphism

$s$ : $Hom_{R}(Y, B^{\prime})\rightarrow Hom_{S}(R\otimes_{R}Y, B)=Hom_{s}(Y, B)$ ,
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yields homomorphisms
$\nu^{n}$ : $Ext_{R}^{n}(A, B^{\prime})\rightarrow Ext_{s}^{n}(A, B)$ , $n\geqq 0$ .

$\nu$ is also defined as the composition of homomorphisms

$\rho$ $\gamma$

$Ext_{R}(A. B^{\prime})\rightarrow Ext_{s}(A, B^{\prime})\rightarrow Ext_{s}(A, B)$

as is easily verified. (A similar fact holds for $/\ell$ ). If $R$ is left S-projective,
$Y$ is also an S-projective resolution of $B$, and $\nu^{n}$ are isomorphisms (In reality
we have only to assume $Ext_{s}^{p}(R, B)=0(p\geqq 0))$ .

It is also easily verified that the following diagram is commutative
(Cartan-Eilenberg [2, Chap. VI, \S 4]):

$E_{X}t_{R}^{n}(A,\pi B)\rightarrow^{\circ}\nearrow_{\rho}^{Ext_{R}^{n}(A,B)}\lambda_{Ext_{s}^{n}(A,B)}^{\mu}$

$\searrow Ext_{R}^{n}(A, B^{\prime})\nearrow$

1.2. The interpretation of $Ext$ as the equivaience classes of module
extensions naturally suggests:

PROPOSITION 1 (Hirata [5]). The following sequence is exact:

$0\rightarrow Ext_{R,S}^{1}(A, B)\rightarrow^{\lambda}Ext_{R}^{1}(A, B)\rightarrow^{\rho}Ext_{s}^{1}(A, B)$ .
PROOF. With respect to $0\rightarrow A_{*}\rightarrow A^{o}\rightarrow A\rightarrow 0$ , the exact sequence of $Ext_{R,S}$

is mapped to the exact sequence of $Ext_{R}$ by the lift homomorphisms. Since
$\lambda^{0}$ is always an isomorphism and $Ext_{R,S}^{1}(A^{o}, B)=0$ , our $\lambda^{1}$ is a monomorphism
by the five lemma. On the other hand, we have, since $\mu^{1}$ is a monomor-
phism,

$Ker\rho^{1}=Ker\mu^{1}\pi^{1}=Ker\pi^{1}={\rm Im}\Delta_{R}^{0}={\rm Im}\Delta_{R}^{0}\lambda^{0}={\rm Im}\lambda^{1}\Delta_{R,S}^{0}={\rm Im}\lambda^{1}$ .
Let us define R-modules $B^{(n)}(n\geqq 0)$ recursively as follows:

$B^{(0)}=B$, $B^{(n)}=(B^{(n-1)})^{\prime}=(B^{\prime})^{(n-1)}$ $(n\geqq 1)$ .
As the sequence $0\rightarrow B\rightarrow B^{\prime}\rightarrow B^{*}\rightarrow 0$ S-splits, the sequence $ 0\rightarrow B^{(n-1)}\rightarrow B^{(n)}\rightarrow$

$(B^{*})^{(n-1)}\rightarrow 0$ also S-splits for every $n\geqq 1$ . Hence

(2) $Ext_{s}^{p}(A, B^{(n)})\cong Ext_{s}^{p}(A, B^{(n-1)})+Ext_{s}^{p}(A, (B^{*})^{(n-1)})$ , $(p\geqq 0, n\geqq 1)$ .
THEOREM 1. Let $R$ be left S-projective. Let $n\geqq 1$ and assume that $Ext_{s}^{p}(A$ .

$B^{(n-p)})=0(0<p<n)$ . Then the following sequence is exact:

$0\rightarrow Ext_{R,S}^{n}(A, B)\rightarrow^{\lambda}Ext_{R}^{n}(A, B)\rightarrow^{\rho}Ext_{s}^{n}(A, B)$ .
PROOF by induction on $n$ . The case $n=1$ is proved above. Let $n>1$ .
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It follows from the assumptions that $Ext_{s}^{t}(A, B^{*(n-1-p)})=0(0<p<n-1)$ ,
$Ext_{s}^{n-1}(A, B^{*})=0$ and $Ext_{s}^{n-1}(A, B)=0$ . By the first of these, the induction
assumption applies to $B^{*}:$ the sequence

$0\rightarrow Ext_{R,S}^{n-1}(A, B^{*})\rightarrow Ext_{R}^{n-1}(A, B^{*})\lambda^{*}\rightarrow Ext_{s}^{n-1}(A, B^{*})=0$

is exact, namely $\lambda^{*}$ is an isomorphism. Now the kernel of $\lambda$ : $Ext_{R.S}^{n}(A, B)$

$\rightarrow Ext_{R}^{n}(A, B)$ is $\Delta_{R,S}(Ker(\Delta_{R}\lambda^{*}))$ , and this reduces to $0$ , since $\Delta_{R}$ has the kernel
$\beta Ext_{R}^{n-1}(A, B^{\prime})=\beta\nu^{-}$ $Ext_{s}^{n-1}(A, B)=0$ (remark that $\nu$ is an isomorphism by
the S-projectivity of $R$). On the other hand, the kernel of $\rho=\nu\alpha:Ext_{R}^{n}(A$ ,
$B)\rightarrow Ext_{s}^{n}(A, B)$ coincides with

$Ker\alpha={\rm Im}\Delta_{R}={\rm Im}(\Delta_{R}\lambda^{*})={\rm Im}(\lambda\Delta_{R,S})={\rm Im}\lambda$ .
REMARK. Similarly we can prove the exactness of the above sequence

under the asssumptions that $R$ is right S-flat and $Ext_{s}^{p}(A_{(n-p)}, B)=0(0<p$

$<n)$ , where $A_{(n)}$ is defined recursively by $A_{(0)}=A,$ $A_{(n)}=(A_{(n-1)})^{o}(n\geqq 1)$ .
AN $A_{PPLICATION}$ (Inequalities of Hochschild [7]). a) Assume that $R$ is right

S-flat, and that the left global dimension of $S$ is finite, say l.gl.$\dim S=n$ .
For an R-module $B$ let

\langle 3) $0\rightarrow B\rightarrow Q_{1}\rightarrow\cdots\rightarrow Q_{n}\rightarrow C\rightarrow 0$

be an exact sequence of R-modules where $Q_{i}$ are R-injective. Then $Q_{i}$ are
also S-injective since $R$ is S-flat, hence $C$ is also S-injective by l.gl.$\dim S=n$ .
Hence, for every R-module $A$ ,

$Ext_{R}^{n+k}(A, B)\cong Ext_{R}^{k}(A, C)\cong Ext_{R,S}^{k}(A, C)$ , $(k\geqq 1)$ ,

and we have
$\dim_{R}A\leqq\dim_{R,S}A+1.gl.\dim$ S.

b) Assume furthermore that $R$ is left S-projective. Then an R-projec-
tive module is S-projective, so that $\dim_{s}A\leqq\dim_{R}$ $A$ for every R-module $A$ .
Now, assume that $\dim_{s}A=n<\infty$ . Then $Ext_{s}^{p}(A, C)\cong Ext_{s}^{n+p}(A, B)=0$ for
$p>0$ . Hence the above theorem applies to $(A, C)$ , and we have similarly as
in the case a)

$\dim_{R}A\leqq\dim_{R,S}A+\dim_{s}A$ .

1.3. Let $R$ be a supplemenled algebra over a commutative ring $K$ with
an identity, and $\epsilon$ be its supplementation epimorphism $R\rightarrow K$. Then the
cohomology groups $H^{n}(R, B)$ of $R$ with coefficients in an R-module $B$ are
defined as $Ext_{R}^{n}(K. B),$ $K$ being considered as an R-module via $\epsilon$ (Cartan-
Eilenberg [2, Chap. X]). An R-projective resolution of $K$ is provided by the
so-called (normalized) standard complex $Y=N(R, \epsilon):Y_{n}$ consists of R-linear
combinations of K-mu ti-linear symbols $[r_{1}, \cdots, r_{n}],$ $r_{i}\in R$. (If one of $r_{i}$ is in
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$K,$ $[r_{1}$ , $\cdot$ ., $r_{n}]=0.$) The augmentation $\eta:Y_{0}\rightarrow K$ is defined by $\eta[]=1$ , and
the differentiation by

$d_{n}[r_{1}, \cdots, r_{n}]=r_{1}[r_{2}, \cdots, r_{n}]+\sum_{i=1}^{n-1}(-1)^{i}[r_{1}, \cdots, r_{i}r_{i+1}, \cdots, r_{n}]$

$+(-1)^{n}[r_{1}, \cdots, r_{n-1}](\epsilon r_{n})$ .
Let $S$ be a subalgebra of $R$ containing $K$. Then $S$ itself is a supple-

mented algebra over $K$, and a projective resolution of the S-module $K$ is
given by $X=N(S, \epsilon)$ . It is clear that the correspondence $\rho:[s_{1}, \cdots, s_{n}]\rightarrow$

$[s_{1}$ , $\cdot$ .., $s_{n}](s_{i}\in S)$ is a map of S-complexes $X\rightarrow Y$ over $1_{K}$ .
Now, the standard $(R, S)$-projective resolution $Z$ of $K$ is defined as fol-

lows (Hochschild [6, \S 2]): Define $A_{*}n$ recursively by $A_{*}0=A,$ $A_{*n}=(A_{*}-)_{*}$

$(n>0)$ for any R-module $A$ , and put $Z_{n}=R\otimes_{s^{K_{*}}}n$ ; then $K_{*}n+1$ is the kernel
of the natural epimorphism $\pi;Z_{n}\rightarrow K_{*}n$ . The augmentation $\eta$ is the natural
epimorphism $\pi:R\otimes_{s}K\rightarrow K$, and the differentiation $d_{n}$ is the composition
$R\otimes_{s^{K_{*}}}n\rightarrow K_{*}n\rightarrow R\otimes_{s^{K_{*}}}n-1$ . We define operators $q_{r}$ : $A\rightarrow A_{*}(r\in R)$ by

$q_{r}(a)=r\otimes a-1\otimes ra$ , $a\in A$ .
Then $q_{r_{1}}\cdots q_{r_{n}}(1)\in K_{*}n$ for $r_{1},$ $\cdots,$ $r_{n}\in R$ . Using this operator, we define an
R-homomorphism $\lambda:Y\rightarrow Z$ by

$\lambda[r_{1}, \cdots, r_{n}]=1\otimes q_{r_{1}}\cdots q_{r_{n}}(1)$ .
We shall show that $\lambda$ is a map of R-complexes over $1_{K}$ . Clearly,

$\eta\lambda[]=\eta(1\otimes 1)=1=\eta[]$ .
Since $d_{n}\lambda[r_{1}, \cdots, r_{n}]=q_{r_{1}}\cdots q_{r_{n}}(1)$ , we have to show

$\lambda d_{n}[r_{1}, \cdots, r_{n}]=q_{r_{1}}\cdots q_{r_{n}}(1)$ $(n\geqq 1)$ .
This is true for $n=1$ , since

$\lambda d_{1}[r]=\lambda((r-\epsilon(r))[])=(r-\epsilon(r))\otimes 1=q_{r}(1)$ .
Let $n>1$ and assume it is true for $n-1$ . We have

$\lambda d_{n}[r, \cdots, r_{n}]-q_{r_{1}}\cdots q_{r_{n}}(1)$

$=1\otimes[r_{1}q_{r_{2}}\cdots q_{r_{n}}(1)+\sum_{i=1}^{n-1}(-1)^{i}q_{r_{1}}\cdots q_{r_{i}r_{i+1}}\cdots q_{r_{n}}(1)$

$+(-1)^{n}q_{r_{1}}\cdots q_{r_{n-1}}(1)\epsilon(r_{n})]$ .
But by the induction assumption, the right hand side is $1\otimes\lambda d_{n-1}d_{n}[r_{1}, \cdots, r_{n}]$

$=0$ . Hence $\lambda$ is a map $Y\rightarrow Z$ over $1_{K}$ . Since $q_{s}(a)=0$ for $s\in S$, we have
$\lambda_{n}\cdot\rho_{n}=0$ $(n\geqq 1)$ .

Namely, using standard complexes, (1) holds not only for cohomology classes, but
also for individual cocycles.



On fundamental exact sequences. 71

REMARK. Define operators $p_{r}(r\in R)$ in the complex $Y$, by

$p_{\gamma}(1)=(r-\epsilon(r))[]$ ,

$p_{r}(r_{0}[r_{1}, \cdots, r_{n}])=r[r_{0}, r_{1}, \cdots, r_{n}]-[rr_{0}, r_{1}, \cdots, r_{n}]$ ,

then, we see easily

$[r_{1}, \cdots, r_{n}]=(-1)^{n}p_{r_{1}}\cdot\cdot p_{r_{n}}[]$ ,

$d[r_{1}, \cdots, r_{n}]=p_{r_{1}}\cdots p_{r_{n}}(1)$ ,

and the fact that $\lambda$ is a map is formulated in the form
$\lambda p_{\gamma_{1}}\cdots p_{r_{n}}(1)=q_{r_{1}}\cdots q_{r_{n}}(1)$ .

Now, we assume that $S$ is a normal subalgebra of $R$ in the sense of
Cartan-Eiienberg [2, Chap. XVI, \S 6]. Let $I_{s}$ be the kernel of the supple-
mentation $S\rightarrow K$, and denote by $B^{s}$ the submodule of $B$ consisting of S-
invariant elements, namely the elements annihilated by $I_{s}$ . Then Hochschild
[6, \S 6] proves that

$Ext_{R.S}(K, B)\cong Ext_{R^{J}}(K, B^{s})$ ,

provided the ring $R^{\prime}=R\otimes_{S}K=R/RI_{s}$ is K-projective. In this case, it is
clear that the above-defined $\lambda$ coincides with the usual lift homomorphism.

\S 2. $[Ext_{S}^{n}(A, B)]^{R}$ .
Let $S$ and $T$ be subrings of $R$, and assume that $R$ is left T-projective.

Let $A$ and $B$ be R-modules and assume that $Tor_{n}^{S}(R, A)=0(n\geqq 1)$ .
The projection $\pi:R\otimes_{S}A\rightarrow A$ and the injection $\alpha:B\rightarrow Hom_{T}(R, B)$ induce

respectively
$\pi:Ext_{T}(A, B)\rightarrow Ext_{T}(R\otimes_{S}A, B)$ ,

$\alpha:Ext_{S}(A, B)\rightarrow Ext_{S}(A, Hom_{T}(R, B))$ .
By assumptions, $R\otimes_{s}X$ is a T-projective resolution of $R\otimes_{S}A$ , if $X$ is an
S-projective resolution of $A$ , and the natural isomorphism

$s:Hom_{s}(X)Hom_{T}(R, B))\rightarrow Hom_{T}(R\otimes_{S}X, B)$

induces an isomorphism of $Ext$ :
$s:Ext_{s}(A, Hom_{T}(R, B))\rightarrow Ext_{T}(R\otimes_{S}A, B)$ .

$Ext_{T}(A,$ $ B\rangle$ and $Ext_{s}(A, B)$ are mapped in these isomorphic groups by $\pi$ and
$\alpha$ respectively.

Now, let $S=T$. We shall say that $F\in Ext_{s}(A, B)$ is stable with respect
to $R$ , if $\pi F=s\alpha F$. For $f\in Hom_{S}(X, B),fd=0$ , we have

$f\pi(r\otimes x)=]^{-}(rx)$ ,
(4) $(r\in R, x\in X)$ .

$s\alpha f(r\otimes x)=rf(x)$ ,
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The stable elements form a subgroup of $Ext_{s}(A, B)$ , which we shall denote
by $[Ext_{s}(A, B)]^{R}$. Since $R$ is assumed to be left S-projective, we can take
as $X$ an R-projective resolution of $A$ , and it follows that $\rho G(G\in Ext_{R}^{n}(A, B))$

is always stable, since $f\pi=s\alpha f$ if and only if $f\in Hom_{R}(X, B)$ .
Assuming that $R$ is right S-flat and $Ext_{R}^{n}(R, B)=0(n\geqq 0)$ , we can define

similarly a stability of elements of $Ext_{s}(A, B)$ . If $R$ is left S-projective and
also right S-flat, then these two notions coincide, as is seen using double
complexes.

Since $R$ is left S-projective, $\nu^{n}$ are isomorphisms, and it is immediateiy
verified that $\rho\nu^{-1}F=s^{-1}\pi F$, where $\rho$ denotes the restriction $Ext_{R}^{n}(A, B^{\prime})\rightarrow$

$Ext_{s}^{n}(A, B^{\prime})$ . Hence $F$ is stable if and only if
(5) $\alpha F=\rho\nu^{-1}F$ .
(We could define the stability of $F$ by the equality (5), only assuming that
$\nu^{n}$ are isomorphisms.) The condition (5) is equivalent to $\rho\nu^{-1}F\in{\rm Im}(\alpha)$ .
Indeed, if $\rho\nu^{-1}F=\alpha F_{1}$ , we have $F=\gamma\rho\nu^{-1}F=\gamma\alpha F_{1}=F_{1}$ . Since Im(a) $=Ker(\beta)$ ,
and $\beta\rho=\rho\beta$ , this condition is also written in the form
(5) $\rho\beta\nu^{-1}F=0$ ,

$\tau^{Q}$ denoting here $Ext_{R}^{n}(A, B^{*})\rightarrow Ext_{s}^{n}(A)B^{*})$ .

\S 3. Transgression.

We assume for a moment that there are given S-, R-, $(R, S)$ -projective
$\iota esolutions$ of an R-module $A$ , say $X,$ $Y,$ $Z$ respectively, together with the
S-map $\rho:X\rightarrow Y$ and R-map $\lambda:Y\rightarrow Z$, both over $1_{A}$ , satisfying $\lambda\cdot\rho=0$ , as in
the case of supplemented algebras (\S 1.3).

Let $H$ be an element in the kernel of the lift
$\lambda^{n+1}$ : $Ext_{R,S}^{n+1}(A, B)\rightarrow Ext_{R}^{n+1}(A, B)$ , $n\geqq 1$ ,

and let $H$ be represented by $h\in Hom_{R}(Z_{n+1}, B),$ $hd=0$ . Put
$h\lambda=-gd$ , $g\in Hom_{R}(Y_{n}, B)$ .

Then $g\rho d=gd\rho=-h\lambda\rho=0$ . Hence
$ f=g\cdot\rho$

determines an element $F$ of $Ext_{s}^{n}(A, B)$ . We shall show that $F$ is stabie,
assuming that $\nu^{n}$ is an isomorphism. Since the connecting homomorphism
$\Delta_{R.S}^{n}$ is an isomorphism, there exist $h^{*}\in Hom_{R}(Z_{n}, B^{*})$ and $h^{\prime}\in Hom_{R}(Z_{n}, B^{\prime})$

such that
$h^{*}d=0$ , $\beta h^{\prime}=h^{*}$ , $h^{\prime}d=\alpha h$ .

Put $g^{\prime}=h^{\prime}\lambda+\alpha g\in Hom_{R}(Y_{n}, B^{\prime})$ . Then we have
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$g^{f}d=h^{\prime}\lambda d+\alpha gd=\alpha h\lambda-\alpha h\lambda=0$ .
Let $G^{\prime}$ be the class of the cocycle $g^{\prime}$ . Then $\alpha F=\rho G^{\prime}$ since

$g^{\prime}\rho=h^{\prime}\lambda\rho+\alpha g\rho=\alpha f$ ,

and $F=\gamma\alpha F=\gamma\rho G^{\prime}=\nu G^{\prime}$ . Hence $F$ is stable as the condition (5) holds.
Any other possible choice of $h$ and $g$ determines an element congruent

to $Fmod \rho Ext_{R}^{n}(A, B)$ . Hence we have a homomorphism

(6) $Ker$ ; $n+1\rightarrow[Ext_{s}^{n}(A, B)]^{R}/\rho Ext_{R}^{n}(A, B)$ .
One essential point in establishing the fundamental exact sequence is the
observation that in certain circumstances this homomorphism is in fact an
isomorphism.

Return to the general case, and assume that $\nu^{n}$ is an isomorphism and
also that the sequence

$\lambda$

$\rho$

$0\rightarrow Ext_{R,S}^{n}(A, B^{*})\rightarrow Ext_{R}^{n}(A, B^{*})\rightarrow Ext_{s}^{n}(A, B^{*})$

is exact. Let $F$ be a stable element of $Ext_{s}^{n}(A, B)$ ; then $\rho\beta\nu^{-1}F=0$ by $(5^{\prime})$ .
By the exactness of the above sequence, there exists a unique $H^{*}\in Ext_{R,S}^{n}(A$,
$B^{*})$ such that

$\beta\nu^{-1}F=\lambda H^{*}$

and $H^{*}$ determines an element $H=\Delta_{R,S}^{n}H^{*}\in Ext_{R.S}^{n+1}(A, B)$ . We shall call the
map $F\rightarrow H$ the transgression homomorphism, denoting it by $\tau^{n}$ :

\langle 7) $\tau^{n}F=\Delta_{R,s}^{n}(\lambda^{n})^{-1}\beta^{n}(\nu^{n})^{-1}F$, $F\in[Ext_{s}^{n}(A, B)]^{R}$ .
It follows immediately from the definition the exactness of the sequence

(8) $Ext_{R}^{n}(A, B)\rightarrow[Ext_{s}^{n}(A, B)]^{R}\rightarrow^{\tau}Ext_{R.S}^{n+1}(A, B)\rightarrow Ext_{R}^{n+1}(A, B)$ .
$\rho$

$\lambda$

Indeed, $\tau F=0$ is equivalent to $\beta\nu^{-J}F=0_{\rangle}$ namely to $\nu^{-1}F\in$ Im(a). Applying
$\nu$ , this is equivalent to $F\in{\rm Im}(\nu\alpha)={\rm Im}(\rho)$ . On the other hand $\lambda H=0$ is
equivalent to $\Delta_{R}\lambda\Delta_{R.S}^{-1}H=0$ , namely to $\lambda\Delta_{R,S}^{-1}H\in{\rm Im}(\beta)={\rm Im}(\beta\nu^{-1})$ . Put $\lambda\Delta_{R}^{-1_{S}}H$

$=\beta\nu^{-1}F$, and apply $\rho$ , then we have $0=\rho\beta\nu^{-1}F$. Hence $F$ is stable and
$H=\tau F$.

Now we prove
THEOREM 2. Let $R$ be left S-projective. Let $n\geqq 1$ and assume that $Ext_{s}^{p}(A$ ,

$B^{(n+1-p)})=0(0<p<n)$ . Then the transgression homomorphism is defined, and
the following sequence is exact:

$\lambda$

$\rho$

$0\rightarrow Ext_{R,S}^{n}(A, B)\rightarrow Ext_{R}^{n}(A, B)\rightarrow[Ext_{s}^{n}(A, B)]^{R}$

$\rightarrow^{\tau}Ext_{R,s}^{n+1}(A, B)\rightarrow^{\lambda}Ext_{R}^{n+1}(A, B)$ .
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PROOF. By assumptions together with (2), we have $Ext_{s^{p}}(A, B^{(-P)}n)=0$

$(0<p<n)$ and $Ext_{s}^{p}(A, B^{*(n-p)})=0(0<p<n)$ . By Theorem 1, the following
two sequences are exact:

$\lambda$

$\rho$

$0\rightarrow Ext_{R,S}^{n}(A, B)\rightarrow Ext_{R}^{n}(A, B)\rightarrow Ext_{s}^{n}(A, B)$ ,

$0\rightarrow Ext_{R,S}^{n}(A, B^{*})\rightarrow^{\lambda}Ext_{R}^{n}(A, B^{*})\rightarrow^{\rho}Ext_{s}^{n}(A, B^{*})$ .
It follows from the exactness of the latter sequence, that $\tau$ can be defined
and that (8) is exact. $q$ . $e$ . $d$ .

To this theorem similar remarks apply as to Theorem 1.
In the presence of such resolutions $X,$ $Y,$ $Z$ and maps $\rho,$

$\lambda$ as at the
beginning of this paragraph, $\tau$ is in fact the inverse of the homomorphism (6).

To see this, let $G^{\prime}=\nu^{-1}F$ be represented by $g^{\prime}\in Hom_{R}(Y_{n}, B^{\prime}),$ $g^{\prime}d=0$ . Then
$H^{*}$ is represented by $h^{*}$ with the property $h^{*}\lambda\sim\beta g^{f}$ , and then $H=\tau F$ by $h$ ,

where $\alpha h=h^{\prime}d,$ $\beta h^{\prime}=h^{*}$ . Let $h^{*}\lambda=\beta g^{\prime}+g^{*}d$ with $g^{*}\in Hom_{R}(Y_{n-1}, B^{*})$ , and
take $g_{0^{\prime}}\in Hom_{R}(Y_{n-1}, B^{\prime})$ such that $g^{*}=\beta g_{0^{\prime}}$ . Then $\beta h^{\prime}\lambda=\beta g^{\prime}+\beta g_{0^{\prime}}d$, so there
exists $g\in Hom_{R}(Y_{n}, B)$ such that

$h^{\prime}\lambda=g^{\prime}+g_{0}^{\prime}d-\alpha g$ ,

and we have
$\alpha h\lambda=h^{\prime}d\lambda=h^{\prime}\lambda d=-\alpha gd$ ,

whence $h\lambda=-gd$. Now, $F=\nu G^{\prime}$ is represented by $f$ such that

$f(x)=(g^{\prime}+g_{0^{\prime}}d)\rho(x)(1)=(h^{\prime}\lambda+\alpha g)\rho(x)(1)=\alpha g\rho(x)(1)=g\rho(x)$ .
namely $ f=g\cdot\rho$. Thus our assertion is proved.

REMARK. Following an idea of Massey, Takasu [11] developed another
type of relative theory for supplemented algebras: Using the absolute $Ext$ ,
he put

$H^{n}(R, S:B)=Ext_{R}^{n-1}(K_{*}, B)$ , $(n\geqq 1)$

where $R,$ $S,$ $B,$ $K_{*}$ are the same as in \S 1, 1.3. It arises the question of the
relationship of two relative theories. We have always the following homo-
morphism

$\Delta^{-1}$ $\lambda$

(9) $Ext_{R,S}^{n+1}(A, B)\rightarrow Ext_{R,S}^{n}(A_{*}, B)\rightarrow Ext_{R}^{n}(A_{*}, B)$ .
If we assume $Tor_{p}^{s}(R, A)=0(p\geqq 1),$ $\mu^{n}$ are isomorphisms, and the exact
sequence of $Ext$ belonging to the sequence $0\rightarrow A_{*}\rightarrow A^{o}\rightarrow A\rightarrow 0$ can be modi-
fied to the form

$\rho$
$\Delta$

(10) $\rightarrow Ext_{R}^{n}(A, B)\rightarrow Ext_{s}^{n}(A, B)\rightarrow Ext_{R}^{n}(A_{*}, B)\rightarrow Ext_{R}^{n+1}(A, B)\rightarrow\cdots$
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Now, when the above homomorphism (9) is monomorphic, a new exact se-
quence will be deduced from (10) if we replace $Ext_{R}^{n}(A_{*}. B)$ by $Ext_{R,S}^{n+1}(A, B)$ ,
and accordingly $Ext_{s}^{n}(A, B)$ by its appropriate subgroup. It is easy to see
that this new sequence is precisely the sequence of Theorem 2.

\S 4. Groups.

Let $\mathfrak{g}$ be a group, $\mathfrak{h}$ a subgroup of $\mathfrak{g}$ , and let $R=Z(\mathfrak{g}),$ $S=Z(\mathfrak{h})$ be their
groupalgebras over the ring of integers. $R$ is both left and right S-free.

For a (left) $\mathfrak{h}$-module $M$ and an element $\tau\in \mathfrak{g}$, we denote by M. the same
$M$ considered as an $\mathfrak{h}^{\tau}$-module $(\mathfrak{h}^{\tau}=\tau \mathfrak{h}\tau^{-1})$ by putting $\eta^{\tau}(m)=\eta m(\eta\in \mathfrak{h}, m\in M)$ .
For an $\mathfrak{h}$ -module $X$, we have $Z(\mathfrak{h})_{\tau}\otimes_{\mathfrak{h}}X\cong X_{\tau}$, where the tensor product is
taken with respect to the natural right $\mathfrak{h}$ -module structure of $Z(\mathfrak{h})$ . If $M$

is given by the restriction of operator domain from a $\mathfrak{g}$-module $M$, then the
$\mathfrak{h}^{\tau}$-module $M_{\tau}$ is $\mathfrak{h}^{\tau}$-isomorphic with the $\mathfrak{h}^{\tau}$-module $M$ obtained by the restric-
tion of operators, by the correspondence $a_{\tau}\Leftrightarrow\tau a$ .

Let $\mathfrak{k}$ be another subgroup of $\mathfrak{g}$ , and let

$\mathfrak{g}=\bigcup_{i}f\tau_{i}\mathfrak{h}$

be the double coset decomposition of $\mathfrak{g}$ with respect to $\mathfrak{k}$ and $\mathfrak{h}$ . Then we
have

$Z(\mathfrak{g})\cong\sum_{i}Z(\mathfrak{k})\otimes_{1\cap \mathfrak{h}^{\tau}}\iota Z(\mathfrak{h})_{\tau_{i}}$ , $((\mathfrak{k}, \mathfrak{h})$ -isomorphism)

by the correspondence

$\kappa\tau_{i}\eta\Leftrightarrow\kappa\otimes_{i}\eta$ , $(\kappa\in \mathfrak{k}, \eta\in \mathfrak{h})$ .
It follows that for an $\mathfrak{h}$ -module $A$ and a f-module $B$

$Hom_{t}(Z(\mathfrak{g})\otimes_{\mathfrak{h}}X, B)\cong\prod_{i}Hom_{t}(Z(\mathfrak{k})\otimes\iota^{\tau_{i}}X_{\tau_{i}}, B)$

$\cong\prod_{i}Hom_{\iota n\mathfrak{y}^{\tau_{i}}}(X_{\tau_{i}}, B)$ ,

$\Pi$ denoting the Cartesian product, where $X$ is an $\mathfrak{h}$ -projective resolution of
$A$ . If furthermore $A$ is a g-module, we take as $X$ a g-projective resolution
of $A$ . Then $X_{\tau_{i}}$ is isomorphic to $X$ as $\mathfrak{h}^{\tau_{i}}$ -resolution of $A$ . Hence we have
the following direct product decomposition

(11) $Ext_{t}(Z(\mathfrak{g})\otimes_{\mathfrak{h}}A, B)\cong\prod_{i}Ext_{\mathfrak{l}\cap \mathfrak{h}^{\tau_{i}}}(A, B)$ ,

for a g-module $A$ and a f-module $B$.
Let both $A$ and $B$ be g-modules. Then the $\tau_{i}$-component of $\pi F,$ $ F\in$

$Ext_{f}(A, B)$ , is $\beta\iota.\iota\cap \mathfrak{y}^{\tau_{i}}F$ :

$\pi=\prod_{i}\rho t.t\cap\iota^{r_{i}})$
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since for $f\in Hom_{t}(X, B),$ $fd=0$ , the $\tau_{i}$-component $(f\pi)_{i}\in Hom_{f\cap \mathfrak{y}^{\tau_{i}}}(X, B)$ of $ f\pi$

is given by
$(f\pi)_{i}(x)=f\pi(\tau_{i}\otimes\tau_{t^{-1}}x)=f(x)$ .

While the $\tau_{i}$ -component of $s\alpha f$, for $f\in Hom_{I)}(X, B),fd=0$ , is

$(s\alpha f)_{i}(x)=s\alpha f(\tau_{i}\otimes\tau_{i^{-1}}x)=\tau_{i}f(\tau_{i^{-1}}x)$ .
Since $f\rightarrow\tau_{i}f\tau_{i^{-1}}$ induces the isomorphism $I_{\tau_{i}}$ : $Ext_{\mathfrak{h}}(A, B)\rightarrow Ext_{\mathfrak{y}^{\tau_{i}}}(A, B)$ , the
$\tau_{i}$-component of $s\alpha F$ is $\rho_{1)^{\tau_{i}}t\cap \mathfrak{h}^{\tau_{i}}}I_{\tau_{i}}F$ :

$s\alpha=\prod_{i}\rho_{\mathfrak{h}^{\tau_{i}}.t\cap \mathfrak{y}^{\tau_{i}}I_{\tau_{i}}}$ .

Therefore, $F\in Ext_{\mathfrak{h}}(A, B)$ is stable if and only if
$\rho_{\mathfrak{h}.\mathfrak{h}\cap \mathfrak{h}^{r}}F=\rho_{\mathfrak{y}^{\tau_{\mathfrak{h}\cap \mathfrak{h}}\tau}}I_{\tau}F$ for every $\tau\in \mathfrak{g}$ .

(Remark that the choice of the representatives $\tau_{i}$ in the decomposition
$\mathfrak{g}=\cup \mathfrak{h}\tau_{i}\mathfrak{h}$ is arbitrary.) Thus, our definition of stability coincides with
that of Cartan-Eilenberg [2, Chap. XII, \S 9]. If $\mathfrak{h}$ is a normal subgroup of
$\mathfrak{g}$ , then the stable elements are precisely the g-invariant elements.

By successive applications of (11) we have

$E_{X}t_{\mathfrak{h}}^{p}(A, B^{(q)})\cong\prod_{\sigma_{i}})$ ’

where $\{\sigma_{1}, \cdots, \sigma_{q}\}$ runs over the q-fold direct power of the set $\{\tau_{i}\}$ . Noting
that the choice of $\{\tau_{i}\}$ is arbitrary, Theorems 1 and 2 are stated as follows:

PROPOSITION 2. Assume that $Ext_{\mathfrak{h}\cap \mathfrak{y}^{\sigma_{1}}\cap\cdots\cap \mathfrak{y}^{\sigma_{n-p}}}^{p}(A, B)=0(0<p<n)$ where $\sigma_{i}$

$\in \mathfrak{g}$ are arbitrary, then the sequence

$0\rightarrow Ext_{\mathfrak{g},\mathfrak{h}}^{n}(A, B)\rightarrow^{\lambda}Ext_{\mathfrak{g}}^{n}(A, B)\rightarrow^{\rho}Ext_{\mathfrak{h}}^{n}(A, B)$

is exact. If further $Ext_{\iota)\cap \mathfrak{y}^{\sigma_{1}}\cap\cdots\cap \mathfrak{y}^{\sigma_{n-p+1}}}^{p}(A, B)=0(0<p<n)$ for every $\sigma_{i}\in \mathfrak{g}$ , the
sequence

$\lambda$

$\rho$

$0\rightarrow Ext_{\mathfrak{g}.1_{I}}^{n}(A, B)\rightarrow Ext_{\mathfrak{g}}^{n}(A, B)\rightarrow[Ext_{1)}^{n}(A, B)]^{\mathfrak{g}}$

$\rightarrow^{\tau}Ext_{\mathfrak{g},1)}^{n+1}(A, B)\rightarrow Ext_{\mathfrak{g}}^{n+1}(A, B)$

$\lambda$

is exact.
Put $A=Z$. Then $Ext_{\mathfrak{g}}^{n}(Z, B)=H^{n}(\mathfrak{g}, B)$ etc., and the exactness of above

sequences is proved by Adamson [1] and Nakayama [10] respectively.
It $\mathfrak{h}$ is a normal subgroup, the assumptions of the Proposition reduce

to $Ext_{\mathfrak{h}}^{p}(A, B)=0(0<p<n)$ . For $A=Z$, we have $Ext_{\mathfrak{g}.1_{I}}^{n}(Z, B)\cong Ext_{\mathfrak{g}/\mathfrak{h}}^{n}(Z, B^{\mathfrak{h}})$ .
The exact sequence in this case is obtained by Hochschild and Serre [8].
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\S 5. Lie algebras.

Let $\mathfrak{g}$ be a Lie algebra over a commutative ring $K$ with an identity, $\mathfrak{h}$

an ideal of $\mathfrak{g}$ , and assume that $\mathfrak{g},$
$\mathfrak{h},$ $\mathfrak{g}/\mathfrak{h}$ all have K-bases. Let $R=U(\mathfrak{g}),$ $S=$

$U(\mathfrak{h})$ , the universal enveloping algebras of $\mathfrak{g}$ and $\mathfrak{h}$ . If $\{v_{\nu}\}$ is an ordered
basis of some complementary space of $\mathfrak{h}$ in $\mathfrak{g}$ , then, denoting

$\iota^{E}=\prod_{\nu}v_{\nu}^{e_{\nu}}$

for an ordered sequence $E=\{e_{\nu}\}$ of non-negative integers for which $|E|=$

$\sum e_{\nu}$ is finite, we have by Birkhoff-Witt theorem

$U(\mathfrak{g})=rE^{d}U(\mathfrak{h})v^{E}=\sum_{E}v^{E}U(\mathfrak{h})$ ,

where the sum is direct and is taken over all possible $E$.
We write $F\leqq E$ for two sequences $E=\{e_{\nu}\}$ and $F=\{f_{\nu}\}$ , if we have

$f_{\nu}\leqq e_{\nu}$ for every $\nu$ ; and in this case we can define $E-F=\{e_{\nu}-f_{\nu}\}$ . Define
also the generalized binomial coefficients

$\left(\begin{array}{l}E\\F\end{array}\right)=\sum_{\nu}\left(\begin{array}{l}e_{\nu}\\f_{\nu}\end{array}\right)=\left(\begin{array}{l}E\\E-F\end{array}\right)$ .

With these notations, we shall prove as a preliminary the following rela-
tions

(12) $\sum_{G\leqq F\leqq E}\left(\begin{array}{l}E\\F\end{array}\right)\left(\begin{array}{l}F\\G\end{array}\right)v^{F-G}(v^{E-F})_{*}=\sum_{G\leqq F\leqq E}\left(\begin{array}{l}E\\F\end{array}\right)\left(\begin{array}{l}F\\G\end{array}\right)(v^{F-G})_{*}v^{E-F}=\{10$
$(G\neq E)(G=E)$

,

where $*denotes$ the anti-automorphism of $U(\{;)$ which coincides with $x\rightarrow-x$

on $U^{1}(\mathfrak{g})=\mathfrak{g}$ . This is clear for $G=E$. Let $G\neq E$, and say $E=\{e_{\nu}\},$ $F=\{f_{\nu}\}$ ,
$G=\{g_{\nu}\}$ . If $s$ is the last index for which $e_{s}>g_{s}$ , the expression

$ v_{s-1}^{f_{s-1}-g_{s-1}}v_{s^{s^{-g_{S}}}}^{e}v_{s-1}^{e_{s-1}-f_{s-1}}\cdots$

appears in the ieft hand side of (12) with the multiplicity

$\pm\sum_{\nu\neq s}\left(\begin{array}{l}e_{\nu}\\f_{\nu}\end{array}\right)\left(\begin{array}{l}f_{\nu}\\g_{\nu}\end{array}\right)\{\left(\begin{array}{l}e_{s}\\e_{s}\end{array}\right)\left(\begin{array}{l}e_{s}\\g_{s}\end{array}\right)-(e_{s}e_{s}-1)\left(\begin{array}{l}e_{s}-1\\g_{s}\end{array}\right)+\cdots\pm\left(\begin{array}{l}e_{s}\\g_{s}\end{array}\right)\left(\begin{array}{l}g_{s}\\g_{s}\end{array}\right)\}$

$=\pm\nu\Delta\neq\nabla_{s}\left(\begin{array}{l}e_{\nu}\\f_{\nu}\end{array}\right)\left(\begin{array}{l}f_{\nu}\\g_{\nu}\end{array}\right)$

. $\left(\begin{array}{l}e\\g_{s}\end{array}\right)\{\left(\begin{array}{l}e_{s}-g_{s}\\0\end{array}\right)-\left(\begin{array}{l}e_{s}-g_{s}\\1\end{array}\right)+\cdots\pm\left(\begin{array}{l}e_{s}-g_{s}\\-e_{s}g_{s}\end{array}\right)\}=0$ .

We also remark that, since $\mathfrak{h}$ is an ideal, $\mathfrak{h}$ is viewed as a (left) $U(\mathfrak{g})-$

module. If we denote the operation of $u\in U(\mathfrak{g})$ to $x\in \mathfrak{h}$ by $u(x)$ , we verify
easily by induction on $|E|$ :

(13) $v^{E}x=\sum_{F\leqq E}\left(\begin{array}{l}E\\F\end{array}\right)v^{E-F}(x)\cdot v^{F}$, $(x\in \mathfrak{h})$ .
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For $\mathfrak{g}$ -modules $A$ and $B,$ $Hom_{K}(A, B)$ is viewed as a g-module with the
operation

$x(f)=x\cdot f-f\cdot x$, $x\in \mathfrak{g},$ $f\in Hom_{K}(A, B)$ .
The subspace $Hom_{\mathfrak{h}}(A, B)$ is then g-invariant, and can be regarded as a $U(\mathfrak{g})-$

module. One verifies easily the following explicit formula

(14)
$v^{E}(f)=\sum_{F\leqq E}\left(\begin{array}{l}E\\F\end{array}\right)v^{E-F}\cdot f\cdot(v^{F})_{*}$ .

Replacing $A$ by its projective resolution. $Ext_{\mathfrak{h}}(A, B)$ becomes a $U(\mathfrak{g})$ -module,
and in fact a $U(g/\mathfrak{h})$-module since $x(f)=0$ for $x\in \mathfrak{h}$ . An element $F\in Ext_{\mathfrak{h}}(A$ ,
$B)$ is called g-invariant if $xF=0$ for every $x\in \mathfrak{g}$ , or equivalently if $v^{E}F=0$

for every $E\neq 0$ . Now we shall show that $F$ is invariant if and only if it is
stable in the sense of \S 2.

Thus, let $A$ be a $\mathfrak{g}$-module. Then there exists an isomorphism of $U(\mathfrak{h})-$

modules
(15) $U(g)\otimes_{\mathfrak{h}}A\cong\sum_{E}A_{E}$ , $A_{E}\cong A$ .
Indeed, define a $U(\mathfrak{h})$ -homomorphism $\varphi:U(\mathfrak{g})\otimes_{K}A\rightarrow\sum A_{E}$ by

$\varphi(v^{E}\otimes a)=\sum_{=}\left(\begin{array}{l}E\\F\end{array}\right)v^{E-F}a_{F}F\leq E$

If $x\in \mathfrak{h}$ , we have by (13)

$\varphi(v^{E}x\otimes a)=\sum_{F\leqq E}\left(\begin{array}{l}E\\F\end{array}\right)v^{E-F}(x)\varphi(v^{F}\otimes a)$

$=\sum_{F\leqq E}\sum_{G\leqq F}\left(\begin{array}{l}E\\F\end{array}\right)\left(\begin{array}{l}F\\G\end{array}\right)v^{E-F}(x)v^{F-G}a_{G}=\sum_{G\leqq E}\sum_{G\leqq F\leqq E}\left(\begin{array}{l}E\\F\end{array}\right)\left(\begin{array}{l}F\\G\end{array}\right)v^{E-F}(x)v^{F-G}a_{G}$
,

while

$\varphi(v^{E}\otimes xa)=\sum_{G\leqq E}\left(\begin{array}{l}E\\G\end{array}\right)v^{E-G}xa_{G}=\sum_{o\leqq E}\sum_{H\leqq E-G}\left(\begin{array}{l}E\\G\end{array}\right)\left(\begin{array}{l}E-G\\H\end{array}\right)v^{E-G-H}(x)v^{H}a_{G}$

$=\sum_{G\leqq E}\sum_{G\leqq F\leqq E}\left(\begin{array}{l}E\\G\end{array}\right)\left(\begin{array}{l}E-G\\F-G\end{array}\right)v^{E-F}(x)v^{F-G}a_{G}$ .

Since $\left(\begin{array}{l}E\\F\end{array}\right)\left(\begin{array}{l}F\\G\end{array}\right)=\left(\begin{array}{l}E\\G\end{array}\right)\left(\begin{array}{l}E-G\\F-G\end{array}\right)$ , we have $\varphi(v^{E}x\otimes a)=\varphi(v^{E}\otimes xa)$ . Hence $\varphi$

induces a $U(\mathfrak{h})$ -homomorphism $U(\mathfrak{g})\otimes_{\mathfrak{h}}A\rightarrow\sum A_{E}$ which we shall denote also
by $\varphi$ .

Next define a linear mapping $\psi:\Sigma A_{E}\rightarrow U(\mathfrak{g})\otimes_{\mathfrak{h}}$ $A$ by

$\psi(a_{E})=\sum_{F\leqq E}\left(\begin{array}{l}E\\F\end{array}\right)v^{F}\otimes(v^{E-F})_{*}a$ .
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Then we have by (12)

$\varphi\psi(a_{E})=\sum_{F\leqq E}\sum_{G\leqq F}\left(\begin{array}{l}E\\F\end{array}\right)\left(\begin{array}{l}F\\G\end{array}\right)v^{F-G}v_{\star}^{E-F}a_{G}=a_{E}$ ,

and similarly $\psi\varphi=$ the identity. Hence the isomorphism (15) is established.
Let $B$ be an $\mathfrak{h}$ -module. If we put $Hom_{\mathfrak{h}}(A_{E}, B)=Hom_{\mathfrak{h}}(A, B)_{E}$ , we have

at once
(16) $Hom_{\mathfrak{h}}(U(\mathfrak{g})\otimes_{\mathfrak{h}}A, B)\cong\prod_{E}Hom_{\mathfrak{h}}(A, B)_{E}$ ,

$\Pi$ denoting the Cartesian product. The E-component $f_{E}^{\prime}$ of $f^{\prime}\in Hom_{\mathfrak{h}}(U(\mathfrak{g})$

$\otimes_{\mathfrak{h}}A,$ $B$) is given by

$f_{E}^{\prime}(a)=f^{\prime}(\psi a_{E})=\sum_{F\leqq E}\left(\begin{array}{l}E\\F\end{array}\right)f^{\prime}(v^{F}\otimes v_{*}^{E-F}a)$ .

Replacing $A$ by a g-projective resolution $Y$ of $A$ , we get the following isomor-
phism

(17) $Ext_{\mathfrak{h}}(U(\mathfrak{g})\otimes_{\mathfrak{h}}A, B)\cong\prod_{E}Ext_{\mathfrak{h}}(A, B)_{E}$ ,

for a g-module $A$ and an $\mathfrak{h}$ -module $B$.
Now assume that $A$ is an $\mathfrak{h}$ -module and $B$ a g-module. Then $U(g)\otimes_{\mathfrak{h}}A$

is a g-module. Define a mapping $\varphi^{\prime}$ : $Hom_{\mathfrak{h}}(U(\mathfrak{g})\otimes_{\mathfrak{h}}A, B)\rightarrow\Pi Hom_{\mathfrak{h}}(A, B)_{E}$ by
$\varphi^{\prime}(f^{\prime})_{E}=f_{(E)}^{\prime}$ , where

$f_{(E)}^{\prime}(a)=v^{E}(f^{\prime})(1\otimes a)$ .
This mapping $\varphi^{r}$ is in fact an isomorphism, the inverse mapping being
given by

$\psi^{\prime}\{f_{E}\}(v_{*}^{E}\otimes a)=\sum_{F\leqq E}\left(\begin{array}{l}E\\F\end{array}\right)v_{*}^{E-F}f_{F}(a)$ , $\{f_{E}\}\in\Pi Hom_{\mathfrak{h}}(A, B)_{E}$ .

Replacing $A$ by an $\mathfrak{h}$ -projective resolution, we get also an isomorphism (17),
for an $\mathfrak{h}$-module $A$ and a g-module $B$.

Now assume that both $A$ and $B$ are g-modules. Then we have an iso-
morphism (17) by either one of the above considerations. Let us follow the
first. Then for $f\in Hom_{\mathfrak{h}}(Y_{n}, B)$ where $Y$ is a g-projective resolution of $A$,
the E-component of $ f\pi$ is given by

$(f\pi)_{E}(y)=\sum_{F\leqq E}\left(\begin{array}{l}E\\F\end{array}\right)f(v^{F}v_{*}^{E-F}y)=\{f(y)0$
$(E=0)(E\neq 0)$

while the E-component of $s\alpha f$ is given by

$(s\alpha f)_{E}(y)=\sum_{F\leqq E}\left(\begin{array}{l}E\\F\end{array}\right)v^{F}f(v_{*}^{E-F}y)=v^{E}(f)(y)$ .
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Hence $F\in Ext_{\mathfrak{h}}^{n}(A, B)$ is stable if and only if $v^{E}(F)=0(E\neq 0)$ , as desired.
(If we follow the second, the E-component of $ f\pi$ is $v^{E}(f)$ , while that of $s\alpha f$

is $f$ or $0$ according to $E=0$ or $E\neq 0.$ )

Since the condition $Ext_{I)}^{p}(A, B^{(q)})=0$ reduces by (17) to $Ext_{\mathfrak{y}}^{p}(A, B)=0_{:}$

Theorems 1 and 2 are stated in our case as follows:
PROPOSITION 3. Let $\mathfrak{h}$ be an ideal of $\mathfrak{g}$ , and assume that $\mathfrak{g},$

$\mathfrak{h}$ and $\mathfrak{g}/\mathfrak{h}$ all
have K-bases. Assume furthermore that $Ext_{\{)}^{p}(A, B)=0(0<p<n)$ . Then the
following sequence is exact:

$\lambda$

$\rho$

$0\rightarrow Ext_{\mathfrak{g}.\mathfrak{h}}^{n}(A, B)\rightarrow Ext_{\mathfrak{g}}^{n}(A, B)\rightarrow[Ext_{\mathfrak{h}}^{n}(A, B)]^{3}$

$\rightarrow^{\tau}Ext_{\mathfrak{g}}^{n+_{\{)}1}(A, B)\rightarrow^{\lambda}Ext_{8}^{n+1}(A, B)$ .
In the case $A=K$ this proposition is proved by Hochschild and Serre

[9].

Tokyo University of Education.
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