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Introduction.

Let $p$ be an odd prime, $Q_{p}$ the $p$-adic number field, and $\Omega$ an algebraic
closure of $Q_{p}$ . For each $n\geqq 0$ , we denote by $F_{n}$ the extension field of $Q_{p}$

generated by the set $W_{n}$ of all $p^{n+1}$ -th roots of unity in J2. The local cyclo-
tomic field $F_{n}$ is then a cyclic extension of degree $p^{n}(p-1)$ over $Q_{p}$ . Let $W$

be the union of the increasing sequence of groups $W_{n}(n\geqq 0)$ and let $F$ be
the union of the increasing sequence of fields $F_{n}(n\geqq 0)$ . Then $F=Q_{p}(W)$ ,
and it is an infinite abelian extension of $Q_{p}$ . Let $ j\psi$ be the maximal abelian
extension of $F$ in S2; $1\psi$ is clearly a Galois extension of $Q_{p}$ .

We now consider the following problems on the local fields $F_{n}$ and $1\psi$ ;

To determine the structure of the multiplicative group of the field $F_{n}$ acted
on by the Galois group $G(F_{n}/Q_{p})$ , and to describe explicitly the structure of
the Galois group of the extension $M/Q_{p}$ . In the present paper, we shall
give a solution to these problems by using the result of a previous paper,
in which we studied some arithmetic properties of local cyclotomic fields in
applying the theory of $\Gamma- finite$ modules We hope that the result of the
present paper, combined with our previous results on Galois groups of local
fields,2) will give us further insight into the structure of the Galois group
of the extension $\Omega/Q_{p}$ .

1. The structure of the multiplicative group of $F_{n}$ .
Let $U$ be the group of all p-adic units in $Q_{p}$ and $U^{0}$ the subgroup of

all $a$ in $U$ such that $a\equiv 1mod p$. Then $U$ is the direct product of $U^{0}$ and
a cyclic subgroup $V$ of order $p-1$ consisting of all roots of unity in $Q_{p}$ :

$U=U^{0}\times V$ .

1) Cf. K. Iwasawa, On the theory of cyclotomic fields, Ann. of Math., 70 (1959),
530-561.

2) Cf. K. Iwasawa, On Galois groups of local fields, Trans. Amer. Math. Soc., sa
(1955), 448-469.
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By local class field theory, there exists a topological isomorphism $\kappa$ of $G=$

$G(F/Q_{p})$ onto $U$ such that
$\zeta^{\sigma}=\zeta^{\kappa(\sigma)}$ , $\sigma\in G$ ,

for every $\zeta$ in $W$ Then, for any $\sigma$ in $G$ , there exists a unique element $\eta_{\sigma}$

in $V$ such that
$\kappa(\sigma)\equiv\eta_{\sigma}$ $mod p$ ,

and the mapping $\sigma\rightarrow\eta_{\sigma}$ defines a homomorphism of $G$ onto $V$ with kernel
$G(F/F_{0})$ .

Let $n(\geqq 0)$ be fixed. Let $\mathfrak{p}_{n}$ be the unique prime ideal of $F_{n}$ dividing
the rational prime $p$, and let $B_{n}$ and $B_{n^{0}}$ denote, respectively, the group of
all $\mathfrak{p}_{n}$-adic units in $F_{n}$ and the subgroup of all $\beta$ in $B_{n}$ such that $\beta\equiv 1$

$mod \mathfrak{p}_{n}$ . Then $B_{n}$ is the direct product of $B_{n^{0}}$ and $V$ :
$B_{n}=B_{n^{0}}\times V$ .

The groups $B_{n},$ $B_{n}^{0}$ , and $V$ are invariant under the Galois group $G_{n}=G(F_{n}/Q_{p})$ .
The action of $G_{n}$ on $V$ is obviously trivial. But the action of $G_{n}$ on $B_{n^{0}}$ is
given as $follows^{3)}$ : Let $R_{n}$ be the group ring of $G_{n}$ over the ring $O_{p}$ of
$p\cdot adic$ integers, and let $I_{n}$ be the ideal of $R_{n}$ consisting of all elements of
the form $\sum_{\sigma}a_{\sigma}\sigma(a_{\sigma}\in O_{p})$ with $\sum_{\sigma}a_{\sigma}=0$ . Since $B_{n^{0}}$ is a p-primary compact

abelian group, we may consider $O_{p}$ as an operator domain of $B_{n^{0}}$ . Hence we
may also consider $R_{n}$ as acting on $B_{n}^{0}$ . As an $R_{n}$-group, $B_{n^{0}}$ is then the
direct product of $U^{0},$ $W_{n}$ , and a subgroup $C_{n}$ isomorphic with the $R_{n}$-module
$I_{n}$ :

$B_{n^{0}}=U^{0}\times W_{n}\times C_{n}$ .
Since $U=U^{0}\times V$, we also have

$B_{n}=U\times W_{n}\times C_{n}$ , $C_{n}\cong I_{n}$ .
Now, let $A_{n}$ denote the multiplicative group of the field $F_{n}$ and let $\pi_{n}$

be any prime element of $F_{n}$ . Then $A_{n}/B_{n}$ is an infinite cyclic group gene-
rated by the coset of $\pi_{n}mod B_{n}$ , and the Galois group $G_{n}$ acts trivially on
$A_{n}/B_{n}$ . Therefore $\pi_{n}^{\sigma-1}$ is contained in $B_{n}$ for any $\sigma$ in $G_{n}$ . For such a $\sigma$,
we also put

$\eta_{\sigma}=\eta_{\sigma;}$ ,

where $\sigma^{\prime}$ is any element of $G=G(F/Q_{p})$ inducing $\sigma$ on $F_{n}$ . We then have
the following

LEMMA. For any prime element $\pi_{n}$ of $F_{n}$ and for any $\sigma$ in $G_{n}$ ,

$\pi_{n}^{a-1}\equiv\eta_{\sigma}$ $mod \mathfrak{p}_{n}$ .

3) Cf. 1. $c$ . $1$), Theorem 19.
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PROOF. Let $\pi_{n^{\prime}}$ be any other prime element of $F_{n}$ . Then $\pi_{n}^{\prime}=\beta\pi_{n}$ , with
$\beta$ in $B_{n}$ ; and since $G_{n}$ acts trivially on $V,$ $\beta^{\sigma-1}\equiv 1mod \mathfrak{p}_{n}$ . Hence $\pi_{n}^{\prime\sigma-t}\equiv$

$\pi_{n}^{\sigma-1}mod \mathfrak{p}_{n}$ , and we see that it is sufficient to prove the lemma for one
particular $\pi_{n}$ . Let $\zeta_{n+1}$ be a primitive $p^{n}$‘1-th root of unity in $F_{n}$ . Then
$\pi_{n}=1-\zeta_{n+1}$ is a prime element of $F_{n}$ , and

$\pi_{n}^{\sigma}\equiv\pi_{n}^{\sigma^{J}}\equiv 1-\zeta_{n\perp\iota^{K(\sigma^{J})}}\equiv 1-(1-\pi_{n})^{\mathcal{K}(\mathcal{O}^{\prime})}$

$\equiv\kappa(\sigma^{\prime})\pi_{n}\equiv\eta_{\sigma^{\prime}}\pi_{n}\equiv\eta_{\sigma}\pi_{n}$ $mod \mathfrak{p}_{n^{2}}$ .
Therefore $\pi_{n}^{\sigma-1}\equiv\eta_{\sigma}mod \mathfrak{p}_{n},$ $q$ . $e$ . $d$ .

Let $\pi_{n}$ be again any prime element of $F_{n}$ . By the above lemma, we put

$\pi_{n}^{\sigma-1}=\beta_{\sigma}\eta_{\sigma}$ , $\sigma\in G_{n}$ ,

with $\beta_{\sigma}$ in $B_{n^{0}}$ . We then denote by $D(\pi_{n})$ the closure of the subgroup of
the compact group $B_{n^{0}}$ generated by these $\beta_{\sigma}(\sigma\in G_{n});D(\pi_{n})$ consists of all
elements of the form

$\prod_{\sigma}\beta_{\sigma^{a_{\mathcal{O}}}}$

with arbitrary $p$-adic integers $a_{\sigma}$ . Since the elements $\beta_{\sigma}(\sigma\in G_{n})$ define a
l-cocycle of $G_{n}$ in $B_{n^{0}}$ and satisfy the relations $\beta_{\tau\sigma}=\beta_{\sigma}\beta_{\tau^{\sigma}}(\sigma, \tau\in G_{n}),$ $D(\pi_{n})$

is an $R_{n}$-subgroup of $B_{n^{0}}$ .
THEOREM 1. There exists a prime element $\pi_{n}$ of $F_{n}$ such that

$B_{n}=U\times W_{n}\times D(\pi_{n})$ .
The $R_{n}$-group $D(\pi_{n})$ is then isomorphic with the $R_{n}$-module $I_{n}$ under an isomor-
phism $\varphi$ such that $\varphi(\beta_{\sigma})=\sigma-1(\sigma\in G_{n})$ .

PROOF. Let $B_{n}=U\times W_{n}\times C_{n}$ as in the above, and let $g$ be the projection
from $B_{n}$ on the factor $C_{n}$ . For any $\xi$ in $A_{n},$ $\xi^{\sigma-1}(\sigma\in G_{n})$ is always contained
in $B_{n}$. Hence we put

$\xi_{\sigma}=g(\xi^{\sigma-1})$ , $\sigma\in G_{n}$ .
Then $\{\xi_{\sigma}\}$ defines a l-cocycle of $G_{n}$ in $C_{n}$ ; and since $H^{I}(G_{n} ; A_{n})=1$ , the
mapping $\xi\rightarrow\{\xi_{\sigma}\}$ induces a homomorphism of $A_{n}/B_{n}$ onto the cohomology
group $H^{J}(G_{n} ; C_{n})$ . Let $f$ be an $R_{n}$-isomorphism of $C_{n}$ onto $I_{n}$ , and let $\omega_{\sigma}$

$(\sigma\in G_{n})$ be the elements of $C_{n}$ such that $f(\omega_{\sigma})=\sigma-1$ . It is then easy to see
that $H^{1}(G_{n} ; C_{n})$ is a cyclic group of order $p^{n}$ generated by the cohomology
class of $\{\omega_{\sigma}\}$ . Take a prime element $\pi_{n}$ of $F_{n}$ . Since $A./B$. is an infinite
cyclic group generated by the coset of $\pi_{n}mod B_{n}$ , the l-cocycle $\{g(\pi_{n}^{\sigma-1})\}$

also generates $H^{1}(G_{n} ; C_{n})$ . Therefore there is an integer $m$ , prime to $p$ ,

such that
$g(\pi_{n}^{\sigma-1})=\omega_{\sigma}^{m}\gamma^{\sigma-1}$ , $\sigma\in G_{n}$ ,

with an element $\Gamma$ in $C_{n}$ . Since $\pi_{n}\gamma^{-1}$ is also a prime element of $F_{n}$ , we
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$\iota eplace\pi_{n}$ by $\pi_{\gamma}\iota\gamma^{-1}$ and denote the latter again by $\pi_{n}$ . Then we have
$g(\pi_{n}^{\sigma-1})=\omega_{\sigma}^{m}$ , $\sigma\in G_{n}$ .

As in the above, let $\pi_{n}^{\sigma-1}=\beta_{\sigma}\eta_{\sigma}$ . Then $g(\beta_{\sigma})=g(\pi_{n}^{\sigma-1})=\omega_{\sigma}^{m}(\sigma\in G_{n})$ and
$g$ induces an $O_{p}$-homomorphism of $D(\pi_{n})$ into $C_{n}$ . Therefore, if $h$ is the $O_{p^{-}}$

homomorphism of $I_{n}$ onto $D(\pi_{n})$ such that $h(\sigma-1)=\beta_{\sigma}$ , then
$f\circ g\circ h(\sigma-1)=m(\sigma-1)$ , $\sigma\in G_{n}$ .

Since $m$ is prime to $p$, fogoh is an automorphism of $I_{n}$ . It follows that $g$

induces an isomorphism of $D(\pi_{n})$ onto $C_{n}$ , and we have
$B_{n}=U\times W\times D(\pi_{n})$ .

Suppose next that $\pi_{n}$ is any prime element of $F_{n}$ satisfying $B_{n}=U\times W$

$\times D(\pi_{n});\pi_{n}$ need not be the particular prime element obtained in the above
argument. Clearly, there is an $O_{p}$-homomorphism $\psi$ of $I_{n}$ onto $D(\pi_{n})$ such
that $\psi(\sigma-1)=\beta_{\sigma}$ . Since $\beta_{\tau\sigma}=\beta_{d}\beta_{r^{\sigma}},$ $\psi$ is then also an $R_{n}$-homomorphism.
However, it follows from $B_{n}=U\times W_{n}\times C_{n}$ that $I_{n}\cong C_{n}\cong D(\pi_{n})$ . In particular,
as compact abelian groups, both $I_{n}$ and $D(\pi_{n})$ are isomorphic with the direct
sum of $p^{n}(p-1)-1$ copies of $O_{p}$ . Hence $\psi$ must be one-one, and $\varphi=\psi^{-}$ is an
$R_{n}$-isomorphism of $D(\pi_{n})$ onto $I_{n}$ such that $\varphi(\beta_{\sigma})=\sigma-1$ . Thus the theorem
is completely proved.

Since $A_{n}/B_{n}$ is an infinite cyclic group generated by the coset of $\pi_{n}$

$mod B_{n}$ and since the action of $G_{n}$ on $U\times W_{n}$ is well-known, the structure of
the $G_{n}$-group $A_{n}$ , the multiplicative group of $F_{n}$ , is completely determined by
Theorem 1.

2. The structure of the Galois group $G(M/Q_{p})$ .
Let $E$ be the maximal unramified extension of $Q_{p}$ in $\Omega$ . It is known

that $E$ is an abelian extension of $Q_{p}$ generated by all roots of unity in 2
whose orders are prime to $p$ , and also that the Galois group $G(E/Q_{p})$ is
isomorphic with the so-called total completion $\overline{Z}$ of the additive group $Z$ of
rational integers.4) It follows that the Galois group $G(E^{\prime}/Q_{p})$ of the maximal
$p$-complementary unramified extension $E^{\prime}$ of $Q_{p}$ is isomorphic with the p-
complementary completion $p\overline{Z}$ of $Z$. Furthermore, for each $n\geqq 0,$ $EF_{n}$ is the
maximal unramified extension of $F_{n}$ in $\Omega$ , and $E^{\prime}F_{n}$ is the maximal $P$-comple-
mentary unramified extension of $F_{n}$ in $\Omega$ . Let $L_{n}$ be the maximal $p$-comple-
mentary abelian extension of $F_{n}$ in .9. Then $E^{\prime}F_{n}$ is contained in $L_{n}$ and,

4) For compact completions of (discrete) groups, cf. 1. $c$ . $2$), $1.3$ . We also notice
that a compact topological group is called p-primary (p-complementary) if and only
if it is the inverse limit of a family of finite groups whose orders are powers of $p$

(($prime$ to $p$).
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by local class field theory, $G(L_{n}/E^{\prime}F_{n})$ is naturally isomorphic with $B_{n}/B_{n^{0}}$

$\cong V$. Since $F_{n\cap}L_{0}=F_{0},$ $G(F_{n}L_{0}/F_{n})\cong G(L_{0}/F_{0}),$ $F_{n}L_{0}$ is clearly contained in
$L_{n}$ . But, since $F_{n}L_{0}$ contains both $E^{\prime}F_{n}$ and a ramified extension of degree
$p-1$ over $F_{n}$ , it follows that

$F_{n}L_{0}=L_{n}$ , $n\geqq 0$ .
If $F_{n}$ denotes the unique subfield of $F_{n}$ with degree $p^{n}$ over $Q_{p}$ , then we
also have

$F_{n^{\prime}}L_{0}=L_{n}$ , $F_{n^{\prime}\cap}L_{0}=Q_{p}$ , $n\geqq 0$ .
Let $F^{\prime}$ be the union of the increasing sequence of subfields $F_{n}^{\prime}$ in $\Omega$ .

Then $F^{\prime}$ is a subfield of $F$ such that $\kappa(G(F,/F^{\prime}))=V$, and we have
$G(F^{\prime}/Q_{p})\cong U^{0}$ .

On the other hand, the union $L$ of the increasing sequence of subfields $L_{n}$

in $\Omega$ is, as one sees easily, the maximal $p$-complementary abelian extension
of $F$ in 2. We then prove the following

THEOREM 2. Let $F^{\prime}$ be the subfield of $F$ such that $\kappa(G(F/F^{\prime}))=V$ and let
$L_{0}$ and $L$ be the maximal p-complementary abelian extensions of $F_{0}$ and $F$ in $\Omega$ ,
respectively. Then

$F^{\prime}L_{0}=L$, $F^{\prime}\cap L_{0}=Q_{p}$ ,

$G(L/Q_{p})=G(L/F^{\prime})\times G(L/L_{0})$ ,

$G(L/F^{\prime})\cong G(L_{0}/Q_{p})$ , $G(L/L_{0})\cong G(F^{\prime}/Q_{p})\cong U^{0}$ .
Furthermore, $G(L_{0}/Q_{p})$ is the p-complementary completion of a group generated
by two elements $\sigma$ and $\tau$ satisfying the only relations

$\sigma\tau\sigma^{-1}=\tau^{p}$ , $\tau^{(p-1)^{2}}=1$ ;

$\sigma$ is a Frobenius automorphism for $L_{0}/Q_{p}$ and $\tau$ is a generator of the inertia
group for $L_{0}/Q_{p}$ .

PROOF. The first half of the theorem is an immediate consequence of
what is stated in the above; one has only to notice that $L_{0}$ is a Galois
extension of $Q_{p}$ .

The field $E^{\prime}$ defined in the above is obviously the inertia field for the
tamely ramified extension $L_{0}/Q_{p}$ . Since $[L_{0}:E^{\prime}F_{0}]=[F_{0}:Q_{p}]=p-1$ and
$E^{\prime}\cap F_{0}=Q_{p}$ , we see that $[L_{0} : E^{\prime}]=(p-1)^{2}$ . The second half of the theorem
is then an easy consequence of a result on the structure of the Galois group
for the maximal tamely ramified extension of a local field

If we are merely interested in the purely group-theoretical structure
of the group $G(L/Q_{p})$ , we have the following corollary, which is an immediate
consequence of the above theorem:

5) Cf. 1. $c$ . $2$), $3.1$ .
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$CoROLLARY$ . The Galois group $G(L/Q_{p})$ is the total completion of a group
generated by two element $\lambda$ and pt satisfying the only relations

$\lambda_{l^{\ell}}\lambda^{-1}=\mu^{p}$ , $\mu^{(p-1)^{2}}=1$ .
THEOREM 3. Let $L$ and $ j\psi$ be as in the above and let $K$ be the maximal

p-primary abelian extension of $F$ in 2 so that $KL=M,$ $K_{\cap}L=F$. Then:

i) $G(M/L)$ is a closed normal subgroup of $G(j\psi/Q_{p})$ such that
$G(M/Q_{p})/G(M/L)=G(L/Q_{p})$ , and the group extension $G(M/Q_{p})/G(M/L)$ splits,

ii) $G(L/F)$ acts trivially on $G(M/L)$ so that $G(M/L)$ can be considered as a
G-group $(G=G(F/Q_{p})=G(L/Q_{p})/G(L/F))$ , and as such, $G(M/L)$ is naturally
isomorphic with $G(K/F)$ .

PROOF. Let
$X=G(M/Q_{p})$ , $P=G(1tl/L_{0})$ , $N=G(j\psi/L)$ .

Then $P$ is a closed $p$-primary normal subgroup of $X$, and $X/P=G(L_{0}/Q_{p})$ is
a $p$-complementary compact group. Hence the group extension $X/P$ splits
and there exists a closed subgroups $H$ of $X$ such that

$HP=X$, $H_{\cap}P=1$ , $H\cong X/P.6$ )

Such a group $H$ also satisfies $HN=G(l\psi/F^{\prime})$ . On the other hand, since
$p/N=G(L/L_{0})\cong U^{0}$ , there is an element $\sigma$ in $P$ such that $ N\sigma$ generates a
cyclic group which is everywhere dense in $P/N$ Let $S$ be the closure of
the cyclic subgroup of $P$ generated by $\sigma$ . Using $P/N\cong U^{0}$ , we then see
easily that

$\Lambda^{\prime}S=P$, $N_{\cap}S=1$ .
Since both $N$ and $HN=G(M/F^{\prime})$ are normal in $X$, we have $(\sigma H\sigma^{-1})N=\sigma(HN)\sigma^{-1}$

$=HN$, and $\sigma H\sigma^{-1}\cap N=\sigma(H_{\cap}N)\sigma^{-1}=1$ . Hence there is an element $\tau$ in $N$

such that $\tau\sigma H\sigma^{-1}\tau^{-1}=H^{\prime}()$ Let $0^{\prime}=\tau 0$ . Then $No=N\sigma^{\prime}$ , and the closure $S^{\prime}$

of the cyclic subgroup of $P$ generated by $\sigma^{\prime}$ also satisfies $NS^{\prime}=P$ and $N_{\cap}S^{\prime}$

$=1$ . Furthermore, since $\sigma^{\prime}H\sigma^{\prime-1}=H,$ $S^{\prime}$ is contained in the normalizer of $H$

in $X$. Therefore $T=HS^{\prime}$ is a closed subgroup of $X$, and it is easy to see
that $NT=X,$ $N_{\cap}T=1$ . Thus the first part of the theorem is proved.

The second part is an immediate consequence of the fact that $KL=M$,
$K_{\cap}L=F$, and $G(M/F)=G(M/K)\times G(M/L)$ .

Now, the action of $G=G(F/Q)$ on $G(K/F)$ is explicitly known.8) There-
fore, combining that with the above Theorems 2, 3, we see that the structure
of the Galois group $G(M/Q_{p})$ is thus completely determined.

Massachusetts Institute of Technology.

6) Cf. 1 $c$ . $2$), Lemma 5.
7) Cf. 1. $c$ . $6$).
8) Cf. 1. $c$ . $1$ ), Theorem 18.
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