On local cyclotomic fields.

Dedicated to Professor Z. Suetuna.

By Kenkichi Iwasawa

(Received May 4, 1959)

Introduction.

Let p be an odd prime, Q_{p} the p-adic number field, and Ω an algebraic closure of Q_{p}. For each $n \geqq 0$, we denote by F_{n} the extension field of Q_{p} generated by the set W_{n} of all p^{n+1}-th roots of unity in Ω. The local cyclotomic field F_{n} is then a cyclic extension of degree $p^{n}(p-1)$ over Q_{p}. Let W be the union of the increasing sequence of groups $W_{n}(n \geqq 0)$ and let F be the union of the increasing sequence of fields $F_{n}(n \geqq 0)$. Then $F=Q_{p}(W)$, and it is an infinite abelian extension of Q_{p}. Let M be the maximal abelian extension of F in $\Omega ; M$ is clearly a Galois extension of Q_{p}.

We now consider the following problems on the local fields F_{n} and M : To determine the structure of the multiplicative group of the field F_{n} acted on by the Galois group $G\left(F_{n} / Q_{p}\right)$, and to describe explicitly the structure of the Galois group of the extension M / Q_{p}. In the present paper, we shall give a solution to these problems by using the result of a previous paper, in which we studied some arithmetic properties of local cyclotomic fields in applying the theory of Γ-finite modules. ${ }^{1)}$ We hope that the result of the present paper, combined with our previous results on Galois groups of local fields, ${ }^{2}$) will give us further insight into the structure of the Galois group of the extension Ω / Q_{p}.

1. The structure of the multiplicative group of \boldsymbol{F}_{n}.

Let U be the group of all p-adic units in Q_{p} and U^{0} the subgroup of all a in U such that $a \equiv 1 \bmod p$. Then U is the direct product of U^{0} and a cyclic subgroup V of order $p-1$ consisting of all roots of unity in Q_{p} :

$$
U=U^{0} \times V
$$

[^0]By local class field theory, there exists a topological isomorphism κ of $G=$ $G\left(F / Q_{p}\right)$ onto U such that

$$
\zeta^{\sigma}=\zeta^{\kappa(\sigma)}, \quad \sigma \in G,
$$

for every ζ in W. Then, for any σ in G, there exists a unique element η_{0} in V such that

$$
\kappa(\sigma) \equiv \eta_{\sigma} \quad \bmod p,
$$

and the mapping $\sigma \rightarrow \eta_{\sigma}$ defines a homomorphism of G onto V with kernel $G\left(F / F_{0}\right)$.

Let $n(\geqq 0)$ be fixed. Let \mathfrak{p}_{n} be the unique prime ideal of F_{n} dividing the rational prime p, and let B_{n} and $B_{n}{ }^{0}$ denote, respectively, the group of all \mathfrak{p}_{n}-adic units in F_{n} and the subgroup of all β in B_{n} such that $\beta \equiv 1$ $\bmod \mathfrak{p}_{n}$. Then B_{n} is the direct product of $B_{n}{ }^{0}$ and V :

$$
B_{n}=B_{n}{ }^{0} \times V
$$

The groups $B_{n}, B_{n}{ }^{0}$, and V are invariant under the Galois group $G_{n}=G\left(F_{n} / Q_{p}\right)$. The action of G_{n} on V is obviously trivial. But the action of G_{n} on $B_{n}{ }^{0}$ is given as follows ${ }^{3}$: Let R_{n} be the group ring of G_{n} over the ring O_{p} of p-adic integers, and let I_{n} be the ideal of R_{n} consisting of all elements of the form $\sum_{\sigma} a_{\sigma} \sigma\left(a_{\sigma} \in O_{p}\right)$ with $\sum_{\sigma} a_{\sigma}=0$. Since $B_{n}{ }^{0}$ is a p-primary compact abelian group, we may consider O_{p} as an operator domain of $B_{n}{ }^{0}$. Hence we may also consider R_{n} as acting on $B_{n}{ }^{0}$. As an R_{n}-group, $B_{n}{ }^{0}$ is then the direct product of U^{0}, W_{n}, and a subgroup C_{n} isomorphic with the R_{n}-module I_{n} :

$$
B_{n}{ }^{0}=U^{0} \times W_{n} \times C_{n} .
$$

Since $U=U^{0} \times V$, we also have

$$
B_{n}=U \times W_{n} \times C_{n}, \quad C_{n} \cong I_{n} .
$$

Now, let A_{n} denote the multiplicative group of the field F_{n} and let π_{n} be any prime element of F_{n}. Then A_{n} / B_{n} is an infinite cyclic group generated by the coset of $\pi_{n} \bmod B_{n}$, and the Galois group G_{n} acts trivially on A_{n} / B_{n}. Therefore $\pi_{n}^{\sigma-1}$ is contained in B_{n} for any σ in G_{n}. For such a σ, we also put

$$
\eta_{\sigma}=\eta_{\sigma^{\prime}},
$$

where σ^{\prime} is any element of $G=G\left(F / Q_{p}\right)$ inducing σ on F_{n}. We then have the following

Lemma. For any prime element π_{n} of F_{n} and for any σ in G_{n},

$$
\pi_{n}^{\sigma-1} \equiv \eta_{\sigma} \quad \bmod \mathfrak{p}_{n}
$$

3) Cf. 1. c. 1), Theorem 19.

Proof. Let $\pi_{n}{ }^{\prime}$ be any other prime element of F_{n}. Then $\pi_{n}{ }^{\prime}=\beta \pi_{n}$, with β in B_{n}; and since G_{n} acts trivially on $V, \beta^{\sigma-1} \equiv 1 \bmod \mathfrak{p}_{n}$. Hence $\pi_{n}{ }^{\prime \sigma-1} \equiv$ $\pi_{n}{ }^{\sigma-1} \bmod \mathfrak{p}_{n}$, and we see that it is sufficient to prove the lemma for one particular π_{n}. Let ζ_{n+1} be a primitive p^{n+1}-th root of unity in F_{n}. Then $\pi_{n}=1-\zeta_{n+1}$ is a prime element of F_{n}, and

$$
\begin{aligned}
\pi_{n}{ }^{\sigma} & \equiv \pi_{n}^{\sigma^{\prime}} \equiv 1-\zeta_{n+1}{ }^{\kappa\left(\sigma^{\prime}\right)} \equiv 1-\left(1-\pi_{n}\right)^{\kappa\left(\sigma^{\prime}\right)} \\
& \equiv \kappa\left(\sigma^{\prime}\right) \pi_{n} \equiv \eta_{\sigma}, \pi_{n} \equiv \eta_{\sigma} \pi_{n} \quad \bmod \mathfrak{p}_{n}{ }^{2} .
\end{aligned}
$$

Therefore $\pi_{n}{ }^{\sigma-1} \equiv \eta_{\sigma} \bmod \mathfrak{p}_{n}$, q. e.d.
Let π_{n} be again any prime element of F_{n}. By the above lemma, we put

$$
\pi_{n}{ }^{\sigma-1}=\beta_{\sigma} \eta_{\sigma}, \quad \sigma \in G_{n},
$$

with β_{σ} in $B_{n}{ }^{0}$. We then denote by $D\left(\pi_{n}\right)$ the closure of the subgroup of the compact group $B_{n}{ }^{0}$ generated by these $\beta_{\sigma}\left(\sigma \in G_{n}\right) ; D\left(\pi_{n}\right)$ consists of all elements of the form

$$
\prod_{\sigma} \beta_{\sigma}{ }^{a_{\sigma}}
$$

with arbitrary p-adic integers a_{σ}. Since the elements $\beta_{\sigma}\left(\sigma \in G_{n}\right)$ define a 1-cocycle of G_{n} in $B_{n}{ }^{0}$ and satisfy the relations $\beta_{\tau \sigma}=\beta_{\sigma} \beta_{\tau}{ }^{\sigma}\left(\sigma, \tau \in G_{n}\right), D\left(\pi_{n}\right)$ is an R_{n}-subgroup of $B_{n}{ }^{0}$.

Theorem 1. There exists a prime element π_{n} of F_{n} such that

$$
B_{n}=U \times W_{n} \times D\left(\pi_{n}\right) .
$$

The R_{n}-group $D\left(\pi_{n}\right)$ is then isomorphic with the R_{n}-module I_{n} under an isomorphism φ such that $\varphi\left(\beta_{\sigma}\right)=\sigma-1\left(\sigma \in G_{n}\right)$.

Proof. Let $B_{n}=U \times W_{n} \times C_{n}$ as in the above, and let g be the projection from B_{n} on the factor C_{n}. For any ξ in $A_{n}, \xi^{\sigma-1}\left(\sigma \in G_{n}\right)$ is always contained in B_{n}. Hence we put

$$
\xi_{\sigma}=g\left(\xi^{\sigma-1}\right), \quad \sigma \in G_{n}
$$

Then $\left\{\xi_{o}\right\}$ defines a 1 -cocycle of G_{n} in C_{n}; and since $H^{1}\left(G_{n} ; A_{n}\right)=1$, the mapping $\xi \rightarrow\left\{\xi_{\sigma}\right\}$ induces a homomorphism of A_{n} / B_{n} onto the cohomology group $H^{1}\left(G_{n} ; C_{n}\right)$. Let f be an R_{n}-isomorphism of C_{n} onto I_{n}, and let ω_{σ} ($\sigma \in G_{n}$) be the elements of C_{n} such that $f\left(\omega_{\sigma}\right)=\sigma-1$. It is then easy to see that $H^{1}\left(G_{n} ; C_{n}\right)$ is a cyclic group of order p^{n} generated by the cohomology class of $\left\{\omega_{\sigma}\right\}$. Take a prime element π_{n} of F_{n}. Since A_{n} / B_{n} is an infinite cyclic group generated by the coset of $\pi_{n} \bmod B_{n}$, the 1 -cocycle $\left\{g\left(\pi_{n}{ }^{\sigma-1}\right)\right\}$ also generates $H^{\prime}\left(G_{n} ; C_{n}\right)$. Therefore there is an integer m, prime to p, such that

$$
g\left(\pi_{n}{ }^{\sigma-1}\right)=\omega_{\sigma}{ }^{m} \gamma^{\sigma-1}, \quad \sigma \in G_{n},
$$

with an element γ in C_{n}. Since $\pi_{n} \gamma^{-1}$ is also a prime element of F_{n}, we
replace π_{n} by $\pi_{n} \gamma^{-1}$ and denote the latter again by π_{n}. Then we have

$$
g\left(\pi_{n}^{\sigma-1}\right)=\omega_{\sigma}{ }^{m}, \quad \sigma \in G_{n} .
$$

As in the above, let $\pi_{n}{ }^{\sigma-1}=\beta_{\sigma} \eta_{\sigma}$. Then $g\left(\beta_{\sigma}\right)=g\left(\pi_{n}{ }^{\sigma-1}\right)=\omega_{\sigma}{ }^{m}\left(\sigma \in G_{n}\right)$ and g induces an O_{p}-homomorphism of $D\left(\pi_{n}\right)$ into C_{n}. Therefore, if h is the O_{p} homomorphism of I_{n} onto $D\left(\pi_{n}\right)$ such that $h(\sigma-1)=\beta_{\boldsymbol{\sigma}}$, then

$$
f \circ g \circ h(\sigma-1)=m(\sigma-1), \quad \sigma \in G_{n} .
$$

Since m is prime to $p, f \circ g \circ h$ is an automorphism of I_{n}. It follows that g induces an isomorphism of $D\left(\pi_{n}\right)$ onto C_{n}, and we have

$$
B_{n}=U \times W \times D\left(\pi_{n}\right) .
$$

Suppose next that π_{n} is any prime element of F_{n} satisfying $B_{n}=U \times W$ $\times D\left(\pi_{n}\right) ; \pi_{n}$ need not be the particular prime element obtained in the above argument. Clearly, there is an O_{p}-homomorphism ψ of I_{n} onto $D\left(\pi_{n}\right)$ such that $\psi(\sigma-1)=\beta_{\sigma}$. Since $\beta_{\tau \sigma}=\beta_{\sigma} \beta_{\tau}{ }^{\sigma}, \psi$ is then also an R_{n}-homomorphism. However, it follows from $B_{n}=U \times W_{n} \times C_{n}$ that $I_{n} \cong C_{n} \cong D\left(\pi_{n}\right)$. In particular, as compact abelian groups, both I_{n} and $D\left(\pi_{n}\right)$ are isomorphic with the direct sum of $p^{n}(p-1)-1$ copies of O_{p}. Hence ψ must be one-one, and $\varphi=\psi^{-1}$ is an R_{n}-isomorphism of $D\left(\pi_{n}\right)$ onto. I_{n} such that $\varphi\left(\beta_{\sigma}\right)=\sigma-1$. Thus the theorem is completely proved.

Since A_{n} / B_{n} is an infinite cyclic group generated by the coset of π_{n} $\bmod B_{n}$ and since the action of G_{n} on $U \times W_{n}$ is well-known, the structure of the G_{n}-group A_{n}, the multiplicative group of F_{n}, is completely determined by Theorem 1.

2. The structure of the Galois group $\boldsymbol{G}\left(M / Q_{2}\right)$.

Let E be the maximal unramified extension of Q_{p} in Ω. It is known that E is an abelian extension of Q_{p} generated by all roots of unity in Ω whose orders are prime to p, and also that the Galois group $G\left(E / Q_{p}\right)$ is isomorphic with the so-called total completion \bar{Z} of the additive group Z of rational integers. ${ }^{4}$) It follows that the Galois group $G\left(E^{\prime} / Q_{p}\right)$ of the maximal p-complementary unramified extension E^{\prime} of Q_{p} is isomorphic with the p complementary completion ${ }^{p} \bar{Z}$ of Z. Furthermore, for each $n \geqq 0, E F_{n}$ is the maximal unramified extension of F_{n} in Ω, and $E^{\prime} F_{n}$ is the maximal p-complementary unramified extension of F_{n} in Ω. Let L_{n} be the maximal p-complementary abelian extension of F_{n} in Ω. Then $E^{\prime} F_{n}$ is contained in L_{n} and,

[^1]by local class field theory, $G\left(L_{n} / E^{\prime} F_{n}\right)$ is naturally isomorphic with $B_{n} / B_{n}{ }^{0}$ $\cong V$. Since $F_{n} \cap L_{0}=F_{0}, G\left(F_{n} L_{0} / F_{n}\right) \cong G\left(L_{0} / F_{0}\right), F_{n} L_{0}$ is clearly contained in L_{n}. But, since $F_{n} L_{0}$ contains both $E^{\prime} F_{n}$ and a ramified extension of degree $p-1$ over F_{n}, it follows that
$$
F_{n} L_{0}=L_{n}, \quad n \geqq 0
$$

If $F_{n}{ }^{\prime}$ denotes the unique subfield of F_{n} with degree p^{n} over Q_{p}, then we also have

$$
F_{n}^{\prime} L_{0}=L_{n}, \quad F_{n}^{\prime} \cap L_{0}=Q_{p}, \quad n \geqq 0
$$

Let F^{\prime} be the union of the increasing sequence of subfields $F_{n}{ }^{\prime}$ in Ω. Then F^{\prime} is a subfield of F such that $\kappa\left(G\left(F / F^{\prime}\right)\right)=V$, and we have

$$
G\left(F^{\prime} / Q_{p}\right) \cong U^{0}
$$

On the other hand, the union L of the increasing sequence of subfields L_{n} in Ω is, as one sees easily, the maximal p-complementary abelian extension of F in Ω. We then prove the following

Theorem 2. Let F^{\prime} be the subfield of F such that $\kappa\left(G\left(F / F^{\prime}\right)\right)=V$ and let L_{0} and L be the maximal p-complementary abelian extensions of F_{0} and F in Ω, respectively. Then

$$
\begin{gathered}
F^{\prime} L_{0}=L, \quad F^{\prime} \cap L_{0}=Q_{p} \\
G\left(L / Q_{p}\right)=G\left(L / F^{\prime}\right) \times G\left(L / L_{0}\right) \\
G\left(L / F^{\prime}\right) \cong G\left(L_{0} / Q_{p}\right), \quad G\left(L / L_{0}\right) \cong G\left(F^{\prime} / Q_{p}\right) \cong U^{0}
\end{gathered}
$$

Furthermore, $G\left(L_{0} / Q_{p}\right)$ is the p-complementary completion of a group generated by two elements σ and τ satisfying the only relations

$$
\sigma \tau \sigma^{-1}=\tau^{p}, \quad \tau^{(p-1)^{2}}=1
$$

σ is a Frobenius automorphism for L_{0} / Q_{p} and τ is a generator of the inertia group for L_{0} / Q_{p}.

Proof. The first half of the theorem is an immediate consequence of what is stated in the above; one has only to notice that L_{0} is a Galois extension of Q_{p}.

The field E^{\prime} defined in the above is obviously the inertia field for the tamely ramified extension L_{0} / Q_{p}. Since $\left[L_{0}: E^{\prime} F_{0}\right]=\left[F_{0}: Q_{p}\right]=p-1$ and $E^{\prime} \cap F_{0}=Q_{p}$, we see that $\left[L_{0}: E^{\prime}\right]=(p-1)^{2}$. The second half of the theorem is then an easy consequence of a result on the structure of the Galois group for the maximal tamely ramified extension of a local field. ${ }^{5}$)

If we are merely interested in the purely group-theoretical structure of the group $G\left(L / Q_{p}\right)$, we have the following corollary, which is an immediate consequence of the above theorem:

[^2]Corollary. The Galois group $G\left(L / Q_{p}\right)$ is the total completion of a group generated by two element λ and μ satisfying the only relations

$$
\lambda \mu \lambda^{-1}=\mu^{p}, \quad \mu^{(p-1)^{2}}=1 .
$$

Theorem 3. Let L and M be as in the above and let K be the maximal p-primary abelian extension of F in Ω so that $K L=M, K \cap L=F$. Then:
i) $G(M / L)$ is a closed normal subgroup of $G\left(M / Q_{p}\right)$ such that $G\left(M / Q_{p}\right) / G(M / L)=G\left(L / Q_{p}\right)$, and the group extension $G\left(M / Q_{p}\right) / G(M / L)$ splits,
ii) $G(L / F)$ acts trivially on $G(M / L)$ so that $G(M / L)$ can be considered as a G-group $\left(G=G\left(F / Q_{p}\right)=G\left(L / Q_{p}\right) / G(L / F)\right)$, and as such, $G(M / L)$ is naturally isomorphic with $G(K / F)$.

Proof. Let

$$
X=G\left(M / Q_{p}\right), \quad P=G\left(M / L_{0}\right), \quad N=G(M / L) .
$$

Then P is a closed p-primary normal subgroup of X, and $X / P=G\left(L_{0} / Q_{p}\right)$ is a p-complementary compact group. Hence the group extension X / P splits and there exists a closed subgroups H of X such that

$$
H P=X, \quad H \cap P=1, \quad H \cong X / P .^{6)}
$$

Such a group H also satisfies $H N=G\left(M / F^{\prime}\right)$. On the other hand, since $P / N=G\left(L / L_{0}\right) \cong U^{0}$, there is an element σ in P such that $N \sigma$ generates a cyclic group which is everywhere dense in P / N. Let S be the closure of the cyclic subgroup of P generated by σ. Using $P / N \cong U^{0}$, we then see easily that

$$
N S=P, \quad N \cap S=1 .
$$

Since both N and $H N=G\left(M / F^{\prime}\right)$ are normal in X, we have $\left(\sigma H \sigma^{-1}\right) N=\sigma(H N) \sigma^{-1}$ $=H N$, and $\sigma H \sigma^{-1} \cap N=\sigma(H \cap N) \sigma^{-1}=1$. Hence there is an element τ in N such that $\tau \sigma H \sigma^{-1} \tau^{-1}=H . .^{7}$ Let $\sigma^{\prime}=\tau \sigma$. Then $N \sigma=N \sigma^{\prime}$, and the closure S^{\prime} of the cyclic subgroup of P generated by σ^{\prime} also satisfies $N S^{\prime}=P$ and $N \cap S^{\prime}$ $=1$. Furthermore, since $\sigma^{\prime} H \sigma^{\prime-1}=H, S^{\prime}$ is contained in the normalizer of H in X. Therefore $T=H S^{\prime}$ is a closed subgroup of X, and it is easy to see that $N T=X, N \cap T=1$. Thus the first part of the theorem is proved.

The second part is an immediate consequence of the fact that $K L=M$, $K \cap L=F$, and $G(M / F)=G(M / K) \times G(M / L)$.

Now, the action of $G=G\left(F / Q_{p}\right)$ on $G(K / F)$ is explicitly known. ${ }^{8)}$ Therefore, combining that with the above Theorems 2, 3, we see that the structure of the Galois group $G\left(M / Q_{p}\right)$ is thus completely determined.

Massachusetts Institute of Technology.

[^3]
[^0]: 1) Cf. K. Iwasawa, On the theory of cyclotomic fields, Ann. of Math., 70 (1959), 530-561.
 2) Cf. K. Iwasawa, On Galois groups of local fields, Trans. Amer. Math. Soc., 80 (1955), 448-469.
[^1]: 4) For compact completions of (discrete) groups, cf. 1.c. 2), 1.3. We also notice that a compact topological group is called p-primary (p-complementary) if and only if it is the inverse limit of a family of finite groups whose orders are powers of p (prime to p).
[^2]: 5) Cf. 1.c. 2), 3.1.
[^3]: 6) Cf. 1. c. 2), Lemma 5 .
 7) Cf. 1.c. 6).
 8) Cf. l.c. 1), Theorem 18.
