Homogeneous hypersurfaces in euclidean spaces.

Dedicated to Professor Z. Suetuna on his 60 th birthday.

By Tadashi Nagano and Tsunero Takahashi

(Received March 25, 1959)

Abstract

S. Kobayashi [3] proved that a compact connected homogeneous Riemannian manifold M of dimension n is isometric to the sphere if it is isometrically imbedded in the euclidean space E of dimension $n+1$. In this paper we shall prove that a connected homogeneous Riemannian space M (compact or not) of dimension n is isometric to the Riemannian product of a sphere and a euclidean space if M is isometrically imbedded in the euclidean space E of dimension $n+1$ and the rank of the second fundamental form H is of rank $\neq 2$ at some point.

Manifolds and mappings between them will always be of differentiability class C^{∞}.

1. Preliminaries.

Let M be a connected Riemannian manifold. Assume that there exists an isometric map f of M into a euclidean space E, in which we fix a cartesian coordinate system. f is isometric in the sense that the dual map of the differential f^{\prime} of f carries the Riemannian metric of E to that of M.

Assigning to a point p of M the A-th coordinate component of $f(p)$, $1 \leqq A \leqq \operatorname{dim} E$, we obtain a function f^{A} on M. For any vector X tangent to M at x, we denote by $X f$ the vector tangent to E at $f(x)$ whose A-th component is $X f^{4}$ and call $X f$ the covariant differentiation of f in X. We shall write X for ∇_{X} or $X^{\mu} \nabla_{\mu}$ in coordinates as long as no ambiguity might be feared. In the same way one can define the covariant differentiation $X f^{\prime}$ of the differential f^{\prime} of f and other objects such as a map of M into the tangent bundle of E or into the isometry group of E. It goes without saying that, when X has x as the origin, $X f^{\prime}$ is a linear map of the tangent space M_{x} to M at x into the tangent space $E_{f(x)}$ for any x in M, and that $X f=f^{\prime} X$.

It is easy to see that ($\left.X f^{\prime}\right) Y$ is normal to $f(M)$ for any vectors X and Y at a point x. Thus $\left(X f^{\prime}\right) Y$ is a linear combination of the normal vectors

$$
\left(X f^{\prime}\right) Y=\sum_{1 \leq t \leq d} H_{\mathfrak{t}} \mathfrak{n}_{t},
$$

where n_{t} are linearly independent vectors normal to $f(M)$ at $f(x)$ and d equals $\operatorname{dim} E-\operatorname{dim} M$. Each $H_{t}=H_{t}(X, Y)$ is a bilinear form on M_{x}. The rank of f at x is by definition the minimum number of linear forms on M_{x} in which H_{t} can be expressed; it is independent of the choice of the normal vectors.

From now on we shall assume that $d=1 ; f(M)$ is a hypersurface of E. Given an orientable neighborhood U in M, we fix a map \mathfrak{n} of U into the tangent bundle of E such that $\mathfrak{n}(x)$ is a unit normal to $f(U)$ at $f(x)$ for each x in U. Then a covariant tensor field H of degree 2 is defined by

$$
\begin{equation*}
\left(X f^{\prime}\right) Y=H(X, Y) \mathfrak{n}(x), \quad X, Y \in M_{x} \tag{1.1}
\end{equation*}
$$

H is the second fundamental form of f, which depends on the choice of \mathfrak{n} and is determined on U up to a constant e with $e^{2}=1$ if U is connected.

From (1.1) follows
(1.2) $\quad X \mathfrak{n}$ is tangent to $f(M)$ and the inner product of $X \mathfrak{n}$ with $f^{\prime} Y$ equals $-H(X, Y) ;\left(X \mathfrak{n}, f^{\prime} Y\right)=-H(X, Y)$.

Some of the following propositions in this section are known. (See [1] and [5]).

Theorem 1.1. Let f and \hat{f} be isometric maps of M into E. Assume that for any connected orientable neighborhood U in M there exists a constant e with $e^{2}=1$ such that we have $H=e \hat{H}$ on U, H and \hat{H} being the second fundamental forms of f and \hat{f} respectively. Then there exists an isometry α of E onto itself satisfying $\alpha f=\hat{f}$.

Note that M is not necessarily orientable.
Proof. For a point x of M, take a connected orientable neighborhood U of x and consider the isometry α_{x} of E onto itself defined by

$$
\begin{align*}
& \boldsymbol{\alpha}_{x}(f(x))=\hat{f}(x), \tag{1.3}\\
& \boldsymbol{\alpha}_{x}^{\prime} f^{\prime}=\hat{f}^{\prime} \text { on } M_{x}, \\
& \boldsymbol{\alpha}_{x}^{\prime} \mathfrak{n}=e \hat{\boldsymbol{n}} .
\end{align*}
$$

α_{x} is independent of the choice of U, as is easily seen. Thus we obtain a $\operatorname{map} \boldsymbol{\alpha}$ of M into the isometry group of E such that $\alpha(x)=\alpha_{x}$. By (1.1), (1.4) and (1.5) together with $H=e \hat{H}$, we have

$$
\begin{aligned}
\left(X \alpha^{\prime}\right)\left(f^{\prime} Y\right) & =X\left(\alpha^{\prime} f^{\prime} Y\right)-\alpha^{\prime}\left(X f^{\prime}\right) Y-\alpha^{\prime} f^{\prime} X Y=X \hat{f}^{\prime} Y-\alpha^{\prime} H(X, Y) \mathfrak{n}-\hat{f}^{\prime} X Y \\
& =X \hat{f}^{\prime} Y-\hat{H}(X, Y) \hat{\mathfrak{n}}-\hat{f}^{\prime} X Y \\
& =X \hat{f}^{\prime} Y-\left(X \hat{f}^{\prime}\right) Y-\hat{f}^{\prime} X Y=0
\end{aligned}
$$

for any vector X tangent to U and a vector field Y on U. To prove $X \alpha^{\prime}=0$ we have to show $\left(X \alpha^{\prime}\right) \mathfrak{n}=0$. By (1.2), (1.4) and (1.5) we get

$$
\left(X \alpha^{\prime}\right) \mathfrak{n}=X\left(\alpha^{\prime} \mathfrak{n}\right)-\alpha^{\prime} X \mathfrak{n}=e X \hat{\mathfrak{n}}-\hat{f}^{\prime} f^{\prime-1} X \mathfrak{n}=0 ;
$$

in fact by (1.2) the inner product

$$
\begin{aligned}
\left(f^{\prime} f^{\prime-1} X \mathfrak{n}, \hat{f}^{\prime} Y\right) & =\left(f^{\prime-1} X \mathfrak{n}, Y\right)=\left(X \mathfrak{n}, f^{\prime} Y\right)=-H(X, Y)=-e \hat{H}(X, Y) \\
& =\left(e X \hat{\mathfrak{n}}, \hat{f}^{\prime} Y\right)
\end{aligned}
$$

for any tangent vector Y with the same origin as X.
Therefore we have $X \alpha^{\prime}=0$; i. e. the rotation part α^{\prime} of α is constant. Finally (1.3) and (1.4) imply that

$$
(X \alpha) f=X \alpha f-\alpha^{\prime} X f=X \hat{f}-\alpha^{\prime} f^{\prime} X=\hat{f}^{\prime} X-\hat{f^{\prime}} X=0
$$

Hence α is constant on M, and we have $\alpha f=\hat{f}$.
Lemma 1.2. Let f and \hat{f} be as in Theorem 1.1. Denote by $r=r(x)$ and $\hat{r}=\hat{r}(x)$ the ranks at x of f and \hat{f} respectively. Then r equals either \hat{r} or $1-\hat{r}$. In particular the inequality $1<r$ gives $\hat{r}=r$.

For the proof we recall the Gauss formula:
(1.6) K denoting the curvature tensor of M, the vector $K(X, Y) Z$, with the components $K_{\alpha \beta r^{\lambda}}^{\lambda} X^{\alpha} Y^{\beta} Z^{r}$, is the dual of the one form θ

$$
\theta: W \rightarrow H(X, W) H(Y, Z)-H(Y, W) H(X, Z)=(K(X, Y) Z, W)
$$

Fix a basis of M_{x}, and denote by ϕ_{ν} the form (on M_{x}):Y $\rightarrow H(X, Y)$ where X is the ν-th vector of the basis. $\hat{\phi}_{\nu}$ is defined analogously by means of \hat{H}. Then r equals the number of linearly independent forms in the system $\left\{\phi_{\nu}\right\}$. Hence the number of linearly independent forms in the system $\left\{\phi_{\mu} \wedge \phi_{\nu}\right\}$ is $r(r-1) / 2$. On the other hand $\phi_{\mu} \wedge \phi_{\nu}$ equals $\hat{\phi}_{\mu} \wedge \hat{\phi}_{\nu}$ by (1.6). Hence we have $r(r-1) / 2=\hat{r}(\hat{r}-1) / 2$, and so we have $(r-\hat{r})(r+\hat{r}-1)=0$.

Corollary 1.3. Let f be an isometric map of M into E, and ρ an isometry of M onto itself. Then the rank $r(x)$ of f at x is equal to either $r(\rho(x))$ or 1$r(\rho(x))$. In particular $1<r(x)$ implies $r(x)=r(\rho(x))$.

Put $\hat{f}=f \rho$. Since ρ is an isometry, ρ commutes with the covariant differentiation; in particular we have $\left(X\left(f^{\prime} \rho^{\prime}\right)\right) Y=\left(\left(\rho^{\prime} X\right) f^{\prime}\right) \rho^{\prime} Y$. Hence we have $\hat{H}(X, Y) \mathfrak{n}(x)=H\left(\rho^{\prime} X, \rho^{\prime} Y\right) \mathfrak{n}(\rho(x))$. From Lemma 1, 2 thus follows Corollary 1.3,

Theorem 1.4. Let f and \hat{f} be as in Theorem 1.1. If $r \geqq 3$ at every point, then there exists an isometry α of E onto itself such that $\alpha f=\hat{f}$.

Proof. From $\phi_{\mu} \wedge \phi_{\nu}=\hat{\phi}_{\mu} \wedge \hat{\phi}_{\nu}$ (see the proof of 1.2) follows

$$
\hat{\phi}_{\mu} \wedge \phi_{\mu} \wedge \phi_{\nu}=\hat{\phi}_{\mu} \wedge \hat{\phi}_{\mu} \wedge \hat{\phi}_{\nu}=0
$$

If $\hat{\phi}_{\mu}$ and ϕ_{μ} are linearly independent, any ϕ_{ν} is a linear combination of ϕ_{μ} and $\hat{\phi}_{\mu}$, contrary to the assumption. Thus we have $\hat{\phi}_{\mu}=c_{\mu} \phi_{\mu}$ for each μ, c_{μ} being some real number. Hence $\hat{\phi}_{\mu} \wedge \hat{\phi}_{\nu}=c_{\mu} c_{\nu} \phi_{\mu} \wedge \phi_{\nu}$. It follows that c_{μ} 's are all equal to a number e with $e^{2}=1$. From this and the definition of ϕ_{ν} we conclude $H=e \hat{H}$. Now Theorem 1.4 follows from Theorem 1.1.

Corollary 1.5. Let f be an isometric map of M into E. If an isometry group G of M is transitive and the rank r of f satisfies $3 \leqq r$ at some point,
then for any ρ in G there exists a unique isometry α of E on itself such that $f \rho=\alpha f$.

By Corollary 1.4, we have $3 \leqq r$ at every point. Thus there exists an isometry α with $f \rho=\alpha f$ by Theorem 1.4, α is unique, for otherwise $f(M)$ would be symmetric with respect to a hyperplane with which $f(M)$ would coincide locally, contrary to $r \geqq 3$ everywhere.

2. The case $3 \leqq r$.

This section is devoted to the proof of
Lemma 2.1. Assume that there exists an isometric map f of a connected homogeneous Riemannian manifold M onto a hypersurface of a euclidean space E. If the rank r of f satisfies $3 \leqq r$ at some point, then M is isometric to the Riemannian product of a sphere and a euclidean space. In particular f is unique $u p$ to the composition αf with an isometry α of E.

For brevity we identify M with $f(M)$. By Corollary 1.5, the connected isometry group G of M can be identified with a subgroup of the isometry group of E. Take an arbitrary line γ normal to M. If there exists a G orbit $G(p)$ of dimension $<n, n=\operatorname{dim} M, p \in \gamma$, then o shall be one of such points. Otherwise o shall be an arbitrary point on $r \cap M$. Denote by N the G-orbit $G(o)$ and by F the plane ($=$ a linear subspace) which is the union of the lines normal to N at o.

Now we shall prove the following lemma.
Lemma 2.2. If a one-parameter subgroup L of G leaves fixed a point q on F, then L leaves fixed o.

Let $H=H_{o}$ be the isotropy subgroup of G at $o . \quad \nu$ denoting the dimension of N, there exist ν linearly independent Killing vectors u_{1}, \cdots, u_{ν} which, together with the Lie algebra of H, span the Lie algebra of G. The dual one-forms of u_{i} will be denoted by the same letters. We have to prove

$$
\begin{equation*}
\text { the form } \rho=u_{1} \wedge u_{2} \wedge \cdots \wedge u_{\nu} \neq 0 \quad \text { on } F \tag{2.1}
\end{equation*}
$$

Let U be the subset of r consisting of the points p at which we have $\operatorname{dim} G(p)=n . \quad V$ shall be the complement of U in γ. The inequality $\rho \neq 0$ holds at each point p of U, for we have $\operatorname{dim} H(p)=\operatorname{dim} F-1=n+1-\nu-1$. Let x be a boundary point of U, if any. Since U is open, x belongs to V. Let H_{x} be the isotropy subgroup of G at $x . \quad H_{x}$ leaves invariant the plane $H_{x}(\curlyvee)$ and is transitive on the unit sphere in that plane. It follows that eve•y point $y \neq x$ of r sufficiently near x belongs to U. Hence V is discrete in γ. Further it follows that the point $o^{\prime} \neq o$ of γ at the same arc length from x as o belongs to V, where we have assumed that V is not empty and contains points x other than o. Thus V is an infinite set. On the other
hand every Killing field in E has the components expressed as polynomials in the cartesian coordinates. Hence the form ρ, restricted on γ, has the components expressed as a polynomial, say in the arc length s from $o . \rho$ vanishes on V. We thus infer that V contains at most o only. Hence we have $\rho \neq 0$ on γ, therefore on $F=H(\gamma)$.

We identify F with the tangent space to F at o and E with the tangent space to E at o. The tangent space to N at o is denoted by N_{o}.
(2.2) $\quad H$ acts naturally on the tangent space E and leaves invariant the subspaces F and N_{o}.

Every point x of E is identified with the vector $\mathfrak{x}=o x$. Then any element of the Lie algebra G^{\prime} of G is expressed by the pair (A, a) of a skewsymmetric matrix A and a vector \mathfrak{a} in E such that (A, \mathfrak{a}) maps \mathfrak{x} to $A \mathfrak{r}+\mathfrak{a}$. Let P and Q be the orthogonal projections of E onto F and N_{o} respectively. Then we have

$$
\begin{equation*}
P \mathfrak{a}=0 \text {, i. e. } Q \mathfrak{a}=\mathfrak{a} \text { for any }(A, \mathfrak{a}) \text { in } G^{\prime} . \tag{2.3}
\end{equation*}
$$

Given a vector \mathfrak{r} in F we define a bilinear form R on G^{\prime} by R : ((A, \mathfrak{a}), $(B, \mathfrak{b})) \rightarrow$ the inner product ($\mathfrak{r}, P A \mathfrak{b}$).

Since the linear map $(A, \mathfrak{a}) \in G^{\prime} \rightarrow \mathfrak{a}=Q \mathfrak{a} \in N_{o}$ is onto, and $\mathfrak{a}=0$ implies $P A Q=0$ by (2.2) and therefore $P A \mathfrak{b}=P A Q \mathfrak{b}=0$ by (2.3), R can be regarded as a well-defined bilinear form on N_{o}.
(2.4) The bilinear form R on N_{o} is symmetric.

Proof. The bracket product $[(A, \mathfrak{a}),(B, \mathfrak{b})]$ in G^{\prime} equals $([A, B], A \mathfrak{b}-B \mathfrak{a})$. By (2.3) we thus have $P(A \mathfrak{b}-B \mathfrak{a})=0$. Hence $R(\mathfrak{a}, \mathfrak{b})=(\mathfrak{r}, P A \mathfrak{b})=(\mathfrak{r}, P B \mathfrak{a})=R(\mathfrak{b}, \mathfrak{a})$. (2.5) $\quad P A Q=0$ for any (A, \mathfrak{a}) in G^{\prime}.

Proof. Otherwise we have $R \neq 0$ for some \mathfrak{r} in F. By (2.4) R has an eigenvalue c different from 0 . Let $\mathfrak{b} \neq 0$ be the corresponding eigenvector; $R(\mathfrak{b}, \mathfrak{a})=c(\mathfrak{b}, \mathfrak{a})(=c$ multiplied by the inner product of \mathfrak{b} and $\mathfrak{a})$ for any \mathfrak{a} in N_{o}. We have $\left.c(\mathfrak{b}, \mathfrak{a})=R(\mathfrak{b}, \mathfrak{a})=(\mathfrak{r}, P B Q \mathfrak{a})={ }^{t}(P B Q) \mathfrak{r}, \mathfrak{a}\right)$, where ${ }^{t} K$ denotes the transposed matrix of K. Hence we obtain ${ }^{t}(P B Q) \mathfrak{r}=c \mathfrak{b}$. Let μ be the linear map of G^{\prime} into N_{o} (or, more precisely, into the subspace of the tangent space to E at the point \mathfrak{r} / c of F which is parallel to N_{o}) defined by $\mu((A, a))$ $=Q(A \mathfrak{r} / c+\mathfrak{a})$. It follows then that $\mu((B, \mathfrak{b}))=Q(B \mathfrak{c} / c+\mathfrak{b})=Q B P \mathfrak{r} / c+\mathfrak{b}=$ $-^{t}(P B Q) \mathfrak{r} / c+\mathfrak{b}=-\mathfrak{b}+\mathfrak{b}=0$. This means that the one-parameter group generated by (B, \mathfrak{b}) leaves fixed the point \mathfrak{r} / c in F, though it does not leave fixed the point o, contrary to (2.1). Thus (2.5) is proved.

From (2.5) we infer that G which is transitive on N carries N_{o} to linear subspaces which are parallel to N_{o} in E. Therefore we have proved that
(2.6) $\quad N$ is a plane.

Hence for any point p in N there exists exactly one perpendicular to N
starting at p. It follows as in [4] that E admits a fibre bundle structure over N with fibre F associated with the principal bundle ($G, G / H, H$), for the map $(\alpha, x) \in G \times F \rightarrow \alpha(x) \in E$ is onto and we have $\alpha(x)=\beta(y)$ if and only if $\alpha \beta^{-1}$ belongs to H and $x=\alpha^{-1} \beta(y)$. Assume $M \neq N$. Any G-orbit $\neq N$ (and in particular M) is a subbundle with a sphere S of dimension $=n-\operatorname{dim} N$ as the fibre. Since N is a plane, the bundle is trivial. Thus M is homeomorphic to $S \times N$. By (2.5), M is clearly isometric to the Riemannian product $S \times N$, which proves the lemma 2.1 ; in case $M=N$ the lemma follows directly from (26), though this case cannot occur because of the hypothesis $3 \leqq r$.

3. The case $r \leqq 1$.

In case $r \leqq 1, M$ is locally flat by the Gauss formula (1.6).
Theorem 3.1. A connected homogeneous Riemannian manifold M which is locally flat is the Riemannian product of a euclidean space and a torus. A torus is the Riemannian product of a finite number of circles.

The universal covering Riemannian manifold of M is the euclidean space, which we denote by E here. In E we fix a cartesian coordinate system. Let G be a connected transitive isometry group of $M . G$ induces an isometry group \hat{G} of E so that \hat{G} is an extension of G by the Poincaré group P ($=$ the 1-dimensional homotopy group) of M. Since P is a discrete normal subgroup of G, P is contained in the center of G. Any element of P can be expressed by a pair (C, \mathfrak{c}) of an orthogonal matrix C and a vector \mathfrak{c} in E such that (C, c) carries a point \mathfrak{x} of E to $C \mathfrak{r}+c$.
(3.1) $\quad C_{c}=\mathrm{c}$ for any (C, c) in P.

Since (C, \mathfrak{c}) commutes with any element (A, \mathfrak{a}) of the Lie algebra G^{\prime} of \hat{G}, we have

$$
A \mathfrak{c}+\mathfrak{a}=C \mathfrak{a} .
$$

A being skew-symmetric, $A c$ is orthogonal to c. For an arbitrary vector \mathfrak{x}, $\|\mathfrak{r}\|$ shall denote its length. Since \hat{G} is transitive on E, \mathfrak{a} can be any vector. Putting $\mathfrak{a}=\mathfrak{c}$, we get $\|A \mathfrak{c}\|^{2}+\|\mathfrak{a}\|^{2}=\|C \mathfrak{a}\|^{2}=\|\mathfrak{a}\|^{2}$. It follows $A \mathfrak{c}=0$, and so (3.1). (3.2) The n-time composition $(\mathbb{C}, \mathrm{c})^{n}$ of (C, c) is $\left(C^{n}, n c\right)$ for any (C, c) in P.

This follows from (3.1) easily.
(3.3) $\quad A \mathrm{c}=\mathrm{c}$ for any (A, \mathfrak{a}) in \hat{G} and any (C, \mathfrak{c}) in P.

Proof. Since $(C, c)^{n}$ commutes with (A, a) for any positive integer n, we obtain from (3.2)

$$
\begin{equation*}
n A c+\mathfrak{a}=C^{n} \mathfrak{a}+n c, \tag{3.4}
\end{equation*}
$$

that is, $n(A c-c)=C^{n} \mathfrak{a}-a$.
Assume that $A c \neq c$. Then the length $\|n(A c-c)\|$ is not bounded as a function of n, while $\left\|C^{n} \mathfrak{a}-\mathfrak{a}\right\| \leqq\left\|C^{n} \mathfrak{a}\right\|+\|\mathfrak{a}\|=2\|\mathfrak{a}\|$ is obviously bounded. Thus
(3.3) is true.
(3.5) $\quad C$ is the identity matrix for any (C, \mathfrak{c}) in P.

From (3.3) and (3.4) follows $C^{n} \mathfrak{a}=\mathfrak{a}$; in particular $C \mathfrak{a}=\mathfrak{a} . \quad \hat{G}$ being transitive, \mathfrak{a} can be any vector and we have (3.5).

By (3.5), P is a free abelian group contained in the translation group of E. Hence M is the Riemannian product of a euclidean space and a subspace N whose undelying manifold is that of a toral group $T . T$ is a transitive isometry group of N. Hence N is a torus and Theorem 3.1 is proved.

Lemma 3.2. Lemma 2.1 holds good with the condition $3 \leqq r$ replaced by $r \leqq 1$. The sphere is of dimension one or zero.
M is then locally flat as was remarked before. By Theorem 3.1, M is the Riemannian product of a euclidean space and a torus T. By Corollary 1.3, we have $r \leqq 1$ throughout on the homogeneous space M. Restricted to T, f gives an imbedding of T into E whose rank does not exceed $r \leqq 1$ as is easily seen. Now the following theorem of Chern [2, p. 23] applies: Let g be an isometric map of a compact Riemannian manifold N into a euclidean space. Let $s(p)$ denote the rank of g at a point p of N. Then we have

$$
\operatorname{dim} N \leqq \operatorname{Max}_{p \in \mathcal{M}} s(p) .
$$

And we conclude $\operatorname{dim} T \leqq 1$ and the Lemma 3, 2 is proved.
The main theorem mentioned in the introduction follows from Lemma 2.1 and Lemma 3.2,

College of General Education, University of Tokyo and

University of Tokyo.

Bibliography

[1] E. Cartan, La déformation des hypersurfaces dans l'espace euclidien réel à n dimensions, Oeuvres complètes, Part. III vol. 1, 185-219.
[2] S. Chern, Topics in differential geometry, Mimeographed, Princeton, 1951.
[3] S. Kobayashi, Compact homogeneous hypersurfaces, Trans. Amer. Math. Soc., 88 (1958), 137-143.
[4] T. Nagano, Transformation groups with ($n-1$)-dimensional orbits on noncompact manifolds, Nagoya Math. J., 14 (1959), 25-38.
[5] T. Y. Thomas, Riemann spaces of class one and their characterization. Acta Math., 67 (1936), 169-211.

