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S. Kobayashi [3] proved that a compact connected homogeneous Rieman-
nian manifold $M$ of dimension $n$ is isometric to the sphere if it is isometri-
cally imbedded in the euclidean space $E$ of dimension $n+1$ . In this paper
we shall prove that a connected homogeneous Riemannian space $M$ (compact

or not) of dimension $n$ is isometric to the Rier annian product of a sphere
and a euclidean space if $M$ is isometrically imbedded in the euclidean space
$E$ of dimension $n+1$ and the rank of the second fundamental form $H$ is of
rank $\neq 2$ at some point.

Manifolds and mappings between them will always be of differentiability
class $C^{\infty}$ .

1. Preliminaries.

Let $M$ be a connected Riemannian manifold. Assume that there exists
an isometric map $f$ of $M$ into a euclidean space $E$, in which we fix a cartesian
coordinate system. $f$ is isometric in the sense that the dual map of the
differential $f^{\prime}$ of $f$ carries the Riemannian metric of $E$ to that of $M$.

Assigning to a point $p$ of $M$ the A-th coordinate component of $f(p)$ ,
$1\leqq A\leqq\dim E$, we obtain a function $f^{A}$ on $M$. For any vector $X$ tangent to
$M$ at $x$, we denote by $Xf$ the vector tangent to $E$ at $f(x)$ whose A-th com-
ponent is $Xf^{A}$ and call $Xf$ the covariant differentiation of $f$ in $X$. We shall
write $X$ for $\nabla_{X}$ or $X^{\mu}\nabla_{\mu}$ in coordinates as long as no ambiguity might be
feared. In the same way one can define the covariant differentiation $Xf^{\prime}$ of
the differential $f^{\prime}$ of $f$ and other objects such as a map of $M$ into the tangent
bundle of $E$ or into the isometry group of $E$. It goes without saying that,
when $X$ has $x$ as the origin, $Xf^{\prime}$ is a linear map of the tangent space $M_{x}$ to
$M$ at $x$ into the tangent space $E_{f^{(x)}}$ for any $x$ in $ j\psi$, and that $Xf=f^{\prime}X$.

It is easy to see that $(Xf^{\prime})Y$ is normal to $f(M)$ for any vectors $X$ and $Y$

at a point $x$. Thus $(Xf^{\prime})Y$ is a linear combination of the normal vectors

$(Xf^{\prime})Y=\sum_{<1\leqq\iota_{\Rightarrow}a}H_{i}1t_{\ell}$
,
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where $\mathfrak{n}_{\iota}$ are Iinearly independent vectors normal to $f(M)$ at $f(x)$ and $d$ equals
$\dim E-dimM$. Each $H_{t}=H_{t}(X, Y)$ is a bilinear form on $M_{x}$ . The rank of $f$

at $x$ is by definition the minimum number of linear forms on $M_{x}$ in which
$H_{t}$ can be expressed; it is independent of the choice of the normal vectors.

From now on we shall assume that $d=1;f(M)$ is a hypersurface of $E$.
Given an orientable neighborhood $U$ in $M$, we fix a map $\mathfrak{n}$ of $U$ into the tangent
bundle of $E$ such that $\mathfrak{n}(x)$ is a unit normal to $f(U)$ at $f(x)$ for each $x$ in $U$.
Then a covariant tensor field $H$ of degree 2 is defined by

(1.1) $(Xf^{\prime})Y=H(X, Y)\iota\tau(x)$ , $X,$ $Y\in M_{x}$ .
$H$ is the second fundamental form of $f$, which depends on the choice of $\mathfrak{n}$

and is determined on $U$ up to a constant $e$ with $e^{2}=1$ if $U$ is connected.
From (1.1) follows

(1.2) $X\mathfrak{n}$ is tangent to $f(M)$ and the inner product of $X\mathfrak{n}$ with $f^{\prime}Y$ equals
$-H(X, Y);(X\mathfrak{n},f^{\prime}Y)=-H(X, Y)$ .

Some of the following propositions in this section are known. (See [1]

and [5]).

THEOREM 1.1. Let $f$ and $\hat{f}$ be isometric maps of $M$ into E. Assume that
for any connected orientable neighborhood $U$ in $M$ there exists a constant $e$ with
$e^{2}=1$ such that we have $H=e\hat{H}$ on $U,$ $H$ and $\hat{H}$ being the second fundamental
forms of $f$ and $f$ respectively. Then there exists an isometry $\alpha$ of $E$ onto itself
satisfying $\alpha f=\hat{f}$.

Note that $M$ is not necessarily orientable.
PROOF. For a point $x$ of $M$, take a connected orientable neighborhood

$U$ of $x$ and consider the isometry $\alpha_{x}$ of $E$ onto itself defined by

(1.3) $\alpha_{x}(f(x))=\hat{f}(x)$ ,

(1.4) $\alpha_{x}^{\prime}f^{\prime}=\hat{f}^{\prime}$ on $M_{x}$ ,

(1.5) $\alpha_{x}^{\prime}\mathfrak{n}=e\hat{n}$ .
$\alpha_{x}$ is independent of the choice of $U$, as is easily seen. Thus we obtain a
map $\alpha$ of $M$ into the isometry group of $E$ such that $\alpha(x)=\alpha_{x}$ . By (1.1),

(1.4) and (1.5) together with $H=e\hat{H}$, we have
$(X\alpha^{\prime})(f^{\prime}Y)=X(\alpha^{\prime}f^{\prime}Y)-\alpha^{\prime}(Xf^{\prime})Y-\alpha^{\prime}f^{\prime}XY=X\hat{f}^{\prime}Y-\alpha^{\prime}H(X, Y)\mathfrak{n}-\hat{f}^{\prime}XY$

$=X\hat{f}^{\prime}Y-\hat{H}(X, Y)\hat{n}-\hat{f}^{\prime}XY$

$=X\hat{f}^{\prime}Y-(X\hat{f}^{\prime})Y-\hat{f}^{\prime}XY=0$

for any vector $X$ tangent to $U$ and a vector field $Y$ on $U$. To prove $X\alpha^{\prime}=0$

we have to show $(X\alpha^{\prime})\mathfrak{n}=0$. By (1.2), (1.4) and (1.5) we get

$(x\alpha^{\prime})\mathfrak{n}=X(\alpha^{\prime}\mathfrak{n})-\alpha^{\prime}x_{\mathfrak{n}=e}x_{(\downarrow-\hat{f}^{\prime}f^{\gamma-1}Xn=0;}^{\wedge}$

in fact by (1.2) the inner product
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$(f^{\prime}f^{\prime-1}Xn,\hat{f}^{\prime}Y)=(f^{\prime-1}X\mathfrak{n}, Y)=(X\mathfrak{n},f^{\prime}Y)=-H(X, Y)=-e\hat{H}(X, Y)$

$=(eX\hat{\mathfrak{n}},\hat{f}^{\prime}Y)$

for any tangent vector $Y$ with the same origin as $X$.
Therefore we have $X\alpha^{\prime}=0;i$ . $e$ . the rotation part $\alpha^{\prime}$ of $\alpha$ is constant.

Finally (1.3) and (1.4) imply that
$(X\alpha)f=X\alpha f-\alpha^{\prime}Xf=X\hat{f}-\alpha^{\prime}f^{\prime}X=\hat{f}^{\prime}X-\hat{f}^{\prime}X=0$ .

Hence $\alpha$ is constant on $M$, and we have $\alpha f=\hat{f}$.
LEMMA 1.2. Let $f$ and $\hat{f}$ be as in Theorem 1.1. Denote by $r=r(x)$ and

$\hat{r}=\hat{r}(x)$ the ranks at $x$ of $f$ and $\hat{f}$ respectively. Then $r$ equals either $\hat{\gamma}$ or $1-\hat{r}$.
In particular the inequality $1<r$ gives $\hat{r}=r$.

For the proof we recall the Gauss formula:
(1.6) $K$ denoting the curvature tensor of $M$, the vector $K(X, Y)Z$, with the
components $K_{a\beta \mathcal{T}^{)}}\cdot X^{\alpha}Y^{\beta}Z^{\gamma}$, is the dual of the $ one\cdot form\theta$

$\theta:W\rightarrow H(X, W)H(Y, Z)-H(Y, W)H(X, Z)=(K(X, Y)Z,$ $W$).

Fix a basis of $M_{x}$ , and denote by $\phi_{\nu}$ the form (on $M_{x}$) $:Y\rightarrow H(X, Y)$ where
$X$ is the $\nu$ -th vector of the basis. $\hat{\phi}_{\nu}$ is defined analogously by means of $\hat{H}$.
Then $\gamma$ equals the number of linearly independent forms in the system $\{\phi_{\nu}\}$ .
Hence the number of linearly independent forms in the system $\{\phi_{\mu}\Lambda\phi_{\nu}\}$ is
$r(r-1)/2$ . On the other hand $\phi_{\mu}\wedge\phi_{\nu}$ equals $\hat{\phi}_{1}\wedge\hat{\phi}_{\nu}$ by (1.6). Hence we have
$r(r-1)/2=\hat{r}(\hat{r}-1)/2$ , and so we have $(r-\hat{r})(r+\hat{r}-1)=0$ .

COROLLARY 1.3. Let $f$ be an isometric map of $M$ into $E$, and $\rho$ an isometry
of $M$ onto itself. Then the rank $r(x)$ of $f$ at $x$ is equal to either $r(\rho(x))$ or 1–
$r(\rho(x))$ . In particular $1<r(x)$ implies $r(x)=r(\rho(x))$ .

Put $\hat{f}=f\rho$ . Since $\rho$ is an isometry, $p$ commutes with the covariant dif-
ferentiation; in particular we have $(X(f^{\prime}\rho^{\prime}))Y=((\rho^{\prime}X)f^{\prime})\rho^{\prime}Y$. Hence we have
$\hat{H}(X, Y)n(x)=H(\rho^{\prime}X, \rho^{\prime}Y)\mathfrak{n}(\rho(x))$ . From Lemma 1.2 thus follows Corollary 1.3.

THEOREM 1.4. $Lelf$ and $\hat{f}$ be as in Theorem 1.1. If $r\geqq 3$ at every point,
then there exists an isometry $\alpha$ of $E$ onto itself such that $\alpha f=\hat{f}$.

PROOF. From $\phi_{\mu}$ A $\phi_{\nu}=\hat{\phi}_{\mu}$ A $\hat{\phi}_{\nu}$ (see the proof of 1.2) follows
$\hat{\phi}_{\mu}\wedge\phi_{\mu}\Lambda\phi_{\nu}=\hat{\phi}_{\mu}\wedge\hat{\phi}_{\mu}\wedge\hat{\phi}_{\nu}=0$ .

If $\hat{\phi}_{\mu}$ and $\phi_{\mu}$ are linearly independent, any $\phi_{\nu}$ is a linear combination of $\phi_{\mu}$

and $\hat{\phi}_{\mu}$ , contrary to the assumption. Thus we have $\hat{\phi}_{\mu}=c_{\mu}\phi_{\mu}$ for each $\mu,$ $c_{\mu}$

being some real number. Hence $\hat{\phi}_{\mu}\Lambda\hat{\phi}_{\nu}=c_{\mu}c_{\nu}\phi_{\mu}$ A $\phi_{\nu}$ . It follows that $c_{\mu}’ s$

are all equal to a number $e$ with $e^{2}=1$ . From this and the definition of $\phi_{\nu}$

we conclude $H=e\hat{H}$. Now Theorem 1.4 follows from Theorem 1.1.
COROLLARY 1.5. Let $f$ be an isometric map of $M$ into E. If an isometry

group $G$ of $M$ is transitive and the rank $r$ of $f$ satisfies $ 3\leqq\gamma$ at some point,
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then for any $\rho$ in $G$ there exists a unique isometry $\alpha$ of $E$ on itself such thaf
$f\rho=\alpha f$.

By Corollary 1.4, we have $3\leqq r$ at every point. Thus there exists an
isometry $\alpha$ with $f\rho=\alpha f$ by Theorem 1.4. $\alpha$ is unique, for otherwise $f(M)$

would be symmetric with respect to a hyperplane with which $f(M)$ would
coincide locally, contrary to $r\geqq 3$ everywhere.

2. The case $3\leqq r$ .
This section is devoted to the proof of
LEMMA 2.1. Assume that there exists an isometric map $f$ of a connected

homogeneous Riemannian manifold $M$ onto a hypersurface of $a$ euclidean space
E. If the rank $r$ of $f$ satisfies $3\leqq r$ at some point, then $M$ is isometric to the
Riemannian product of a sphere and $a$ euclidean space. In particular $f$ is unique
up to the composition $\alpha f$ with an isometry $\alpha$ of $E$.

For brevity we identify $M$ with $f(M)$ . By Corollary 1.5, the connected
isometry group $G$ of $M$ can be identified with a subgroup of the isometry
group of $E$. Take an arbitrary line $\gamma$ normal to $M$. If there exists a G-
orbit $G(p)$ of dimension $<n,$ $n=\dim M,$ $ p\in\gamma$ , then $0$ shall be one of such
points. Otherwise $0$ shall be an arbitrary point on $\gamma\cap M$. Denote by $N$ the
G-orbit $G(0)$ and by $F$ the plane ( $=$ a linear subspace) which is the union
of the lines normal to $N$ at $0$ .

Now we shall prove the following lemma.
LEMMA 2.2. If $a$ one-parameter subgroup $L$ of $G$ leaves fixed a point $q$ on

$F$, then $L$ leaves fixed $0$ .
Let $H=H_{o}$ be the isotropy subgroup of $G$ at $0$ . $\nu$ denoting the dimension

of $N$, there exist $\nu$ linearly independent Killing vectors $u_{1},\cdots,$ $u_{\nu}$ which,
together with the Lie algebra of $H$, span the Lie algebra of $G$ . The dual
one-forms of $u_{i}$ will be denoted by the same letters. We have to prove

(2.1) the form $\rho=u_{1}\wedge u_{2}\wedge\cdots\Lambda u_{\nu}\neq 0$ on $F$ .
Let $U$ be the subset of $\gamma$ consisting of the points $p$ at which we have

$\dim G(p)=n$ . $V$ shall be the complement of $U$ in $\gamma$ . The inequality $\rho\neq 0$

holds at each point $p$ of $U$, for we have $\dim H(p)=\dim F-1=n+1-\nu-1$ .
Let $x$ be a boundary point of $U$, if any. Since $U$ is open, $x$ belongs to $V$.
Let $H_{x}$ be the isotropy subgroup of $G$ at $x$. $H_{x}$ leaves invariant the plane
$H_{x^{(-}})$ and is transitive on the unit sphere in that plane. It follows that
$eve^{\wedge}y$ point $y\neq x$ of $\gamma$ sufficiently near $x$ belongs to $U$. Hence $V$ is discrete
in $\gamma$ . Further it follows that the point $0^{\prime}\neq 0$ of $\gamma$ at the same arc length
from $x$ as $0$ belongs to $V$, where we have assumed that $V$ is not empty and
contains points $x$ other than $0$ . Thus $V$ is an infinite set. On the other
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hand every Killing field in $E$ has the components expressed as polynomials
in the cartesian coordinates. Hence the form $\rho$ , restricted on $\gamma$ , has the
components expressed as a polynomial, say in the arc length $s$ from $0$ . $\rho$

vanishes on $V$. We thus infer that $V$ contains at most $0$ only. Hence we
have $\rho\neq 0$ on $\gamma$ , therefore on $F=H(\gamma)$ .

We identify $F$ with the tangent space to $F$ at $0$ and $E$ with the tangent
space to $E$ at $0$ . The tangent space to $N$ at $0$ is denoted by $N_{o}$ .
(2.2) $H$ acts naturally on the tangent space $E$ and leaves invariant the
subspaces $F$ and $N_{o}$ .

Every point $x$ of $E$ is identified with the vector $\mathfrak{x}=ox$. Then any ele-
ment of the Lie algebra $G^{\prime}$ of $G$ is expressed by the pair $(A, \mathfrak{a})$ of a skew-
symmetric matrix $A$ and a vector $\mathfrak{a}$ in $E$ such that $(A, \mathfrak{a})$ maps $\mathfrak{x}$ to $A\cup \mathfrak{r}+\mathfrak{a}$.
Let $P$ and $Q$ be the orthogonal projections of $E$ onto $F$ and $N_{0}$ respectively.
Then we have

(2.3) $Pa=0,$ $i$ . $e$ . $Qa=\mathfrak{a}$ for any $(A, \mathfrak{a})$ in $G^{\prime}$ .

Given a vector $\mathfrak{r}$ in $F$ we define a bilinear form $R$ on $G^{\prime}$ by $R:((A, \mathfrak{a})$ ,
\langle $B,$ $b$)) $\rightarrow the$ inner product $(\mathfrak{r}, PAb)$ .

Since the linear map $(A, \mathfrak{a})\in G^{\prime}\rightarrow \mathfrak{a}=Q\mathfrak{a}\in N_{o}$ is onto, and $\mathfrak{a}=0$ implies
$PAQ=0$ by (2.2) and therefore $PA\mathfrak{b}=PAQ6=0$ by (2.3), $R$ can be regarded
as a well-defined bilinear form on $N_{o}$ .
(2.4) The bilinear form $R$ on $N_{o}$ is symmetric.

PROOF. The bracket product $[(A, \mathfrak{a}), (B, b)]$ in $G^{\prime}$ equals $([A, B],$ $Ab-B(\ddagger)$ .
By (2.3) we thus have $P(Ab-B\mathfrak{a})=0$ . Hence $R(\mathfrak{a}, b)=(r, PAb)=(\mathfrak{r}, PB_{t1})=R(b, \mathfrak{a})$ .
(2.5) $PAQ=0$ for any $(A, \mathfrak{a})$ in $G^{\prime}$ .

PROOF. Otherwise we have $R\neq 0$ for some $\mathfrak{r}$ in $F$. By (2.4) $R$ has an
eigenvalue $c$ different from $0$ . Let $b\neq 0$ be the corresponding eigenvector;
$R(\mathfrak{b}, \mathfrak{a})=c(\mathfrak{b}, \mathfrak{a})$ ( $=c$ multiplied by the inner product of $b$ and o) for any $\mathfrak{a}$ in
$N_{o}$ . We have $c(b, \mathfrak{a})=R(b, \mathfrak{a})=$ ( $\prime_{\vee}\cdot$ , PBQa) $=({}^{t}(PBQ)\mathfrak{r}, \mathfrak{a})$ , where ${}^{t}K$ denotes the
transposed matrix of $K$. Hence we obtain ${}^{t}(PBQ)\iota=cb$ . Let $\mu$ be the linear
map of $G^{\prime}$ into $N_{o}$ (or, more precisely, into the subspace of the tangent
space to $E$ at the point $r/c$ of $F$ which is parallel to $N_{o}$) defined by $\ell u((A, \mathfrak{a}))$

$=Q(Ar/c+a)$ . It follows then that $\chi\ell((B, b))=Q(Bc/c+b)=QBPr/c+b=$

$-t(PBQ)\mathfrak{r}/c+b=-b+b=0$ . This means that the one-parameter group gener-
ated by $(B, b)$ leaves fixed the point $r/c$ in $F$, though it does not leave fixed
the point $0$ , contrary to (2.1). Thus (2.5) is proved.

From (2.5) we infer that $G$ which is transitive on $N$ carries $N_{o}$ to linear
subspacep which are parallel to $N_{o}$ in $E$. Therefore we have proved that
(2.6) $N$ is a plane.

Hence for any point $p$ in $N$ there exists exactly one perpendicular to $N$
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starting at $p$ . It follows as in [4] that $E$ admits a fibre bundle structure
over $N$ with fibre $F$ associated with the principal bundle $(G, G/H, H)$ , for
the map $(\alpha, x)\in G\times F\rightarrow\alpha(x)\in E$ is onto and we have $\alpha(x)=\beta(y)$ if and only
if $\alpha\beta^{-1}$ belongs to $H$ and $x=\alpha^{-1}\beta(y)$ . Assume $M\neq N$ Any G-orbit $\neq N$

(and in particular $M$) is a subbundle with a sphere $S$ of dimension $=n-\dim N$

as the fibre. Since $N$ is a plane, the bundle is trivial. Thus $M$ is homeo-
morphic to $S\times N$. By (2.5), $M$ is clearly isometric to the Riemannian product
$S\times N$, which proves the lemma 2.1; in case $M=N$ the lemma follows directly
from (26), though this case cannot occur because of the hypothesis $3\leqq r$.

3. The case $r\leqq 1$ .
In case $r\leqq 1,$ $M$ is locally fiat by the Gauss formula (1.6).

THEOREM 3.1. A connected homogeneous Riemannian manifold $M$ which is
locally flat is the Riemannian product of $a$ euclidean space and a torus. A torus
is the Riemannian product of a finite number of circles.

The universal covering Riemannian manifold of $M$ is the euclidean
space, which we denote by $E$ here. In $E$ we fix a cartesian coordinate sys-
tem. Let $G$ be a connected transitive isometry group of M. $G$ induces an
isometry group $\hat{G}$ of $E$ so that $\hat{G}$ is an extension of $G$ by the Poincar\’e
group $P$ ( $=$ the l-dimensional homotopy group) of $M$. Since $P$ is a discrete
normal subgroup of $G,$ $P$ is contained in the center of $G$ . Any element of
$P$ can be expressed by a pair $(C, c)$ of an orthogonal matrix $C$ and a vector
$c$ in $E$ such that $(C, c)$ carries a point $\mathfrak{x}$ of $E$ to $C\mathfrak{x}+c$ .
(3.1) $Cc=c$ for any $(C, c)$ in $P$.

Since $(C, c)$ commutes with any element $(A, a)$ of the Lie algebra $G^{\prime}$ of
$\hat{G}$ , we have

$Ac+\mathfrak{a}=Ca$ .
$A$ being skew-symmetric, $Ac$ is orthogonal to $c$ . For an arbitrary vector $\mathfrak{x}$,

$\Vert \mathfrak{x}\Vert$ shall denote its length. Since $\hat{G}$ is transitive on $E,$ $\mathfrak{a}$ can be any vector.
Putting $\mathfrak{a}=c$ , we get $\Vert Ac\Vert^{2}+\Vert \mathfrak{a}\Vert^{2}=\Vert C\mathfrak{a}\Vert^{2}=\Vert \mathfrak{a}\Vert^{2}$ . It follows $Ac=0$ , and so (3.1).

(3.2) The n-time composition ${}_{\langle}C,$ $c)^{n}$ of $(C, c)$ is $(C^{\eta}, nc)$ for any $(C, c)$ in $P$.
This follows from (3.1) easily.

(3.3) $Ac=c$ for any $(A, \mathfrak{a})$ in $\hat{G}$ and any $(C, c)$ in $P$.
PROOF. Since $(C, c)^{n}$ commutes with $(A, \mathfrak{a})$ for any positive integer $n$ , we

obtain from (3.2)

(3.4) $nAc+\mathfrak{a}=C^{n}\mathfrak{a}+nc$ ,

that is, $n(Ac-c)=C^{n}\mathfrak{a}-a$ .
Assume that $Ac\neq c$ . Then the length $\Vert n(Ac-c)\Vert$ is not bounded as a

function of $n$ , while $\Vert C^{n}\mathfrak{a}-\mathfrak{a}\Vert\leqq\Vert C^{n}\mathfrak{a}\Vert+\Vert \mathfrak{a}\Vert=2\Vert a\Vert$ is obviously bounded. Thus
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(3.3) is true.
(3.5) $C$ is the identity matrix for any $(C, c)$ in $P$.

From (3.3) and (3.4) follows $C^{n}\mathfrak{a}=\mathfrak{a}$ ; in particular $C\mathfrak{a}=\mathfrak{a}$ . $\hat{G}$ being transi-
tive, $a$ can be any vector and we have (3.5).

By (3.5), $P$ is a free abelian group contained in the translation group of
$E$. Hence $M$ is the Riemannian product of a euclidean space and a subspace
$N$ whose undelying manifold is that of a toral group T. $T$ is a transitive
isometry group of $N$ Hence $N$ is a torus and Theorem 3.1 is proved.

LEMMA 3.2. Lemma 2.1 holds good with the condition $3\leqq r$ replaced by $r\leqq 1$ .
The sphere is of dimension one or zero.

$M$ is then locally flat as was remarked before. By Theorem 3.1, $M$ is
the Riemannian product of a euclidean space and a torus $T$. By Corollary
1.3, we have $r\leqq 1$ throughout on the homogeneous space $M$. Restricted to
$T,$ $f$ gives an imbedding of $T$ into $E$ whose rank does not exceed $r\leqq 1$ as
is easily seen. Now the following theorem of Chern [2, p. 23] applies:
Let $g$ be an isometric map of a compact Riemannian manifold $N$ into $a$ euclidean
space. Let $s(p)$ denote the rank of $g$ at a point $p$ of N Then we have

$\dim N\leqq_{p\in}{\rm Max}_{M}s(p)$ .

And we conclude $\dim T\leqq 1$ and the Lemma 3.2 is proved.
The main theorem mentioned in the introduction follows from Lemma

2.1 and Lemma 3.2.

College of General Education, University of Tokyo
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University of Tokyo.
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