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Introduction.

Let $\tilde{M}$ be a compact connected orientable odd-dimensional $C^{\infty}$-manifold
which is the boundary manifold of a compact connected orientable $C$ -mani-
fold (with boundary) and let $G=\{G\}$ be a family of finite groups whose
elements are orientation-preserving $C^{\infty}$-transformations of $\tilde{M}$ having no fixed
point. In this note we shall define an invariant $\Pi$ of quotient manifolds
$M=\tilde{M}/G(G\in G)$ , making use of P-classes of $C^{\infty}- M$-spaces introduced in the
previous paper (Tamura [7]). $\Pi$ becomes a diffeomorphy invariant, if $\tilde{M}$

satisfies some conditions (Section 2, $(a)-(d)$).

In particular we shall consider the diffeomophy invariant $\Pi$ of lens spaces.
As we shall see in the case of 3-dimensional lens spaces, $\Pi$ is not homotopy
type invariant in general.

The lens spaces have a combinatorial invariant, the Reidemeister’s torsion
(Reidemeister [4], Franz [1]), which turned out to be homeomorphy invariant,
in virtue of the result of Moise [2], for 3-dimensional cases. On the other
hand, the homotopy classification of lens spaces was given by J. H. C. White-
head [8], P. Olum [3]. In comparison with this, one sees that the Reide-
meister’s torsion is not homotopy type invariant.

Now we have shown in our former papers (Tamura [5], [6]) that the
Pontrjagin classes have the like property. It seemed desirable to us to have
an analogous approach in the case of lens spaces, $i$ . $e$ . to have a homeomorphy
invariant connected with characteristic classes of differentiable structures
naturally defined on lens spaces, which is not homotopy type invariant.

But since the Pontrjagin classes vanish for 3-dimensional manifolds, they
cannot be used for such purpose. So we shall use P-classes (a generalization
of Pontrjagin classes) of $C^{\infty}- M$-spaces (a generalization of $C^{\infty}$-manifolds) as-
sociated to lens spaces.

A finer classification of these spaces than the homotopy classification will
be given by the invariant $\Pi$ (Theorem 4).

1. Definition of $II(M)$ .
Let $\tilde{M}$ be a compact connected oriented $(2n+1)$ -dimensional $C$ -manifold
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$(n\geqq 1)$ and let $G$ be a finite group of orientation-preserving $C^{\infty}$-transforma-
tions of $\tilde{M}$ having no fixed point. If we identify those points of $\tilde{M}$ which
correspond under a transformation of $G$ , we obtain a compact connected
oriented $(2n+1)$ -dimensional $C^{\infty}$-manifold $M=\tilde{M}/G$ . We shall call $1\psi$ the
quotient manifold of $\tilde{M}$.

$\tilde{M}$ is a $C^{\infty}$-differentiable covering manifold of $M$. Denote the covering
map by $p:\tilde{M}\rightarrow M$. Then we have a principal fibre bundle $\{\tilde{M}, p, M, G, G\}$ .

We assume that $\tilde{M}$ is the boundary manifold of a compact connected
oriented $(2n+2)$ -dimensional $C^{\infty}$-manifold (with boundary) $N$

Now we construct the mapping cylinder $M_{0}(p)$ of $p;\tilde{M}\rightarrow M$ as follows.
Let $I=[0,1]$ be the closed unit interval of real numbers. $\tilde{M}\times I$ has the
natural differentiable structure. Suppose that $G$ operates on $\tilde{M}\times 0$ which is
$(2n+1)$ -dimensional submanifold of $\tilde{M}\times I$, in an obvious manner. If we
identify the points of $\tilde{M}\times I$ which are transformed by an element of $G$ , we
obtain a topological space $M_{0}(p)$ .

$M_{0}(p)=\{M_{0}(p),\tilde{M}\times I,\tilde{M}\times 0, G, \varphi\}$ is a $(2n+2)$ -dimensional $C^{\infty},M$-space (Ta-

mura [7, Definition 1.1]).

Under the identification of the boundary of $N$ and $\tilde{M}\times 1$ , we obtain a
topological space $M(p)=M_{0}(p)U$ N. $M(p)$ becomes a $(2n+2)$-dimensional $C^{\infty}-$

M-space. In fact, $M(p)$ is nothing but a topological space obtained from $N$

identifying the points transformed by an element of $G$ which operates on
the boundary $\tilde{M}$ of $N$. That is, $M(p)=\{M(p), N,\tilde{M}, G, \varphi\}$ .

Obviously we have
$H_{2n+2}(M(p);Z_{m})\approx Z_{m}$ , $H^{2n+}- Q(M(p);Z_{m})\approx Z_{m}$ ,

where $m$ denotes the order of $G$ and $Z_{m}$ the group of integers $mod m$ . Denote
by $[M(p)]$ and $\{M(p)\}$ their generators determined by the orientation of $N$

concordant with the orientation of $\tilde{M}$.
Clearly the normal vector bundle of $\tilde{M}$ in $N$ is a product bundle. Let

$F$ be the cross section over $\tilde{M}$ of this vector bundle defined by the vector
field of $\tilde{M}$ consisting of normal vectors with outward direction at each point
of $\tilde{M}$.

Let $\mathfrak{T}(M(p))=$ { $M(p)$ , %(M), $E^{2n+2},$ $SO(2n+2)$ } be the tangent D-bundle of
$C^{\infty}- M$-space $M(p)$ (Tamura [7, Definition 3.3]) namely a collection as follows:

(i) The tangent vector bundle $\%(N)=\{T(N), p, N, E^{2n+2}, SO(2n+2)\}$ of
$N$ in the usual sense.

(ii) The tangent vector bundle $\%(M)=\{T(\tilde{M}), p,\tilde{M}, E^{2n+1}, SO(2n+1)\}$ of
$\tilde{M}$ in the usual sense.

(iii) An isomorphism $\alpha$ of $G$ into the group of $C^{p}- bundle\backslash $ maps of $\mathfrak{T}(\tilde{M})$

onto itself defined by
$\alpha:g\rightarrow dg$ $(g\in G)$ .
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(iv) The natural injection $\lambda:\mathfrak{T}(\tilde{M})\rightarrow \mathfrak{T}(N)|\tilde{M}$.
Moreover let $\mathfrak{T}^{[n+2]}(M(p))(F)=\{M(p), \mathfrak{T}^{[n+2]}(N), U(2n+2)/U(n), SO(2n+2)\}$

be the generalized associated D-bundle of $\mathfrak{T}(M(p))$ defined by a collection as
follows:

(i) The associated bundle $\mathfrak{T}^{[n+2]}(N)=\{T^{[n+2]}(N),$ $p,$ $N,$ $U(2n+2)/U(n)$ ,
$SO(2n+2)\}$ of $\mathfrak{T}(N)$ in the usual sense.

(ii) The associated bundle $\mathfrak{T}^{[n+1]}(\tilde{M})=\{T^{rn+1)}(\tilde{M}),$ $p,\tilde{M},$ $U(2n+1)/U(n)$ ,
$SO(2n+1)\}$ of $\mathfrak{T}(\tilde{M})$ in the usual sense.

(iii) An isomorphism $\alpha^{[n+2]}$ of $G$ into the group of $C^{\infty}$-bundle maps of
$\mathfrak{T}^{\zeta n+1)}(\tilde{M})$ onto itself determined by $\alpha$ in an obvious manner.

(iv) An injection $\lambda^{[n+2]}$ : $\mathfrak{T}^{[n+1]}(\tilde{M})\rightarrow \mathfrak{T}^{[n+2]}(N)|\tilde{M}$ defined by

$\lambda^{[n+2]}(V_{x}(n+1))=\lambda(V_{x}(n+1))\vee F(x)$ $(x\in\tilde{M})$ ,

where $V_{x}(n+1)$ and $\lambda(V_{x}(n+1))$ denote the fibre of $\mathfrak{T}^{[n+1]}(\tilde{M})$ over $x$ and its
image by $\lambda$ respectively, and the right hand side means the $(n+2)$ -frame
obtained as the union of $\lambda(V_{x}(n+1))$ and $F(x)$ .

Since the first non-zero homotopy groups of $U(2n+1)/U(n),$ $U(2n+2)/U(n)$

are $\pi_{2n+1}(U(2n+1)/U(n))\approx\pi_{2n+1}(U(2n+2)/U(n))\approx Z$ and each element of $G$ oper-
ates on $\tilde{M}$ without fixed points, the primary obstruction class, $i$ . $e.$ $((n+1)/2)$ -th
P-class $P_{(n+1)/2}(M(p))$ of $M(p)$ can be defined (Tamura [7, Section 7]).

In 3-dimensional case, we can take the associated D-bundle $\mathfrak{T}^{[3]}(M^{4}(p))$ ,
in place of the geneneralized associated D-bundle $\mathfrak{T}^{[3]}(M^{4}(p))(F)$ , to define
P-class of $M^{4}(p)$ , by virtue of $\pi_{2}(SU(3))\approx 0$ .

DEFINITION 1. For $M=\tilde{M}/G$ described as above, we define $\Pi(M)$ by

$\Pi(M)=\langle P_{(n+1)/2}(M(p)), [M(p)]\rangle$ .
$\Pi(M)$ is an integer $mod m$ ($m$ is the order of $G$).

Obviously $\Pi(M)$ depends on the choice of fi and $N$.

2. Diffeomorphy invariance of $II$.

In order to prove diffeomorphy invariance of $II$ , let us introduce assump-
tions about $\tilde{M}$ and $N$ as follows:

(a) $\tilde{M}$ is the universal covering manifold of $M(i. e. \pi_{I}(\tilde{M})=0)$ .
(b) Let $\mathfrak{T}^{[n+2]}(N)=\{T^{[n+2]}(N), p, N, U(2n+2)/U(n), SO(2n+2)\}$ be the as-

sociated bundle of the tangent bundle $\mathfrak{T}(N)$ of $N$. Then $\mathfrak{T}^{[n+2]}(N)$ has a cross
section over $N$

(c) Let $\tilde{h}_{0}$ be an arbitrary diffeomorphic map of $\tilde{M}$ onto itself. Then
there exist two differentiable cellular decompositions $K$ and $K^{\prime}$ of $N$ such
that $\tilde{h}_{0}$ is extendable to a homeomorphic cellular map $\tilde{h}:K\rightarrow K^{\prime}$ which is
diffeomorphic on $(2n+1)$-section $K^{2n+1}$ .
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(d) Let $\tilde{h}_{0}$ be an arbitrary diffeomorphic map of $\tilde{M}$ onto itself and let
$N_{1}\cup N_{2}$ be a closed $(2n+2)$-dimensional $C^{\infty}$-manifold obtained from two copies
$N_{1},$ $N_{2}$ of $N$ by the identification of points corresponding under $\tilde{h}_{0}$ . Then the
$((n+1)/2)$ -th Pontrjagin class of $N_{1}UN_{2}$ vanishes.

THEOREM 1. Under the above assumptions $(a)-(d),$ $\Pi(M)$ defined by $\tilde{M}$ and
$N$ is a diffeomorphy invariant.

PROOF. Let $M$ and $M^{\prime}$ be two diffeomorphic compact connected orientable
$(2n+1)$ -dimensional $C^{\infty}$ -manifolds. Denote the diffeomorphic map of $M$ onto
$M^{\prime}$ by $h_{0}$ . $M$ and $M^{\prime}$ have the same universal covering manifold $\tilde{M}$. Obvi-
ously there exists a diffeomorphic map $\tilde{h}_{0}$ of $\tilde{M}$ onto itself, for which the
following diagram is commutative:

$\tilde{h}_{0}$

$\tilde{M}$

$\rightarrow$
$\tilde{M}$

$\downarrow p$

$h_{0}$

$\downarrow p^{\prime}$ (2.1)

$ M\rightarrow$ $M^{\prime}$ ,

where $p$ and $p^{\gamma}$ are covering maps.
Now we have two $C^{\infty}- M$-spaces $M(p)=\{M(p), N,\tilde{M}, G, \varphi\},$ $M(p^{\prime})=\{M(p^{\gamma})$ ,

$N,\tilde{M},$ $G^{\prime},$ $\varphi^{\gamma}$ }.
Let $\mathfrak{T}^{[n+2]}(M(p))(F),$ $\mathfrak{T}^{[n+2]}(M(p^{\prime}))(F)$ be two $C^{\infty}- D$-bundles as in Section 1.

For a G-cross section $f_{0}$ of $\mathfrak{T}^{[n+1]}(\tilde{M})$ over $\tilde{M},f_{0^{\prime}}=(d\tilde{h}_{0})(f_{0})$ is a $G^{\prime}$ -cross section
of $\mathfrak{T}^{[n+1]}(\tilde{M}^{\prime})$ over $\tilde{M}^{\prime}$ by (2.1). Denote cross sections $\lambda^{[n+2]}(f_{0})$ and $\lambda^{\prime[n+2]}(f_{0^{\prime}})$

of $\mathfrak{T}^{[n+2]}(N)$ over $\tilde{M}$ by $f$ and $f^{\prime}$ respectively.
By the assumption (c) we can find a homeomorphic map $\tilde{h}:N\rightarrow N$ which

is an extension of $\tilde{h}_{0}$ . Suppose that $U_{i}$ (resp. $\tilde{h}(U_{i})$) $(i=1,\cdots, r)$ are coordinate
neighbourhoods and $\phi_{i}(x,y)$ (resp. $\phi_{i^{\prime}}(x,$ $y)$ ) $(x\in N)(i=1,\cdots, r)$ are coordinate
functions of $\mathfrak{T}(N)$ with respect to $U_{i}$ (resp. $\tilde{h}(U_{i})$). Then, by the assumption
(c), $\tilde{h}$ defines the maps

$\tilde{h}_{i}$ : $\phi_{i}(x, y)\rightarrow\phi_{i^{\prime}}(\tilde{h}(x), v_{i}(\tilde{h}(x))y)$ $(i=1,\cdots, r)(x\in K^{2n+1})$ , (2.2)

where $\phi_{i}^{\prime}(x, v_{i}(x))(i=1,\cdots, r)(x\in K^{\gamma 2n+1})$ is a cross section $v$ of the associated
principal bundle of $\mathfrak{T}(N)$ over $K^{\prime 2n+1}$ .

Let $\phi_{i}^{[n+2]}(x, y)$ (resp. $\phi_{i}^{\prime[n+2]}(x,$ $y)$ ) $(i=1,\cdots, r)$ be coordinate functions of
$\mathfrak{T}^{[n+2]}(N)$ associated to $\phi_{i}$ (resp. $\phi_{i}^{\prime}$ ). Then $f$ and $f^{\prime}$ are expressed by
$\phi_{i}^{[n+2]}(x,f_{i}(x))$ and $\phi_{t^{\prime[n+2]}}(x,f_{t^{\prime}}(x))(x\in\tilde{M})$ respectively. Obviously we have

$f_{i}^{\prime}(x)=(f(v_{i}(x)))(f_{i}(\tilde{h}_{0^{-1}}(x)))$ $(x\in\tilde{M})$ ,

where $f$ is the natural injection $SO(2n+2)\rightarrow U(2n+2)$ .
Let $f$ be a cross section $\phi_{\iota^{[n+2]}}(x,\overline{f}_{i}(x))(i=1,\cdots, r)(x\in K^{2n+1})$ of $\mathfrak{T}^{[n+2]}(N)$

which is an extension of $f$ over $K^{2n+1}$ . Then the set of
$\phi_{i^{\gamma[n+2]}}(\tilde{h}(x), (f(v_{i}(\tilde{h}(x))))(\overline{f_{i}}(x))$ $(i=1,\cdots, r)(x\in K^{2n+1})$ (2.3)
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defines a cross section $\overline{f}^{\prime}$ of $\mathfrak{T}^{[n+2]}(N)$ over $K^{\prime 2n+1}$ which is an extension of
$f^{\prime}$ . We have by (2.3)

$c\sim(\overline{f})(\sigma^{2^{n}+2})=\tilde{c}(\overline{f}^{\prime})(\tilde{h}(\sigma^{2^{n}+2}))-\tilde{c}(p_{1}(\ell(v)))(\tilde{h}(\sigma^{2n+2}))$ $(\sigma^{2n+2}\in K)$ , (2.4)

where $p_{1}$ denotes the natural projection $U(2n+2)\rightarrow U(2n+2)/U(n+2)$ .
On the other hand, by the assumption (b), there exists a cross section $f^{\Phi}$

of $\mathfrak{T}^{[n+2]}(N)$ over $N$ defined by $\phi_{\iota^{[n+2]}}(x, f_{i}^{Q}(x))(i=1,\cdots, r)$ . Then the set of
$\phi_{i^{\prime[n+2]}}(\tilde{h}(x), (\ell(v_{i}(\tilde{h}(x))))(f_{i}^{o}(x)))$ $(i=1,\cdots, r)(x\in K^{2n+1})$

defines a cross section $f^{o}$ ’ of $\mathfrak{T}^{[n+2]}(N)$ over $K^{J2n+1}$ . $K$ and $K^{\prime}$ define a cellular
decomposition $KUK^{\prime}$ of $N_{1}UN_{2}$ . Moreover $f^{o}$ and $f^{o}$ ’ define a cross section

$fu_{\mathring{f}^{\prime}}$ of $\mathfrak{T}^{[n+2]}(N_{1}UN_{2})$ over $(KUK^{\prime})^{2n+1}$ . Then, by the assumption (d), we
have

$\sum_{\sigma\in K}\tilde{c}(p_{1}(f(v)))(\tilde{h}(\sigma^{2n+2}))=0$ , (2.5)

because
$\tilde{c}(f^{Q})(\sigma^{2n+2})=0$ $(\sigma^{2n+2}\in K)$ .

Combining (2.4) and (2.5), we have

$\sum_{\sigma\in K}\tilde{c}(\overline{f})(0^{2n+2})=\sum_{\sigma^{\prime}\in K^{\prime}}c\sim(\overline{f}^{\prime})(\sigma^{\prime 2^{n}+2})$ .

Thus we have proved

$P_{(n+1)/2}(M(p))=\pm P_{(n+1)/2}(M(p^{\prime}))$ ,

$\Pi(M)=\pm\Pi(M^{\prime})$ . $q$ . $e$ . $d$ .
Now suppose that $\tilde{M}$ is the $(2n+1)$-sphere $S^{2n+1}=\{(x_{0}, x_{1},\cdots, x_{2n+1})|x_{0}^{2}+x_{1^{2}}$

$+\cdots+x_{2n+1}^{2}=1\}$ with the natural differentiable structure and that $N$ is the
$(2n+2)$-dimensional closed cell $\Sigma^{2n+2}=\{(x_{0}, x_{1},\cdots, x_{2n+1})|x_{0^{2}}+x_{1^{2}}+\cdots+x_{2n+1}^{2}\leqq 1\}$

with the natural differentiable structure. Clearly they satisfy the conditions
(a), (b) and (c). The condition (d) is an immediate consequence of the index
theorem of Thom-Hirzebruch, because $\Sigma_{1^{2n+2}}U\Sigma_{2}^{2n+2}$ is a $(2n+2)$-dimensional
sphere (with an arbitrary differentiable structure). Hence we obtain the
following theorem:

THEOREM 2. Let $S^{2n+1}$ be the $(2n+1)$ -sphere and $G$ a finite group of orien-

tation-preserving $C^{\infty}$-transformations of $S^{2n+1}$ . Then $\Pi(S^{2n+1}/G)$ with respect to
$S^{2n+1}$ and $\Sigma 2n+2$ is a diffeomorphy invariant.

As we shall see in Section 4, $\Pi(S^{2n+1}/G)$ is not homotopy type invariant
in general.

3. Lens spaces.

In order to consider the invariant $\Pi$ of lens spaces, we recall here the
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definition and some properties of lens spaces.
Let $S^{2n+1}$ be the unit $(2n+1)$-sphere in Euclidean $(2n+2)$-space $E^{2n+2}$ given

in terms of $n+1$ complex coordinates $(z_{0}, z_{1},\cdots, z_{n}),$ $z_{j}=x_{2j}+ix_{2j+1}(j=0,1,\cdots, n)$ ,

with $\Sigma z_{j}\overline{z}_{j}=\Sigma^{n}x_{j^{2}}2n+1=1$ . Let $m\geqq 2$ be a fixed integer and let $l_{0},$ $l_{1},\cdots,$ $l_{n}$ be
$j=0$ $j=0$

$n+1$ integers relatively prime to $m$ . We define a rotation $\gamma$ of $S^{2n+1}$ onto
itself by

$\gamma$ : $z_{j}\rightarrow(\exp(2\pi il_{j}/m))z_{j}$ $0\leqq j\leqq n$ .
$\gamma$ generates a cyclic group of order $m$ consisting of rotations of $S^{2n+1}$ , none
of which (except the identity) has a fixed point; we call this group $G$ .

If we now identify those points of $S^{2n+1}$ transformed by an element of
$G$ , we get an orientable $(2n+1)$-dimensional manifold $L^{2n+1}(m;l_{0}, l_{1},\cdots, l_{n})$ called
the lens space. Obviously $L^{2n+1}(m;l_{0}, l_{1},\cdots, l_{n})$ is determined by $l_{0},$ $l_{1},\cdots,$ $l_{n}mod m$ .
The universal covering space of $L^{2n+1}(m;l_{0}, l_{1},\cdots, l_{n})$ is $S^{2n+1}$ and $G$ is the group
of covering transformations.

As is easily verified we obtain the same ( $i$ . $e$ . diffeomorphic) lens space
in replacing $(l_{0}, l_{1},\cdots, l_{n})$ as follows:

(i) $(l_{0}, l_{1},\cdots, l_{n})\rightarrow(ll_{0}, ll_{1},\cdots, ll_{n})$ , where $l$ is an integer relatively prime to $m$ .
(ii) $(l_{0}, l_{1},\cdots, l_{n})\rightarrow$ (a permutation of $l_{0},$ $l_{1},\cdots,$ $l_{n}$).

(iii) $(l_{0}, l_{1},\cdots, l_{j},\cdots, l_{n})\rightarrow(l_{0}, l_{1},\cdots, -l_{j},\cdots, l_{n})$ .
Therefore we can write $L^{2n+1}(m;l_{0}, l_{1},\cdots, l_{n})$ briefly as $L^{2n+1}(m;r_{1}, r_{2},\cdots, r_{n})$ by
$\gamma_{j}=l_{0}^{-1}l_{j}mod m(j=1,2,\cdots, n)$ , where $l_{0^{-1}}$ denotes an integer $mod m$ such that
$l_{0^{-1}}l_{0}=1$ . The orientation is preserved by (i), (ii), and is reversed by (iii).

The combinatorial classification of lens spaces is given by the following
theorem (Franz [1]):

THEOREM A. Two lens spaces $L^{2n+l}(m;l_{0}, l_{1},\cdots, l_{n})$ and $L^{2n+1}(m^{\prime}$ ; $l_{0}$ ‘, $l_{1}^{\prime},\cdots,$ $ l_{n^{\prime}}\rangle$

are combinatorially equivalent if and only if $m=\pm m^{\prime}$ and $(l_{0^{\prime}}, l_{1}^{\prime},\cdots, l_{n^{\prime}})$ can be
obtained by the composition of (i), (ii), (iii) from $(l_{0}, l_{1},\cdots, l_{n})$ .

The homotopy classification of lens spaces is given by the following
theorem (Olum [3]):

THEOREM B. Two lens spaces $L^{2n+1}(m;l_{0}, l_{1},\cdots, l_{n})$ and $L^{2n+1}(m^{\prime} ; l_{0}^{\prime}, l_{1}^{\prime},\cdots, l_{n^{\prime}})$

have the same homotopy type if and only if
$m=\pm m^{\prime}$ ; $l_{0}l_{1}\cdots l_{n}=\pm k^{n+1}l_{0}l_{1}\cdots l_{n}$ $(mod m)$

for some integer $k$ relatively prime to $m$ .

4. The invariant $II$ of 3-dimensional lens spaces.

In this section, let us compute $II(L^{3}(m;r))$ .
Let $z_{0}=x_{0}+ix_{1},$ $z_{1}=x_{2}+ix_{3}$ be complex numbers and $q=z_{0}+z_{1}j$ be the

quaternion having multiplicative formulae as follows:
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$zj=j\overline{z}$ , $j^{2}=-1$ .
We can regard $q$ as a point $(x_{0}, x_{1}, x_{2}, x_{3})$ of $E^{4}$ and $q$ with norm $\Vert q\Vert=|z_{0}|^{2}+$

$|z_{1}|^{2}=|x_{0}|^{2}+|x_{1}|^{2}+|x_{2}|^{2}+|x_{3}|^{2}=1$ as a point of $S^{3}$ .
Let $L^{3}(m;l_{0}, l_{1})=L^{3}(m;r)$ be a 3-dimensional lens space. Then the opera-

tion of the generator $\gamma$ of the group $G$ defined in Section 3 is expressed by
quaternions as follows:

$\gamma(q)=z_{0}e^{\frac{2\pi i}{m}l_{0}}+z_{1}e^{\frac{2\pi i}{m}l_{1}}j=e^{\frac{2\pi i}{m}((l_{0}+l_{1})/2)}qe^{\frac{2\pi i}{m}((l_{0}-l_{1})/2)}$ (4.1)

Now let $M_{L}^{4}=\{M_{L}^{4}, \Sigma 4S^{3}, G, \varphi\}$ be the $C^{\infty}- M$-space associated to $L^{3}(m;l_{0}, l_{I})$

and let $\mathfrak{T}^{[3]}(M_{L^{4}})(F)$ be the generalized associated D-bundle of the tangent
D-bundle $\mathfrak{T}(M_{L^{4}})$ of $M_{L^{4}}$ (Section 1).

Let us first construct a G-cross section of $\mathfrak{T}^{[2]}(S^{3})=\{T^{[2]}(S^{3}),p,$ $S^{3},$ $U(3)/$

$U(1),$ $SO(3)$ } over $S^{3}$ . Let $q=z_{0}+z_{1}j$ be a point of $S^{3}$ . Tangent vectors $X_{q}^{()}k$

$=(\frac{\partial}{\partial x_{k}})_{q}(k=0,1,2,3)$ at $q$ form an orthogonal basis of the tangent space

$T(q, \Sigma 4)$ of $\Sigma 4$ at $q$. A point of $T(q, \Sigma 4)$ can be expressed by a quaternion,
say $q^{\prime}$ . Since the transformation $L(q)$ of $T(q, \Sigma^{4})$ given by

$L(q):q^{\prime}\rightarrow qq^{\prime}$ $q^{\prime}\in T(q, \Sigma 4)$

is orthogonal, tangent vectors $Y_{q}^{(k}$ ) $(k=0,1,2,3)$ defined by

$(Y^{(0)}, Y^{(1)}, Y^{(2)}, Y^{(3)})_{q}=L(q)((X^{(0)}, X^{(1)}, X^{(2)}, X^{(3)})_{q})$

$=(X^{(0)}, X^{(I)}, X^{(2)}, X^{(3)})_{q}\left(\begin{array}{llll}x_{0} & -x_{1} & -x_{2} & -x_{3}\\x_{1} & x_{0} & -x_{3} & x_{2}\\x_{2} & x_{3} & x_{0} & -x_{1}\end{array}\right)$

$x_{3}-x_{2}$ $x_{1}$ $x_{0}$

form an orthogonal basis of $T(q, \Sigma^{1})$ . Obviously $Y_{q}^{()}k(k=1,2,3)$ form an
orthogonal basis of the tangent space $T(q, S^{3})$ of $S^{3}$ at $q$ ; and for each $k,$ $Y_{q}^{()}k$

$(q\in S^{3})$ is a left invariant vector field of the group manifold of quaternions
with norm 1.

On the other hand, $\gamma$ induces the map $d\gamma:T(q, S^{3})\rightarrow T(\gamma q, S^{3})(q\in S^{3})$ . By
the direct computation we have by (4.1)

$d\gamma((Y^{(1)}, Y^{(2)}, Y^{(3)})_{q})$

$=(Y^{(1)}, Y^{(2)}, Y^{(\circ)}\circ)_{\gamma q}\left(\begin{array}{ll}01 & 0\\cos(2\pi(J_{0}-l_{1})/m0) & sin(2\pi(l_{0}-J_{1})/m)\\0-sin(2\pi(l_{0}-l_{1})/m) & cos(2\pi(l_{0}-l_{1})\oint m)\end{array}\right)$ . (4.2)

Clearly $ d\gamma$ generates a group $\alpha(G)$ of $C^{\infty}- D$-bundle maps.
Let us put $\Theta_{0}=l_{0^{-1}}(l_{0}-l_{1})\theta_{0},$ $\Theta_{1}=l_{1}^{-1}(l_{0}-l_{1})\theta_{1}$ , where $q=z_{0}+z_{1}j,$ $ z_{0}=\rho_{0}e^{i\theta}\cdot$ ,

$z_{1}=\rho_{1}e^{i\theta_{1}}$ . We consider now the following two continuous fields of three real
vectors on $S^{3}$ :
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$q\rightarrow(Y^{(1)}, Y^{(2)}, Y^{(3)})_{q}\left(\begin{array}{lllll}1 & & 0 & & 0\\0 & \rho_{0} & cos\Theta_{0} & \rho_{0} & sin\Theta_{0}\\0 & -\rho_{0} & sin\Theta_{0} & \rho_{0} & cos\Theta_{0}\end{array}\right)$ (4.3)

$q\rightarrow(Y^{(1)}, Y^{(2)}, Y^{(3)})_{q}\left(\begin{array}{ll}1 0 & 0\\\rho_{1}0cos\Theta_{1} & \rho_{1}sin\Theta_{1}\\0-\rho_{1}sin\Theta_{1} & \rho_{1}cos\Theta_{1}\end{array}\right)$ . (4.4)

More precisely, (4.3) means that at each point $q$ of $S^{3}$ we attach three vectors
$Y_{q}^{(1)},$ $(\rho_{0}\cos\Theta_{0})Y_{q}^{(2)}-(\rho_{0}\sin\Theta_{0})Y_{q}^{(3)},$ $(\rho_{0}\sin\Theta_{0})Y_{q}^{(2)}+(\rho_{0}\cos\Theta_{0})Y_{q}^{(3)}$ . These three
vectors are mutually orthogonal. It is to be noticed however that there
are points where the second or the third of these vectors vanishes. It is
easily verified by (4.2) that these vector fields (4.3), (4.4) are invariant under
the transformation $ d\gamma$ .

Let us denote by $q_{0}+Iq_{1}(q_{0}, q_{1}\in E^{4})$ the complexification of $E^{4}$ , where $J$

is a symbol satisfying $J^{2}=-1$ . Then we have a continuous field of two
mutually orthogonal unit complex vectors on $S^{3}$ which is invariant under the
transformation $ d\gamma$ , as follows:

$q\rightarrow(Y^{(1)}, Y^{(2)}, Y^{(3)})_{q}\left(\begin{array}{l}1 0\\\rho_{0}0cos\Theta_{0}+J\rho_{1}cos\Theta_{1}\\0-\rho_{0}sin\Theta_{0}-J\rho_{1}sin\Theta_{1}\end{array}\right)$ . (4.5)

(4.5) defines the map $f:S^{3}\rightarrow T^{[2]}(S^{3})$ .
Since the cross section $F$ of $\mathfrak{T}(\Sigma^{4})$ over $S^{3}$ defined in Section 1 is the map

$F:q\rightarrow Y_{q}^{(0)}(q\in S^{3})$ , the image $\lambda^{[3]}(f)$ of $f$ is a G-cross section ([7, Definition
2.5]) of $\mathfrak{T}^{[3]}(\Sigma^{4})$ over $S^{3}$ such that

$q\rightarrow(Y^{(0)}, Y^{(1)}, Y^{(2)}, Y^{(3)})_{q}-\left(\begin{array}{lllll}1 & 0 & & 0 & \\0 & 1 & & 0 & \\0 & 0 & \rho_{0} & cos\Theta_{0}+J\rho_{1} & cos\Theta_{1}\\0 & 0 & \rho & sin\Theta J\rho & sin\Theta\end{array}\right)-$

$=(X^{(0)}, X^{(1)}, X^{(2)}, X^{(3)})_{q}321$

which will be denoted by the same notation $f$. $f$ determines the map $f_{1}$ : $S^{3}$

$\rightarrow U(4)/U(1)$ as follows:

$f_{1}(q)=(X^{(0)}, X^{(1)}, X^{(2)}, X^{(3)})_{0}3^{-}21$
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In order to compute the homotopy class $\{f_{1}\}$ , let us introduce two maps
$f_{2},f_{3}$ : $S^{3}\rightarrow U(4)$ defind by

$f_{2}(q)=\left(\begin{array}{llll}x_{0} & -x_{1} & -x_{2} & -x_{3}\\x_{1} & x_{0} & -x_{3} & x_{2}\\x_{2} & x_{3} & x_{0} & -x_{1}\end{array}\right)$ ,

$X_{3}-\mathcal{X}_{2}$ $X_{1}$ $X_{0}$

$f_{3}(q)=\left(\begin{array}{llllllll}1 & 0 & 0 & 0 & & & & \\0 & 1 & 0 & 0 & & & & \\0 & 0 & \rho_{0}cos\Theta_{0}+J\rho_{1}cos\Theta_{1} & \rho_{0}sin\Theta_{0}-J\rho_{1}sin\Theta_{1} & & & & \\0 & 0 & s\rho in\Theta & cJ\rho os\Theta & sin\Theta & \rho & J\rho & cos\Theta\end{array}\right)---$

respectively. The natural projection $\overline{p}:U(4)\rightarrow U(4)/U(1)$ gives an isomorphism
$\overline{p}_{*};$ $\pi_{3}(U(4))\approx\pi_{3}(U(4)/U(1))$ . Clearly we have

$\overline{p}_{*}\{f_{2}\cdot f_{3}\}=\{f_{1}\}$ . (4.6)

As is well-known $\pi_{3}(U(n))\approx Z(n\geqq 2)$ . Let $\mu_{2}$ be a generator of $\pi_{3}(U(2))$

which has the map

$f_{4}$ : $q=z_{0}+z_{J}j\rightarrow\left(\begin{array}{ll}z_{0} & -z_{1}\\\overline{z}_{1} & \overline{z}_{0}\end{array}\right)$

as representative and let $\mu_{n}(n\geqq 3)$ be a generator of $\pi_{3}(U(n))$ defined by
$/x_{n}=i_{*}^{\prime\gamma}\mu_{2}$ , where $i^{\prime\prime}$ denotes the inclusion map $i^{\prime/}:$ $U(2)\rightarrow U(n)$ . The maps
$(x_{0}, x_{1},\cdots, x_{n-1})\rightarrow(z_{0}, z_{1},\cdots, z_{n-1})$ and $(z_{0}, z_{1},\cdots, z_{n-1})\rightarrow(x_{0}, x_{1},\cdots, x_{2n-1})(z_{k}=x_{2k}+ix_{2k+1})$ ,
induce maps $j_{n}$ : $SO(n)\rightarrow U(n)$ and $k_{n}$ : $U(n)\rightarrow SO(2n)$ respectively. Moreover let
$i^{\prime}$ : $SO(n)\rightarrow SO(n^{\prime})(n\leqq n^{\prime})$ be the inclusion map. Then the following diagram
is commutative:

Since
$j_{4}(k_{2}(f_{4}))=f_{2}$ , $(k_{4})_{*}\circ(j_{4})_{*}=2i_{*}^{\prime}$ (Tamura [5]),

we have
$\{f_{2}\}=2\mu_{4}$ . (4.7)

Furthermore let $f_{5}$ : $S^{3}\rightarrow U(2)$ be the map defined by

$f_{6}(q)=\left(\begin{array}{ll}\rho_{0}cos\Theta_{0}+J\rho_{1}cos\Theta_{1} & \rho_{0}sin\Theta_{0}-J\rho_{1}sin\Theta_{1}\\-\rho_{0}sin\Theta_{0}-J\rho_{1}sin\Theta_{1} & \rho_{0}cos\Theta_{0}-J\rho_{1}cos\Theta_{1}\end{array}\right)$ .

Obviously we have
$\{f_{3}\}=i_{*}^{\prime\prime}\{f_{6}\}$ . (4.8)
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Since the projection $p;U(2)\rightarrow S^{3}$ defined by $p(U)=(1, O)U(U\in U(2))$ gives an
isomorphism $p_{*}:$ $\pi_{3}(U(2))\approx\pi_{3}(S^{3})$ such that

$p_{*}(\mu_{2})=c_{3}$ (4.9)

( $c_{3}$ denotes the canonical generator of $\pi_{3}(S^{3})$), we can compute $\{f_{5}\}$ from
$\{p\circ f_{\text{\’{o}}}’\}\in\pi_{3}(S^{3})$ .

Clearly we have
$p(f_{6}(q))=(\rho_{0}\cos\Theta_{0}, \rho_{1}\cos\Theta_{1}, \rho_{0}\sin\Theta_{0}, -\rho_{1}\sin\Theta_{1})$ .

Let $f_{6}$ : $S^{3}\rightarrow S^{3}$ be the map defined by

$f_{6}(q)=(\rho_{0}\cos\Theta_{0}, \rho_{0}\sin\Theta_{0}, \rho_{1}\cos\Theta_{1}, \rho_{1}\sin\Theta_{1})$ .
Clearly we have

$\{p\circ f_{5}\}=\{f_{6}\}$ . (4.10)

Making use of the local degree of $f_{6}$ , we have
$\{f_{6}\}=l_{0^{-1}}l_{1}^{-1}(l_{0}-l_{1})^{2}\ell_{3}$ . (4.11)

(4.8), (4.9), (4.10), (4.11) enable us to compute $\{f_{3}\}$ :
$\{f_{3}\}=l_{0^{-1}}l_{1}^{-1}(l_{1}-l_{0})^{2}\mu_{4}$ . (4.12)

Moreover by (4.6), (4.7), (4.12) we have
$\{f_{1}\}=\overline{p}_{*}(\{f_{2}\}+\{f_{3}\})=\overline{p}_{*}((l_{0^{-1}}l_{1}+l_{0}l_{1}^{-1})\mu_{4})$ .

Consequently the first P-class $P_{1}(M_{L^{4}})$ of $M_{L^{4}}$ is given by

$P_{1}(M_{L^{4}})=(l_{0^{-1}}l_{1}+l_{0}l_{1}^{-1})\{M_{L^{4}}\}$ .
Hence we obtain the following theorem:

THEOREM 3. $\Pi(L^{3}(m;r))=(r+r^{-1})$ $mod m$ .
$\Pi$ is a diffeomorphy invariant (Theorem 2) but not homotopy type inva-

riant. In fact, $L^{3}(7;1)$ and $L^{3}(7;2)$ have the same homotopy type (Theorem
B), but $\Pi(L^{3}(7;1))\neq\pm\Pi(L^{3}(7;2))$ .

Therefore P-class is not homotopy type invariant for 4-dimensional $C^{\infty_{-}}$

M-spaces. On the contrary, since the obstruction of the vector field $q\rightarrow Y_{q}^{(0)}$

gives the 4-th SW-class of $M_{L^{4}}$ (Tamura [7, Definition 7.4]), we have

$SW_{4}(M_{L^{4}})=\{M_{L}^{4}\}$ ,

which is homotopy type invariant.
Suppose that $L^{3}(m;r)$ and $L^{3}(m;r^{\prime})$ have the same invariant $\Pi,$ $i.e$ .

$\Pi(L^{3}(m;r))=\pm\Pi(L^{3}(m;r^{\prime}))$ .
Then we have

$(r+r^{-1})=\pm(r^{\prime}+r^{r-1})$ $(mod m)$ ,
$(r\mp r^{\prime})(1\mp r^{-1}r^{\prime-1})=0$ $(mod m)$ .
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Therefore if $m$ is a prime, we have
$r=\pm r^{\prime}$ or $r=\pm r^{r-1}$ $(mod m)$ .

In either case $L^{3}(m;r)$ and $L^{3}(m;r^{\prime})$ are naturally diffeomorphic by (i), (ii),
(iii) of Section 3. Hence we obtain the following theorem:

THEOREM 4. Under the assumption that $m$ is a prime, 3-dimensional lens
spaces $L^{3}(m;r)$ and $L^{3}(m;r^{\prime})$ are diffeomorphic if and only if they have the same
invariant $\Pi$ .

Now the result of Moise [2] implies, together with Theorem $A$ , that the
diffeomorphic and the homeomorphic classifications of 3-dimensional lens
spaces amount to the same. Therefore we can replace the word “ diffeo-
morphic ” by “ homeomorphic “ in Theorem 4. That this replacement is
allowed, would follow, independently of the result of Moise and of Reide-
meister, if one of the following (1), (2) could be proved as valid:

(1) Each 3-dimensional lens space (or more generally each 3-dimensional
manifold) admits only one differentiable strucure (up to diffeomorphism).l)

(2) The $P_{1}$ -class of 4-dimensional $C^{\infty}- M$-spaces is topologically invariant.

University of Tokyo.
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