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1. Introduction. Let g(x#) be an arithmetic function defined for all posi-
tive integers n. Following an idea of Yamamoto, we make correspond to g(#)
a linear operator I,(f) acting on the space of all functions f(x) (x=1), defined
by

W INw=> S (£,

nsX

The linear operators I, were dealt with extensively in a previous paper
(1)), with the aid of a symbolic calculus introduced and used to approximate
I, for functions f=f(log x) which are polynomials in log x.

Let GWD) = i gD’ be a power series in a symbol D with only a finite

y==p
number of negative powers of D. The symbol D stands for the formal de-
rivative d/dlog x. That is we set:
k Mope n’ n—-k >
D*log x———(n_k)! log™*x for n=k

and all positive and non-positive values of &, D¥log"x=0 for n < k.

The notation I,=G(D)+0(¢,) serves in to denote that I,log"x—
G(D) log"x = O(¢,(x)), where ¢,(x), =0, are non-negative functions. In a more
explicit form, the last relation states that

n Mopp g(u) n X N n! =T,
@) I,log"x—G(D) log"x = z = log T—E ng log"*x=0(p,) .
ysx i=-p
It is known that I[,=1I, where k=g= % is the convolution of g and 4,
i.e. k(n) =%} gdhn/d). Let I,=GD)+0(p,) and I, =H(D)+O0,) then it

was shown in [1, Theorem 4.1] that I,I,=G(D)H(D)+O(p,) and a certain
bound for p, was given, which was not symmetric in g and #4; furthermore,
an important drawback of that theorem was that G(D)H(D)f had always to
be computed as G(D)H(D)f] and not by the ordinary product of the power
series [G(D)H(D)]f. This fact caused some complications in the computation
in the proof of Theorem 9.1 of [1]
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The first part of the present paper tries to give a more satisfactory
bound for p, and to. prove that 1,7, = G(D)H(D)+0O(p,) with G(D)H(D) to be
the product in the ring of power series in D. The method used to compute
the bound for p, is an extension of the Dirichlet’s (hyperbola-) method of
computing n;x d(n).

The result is applied to obtain some new and old formulas on the asymp-
totic behaviour of the mean of certain arithmetic functions. Among others
we show that

2 nldn) = %r~ log2x+2c, 10g x+(c2+c)+0(x112)

n=x

> nTldi(n) = g}f logtx+a; log®x+---+a,+O0(x"/¢*¢)  for every ¢>0,

nEX

B 07| )] = oy 10g 2+by+OG4),
where d(#) is the number of divisors of #», u(n) is the Moébius function and ¢,
is the Euler constant.

The second part of the paper contains improvements and extensions of
the main results of [17]

The Main Theorem of (Theorem 6.1), which yielded the prime number
theorem in many of its equivalent forms, is in some sense artificial as it
contains the particular function A; furthermore, one of its conditions is
superfluous (condition 3) and consequently, corresponding conditions were
introduced in the rest of the results of [T]. The purpose of the second part
of the present paper is to repair and improve the above mentioned result of
and its consequences. As a by-result we shall obtain among others the
fact that

> n1A,(n) log(x/n) = (1/3) log®x—c, log?x+(cy2—2¢;) log x-+2¢c,+0(1)

where A,= g =log?x is the function used in Selberg’s formula.

2. The main theorem and some special cases.

Let GD)= Y g D", HD)= ) hD'. Put:

y=-p y=-q

(3) RE() =1, log"s—G(D) log"s = 3 v'g() log" 2 — 3 (n—i)1=*n!g, log™'x,

t=-p

4) Rix)=1,log"s—H(D)log"s= 3 v~'h(y) log" - —ii (n—i)1"1n) 7, log™'x,

=-q

(4) R&™x)=1Ig1,log"x—[G(D)H(D)]log"x.
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We shall also write F(D)= G(D)H(D) = %+ )ftD‘ where f‘::i % g.h.
= q +Ek=¢

The main result of the present paper is:
Theorem 1. A) For 1=r=<ux:

©  rew=3 8w S 1 w3 (R w()

vETY ysx/r J=0

1,— x
+S‘ E (z—])'(n+])r RE,(r)h_;log™ - -

Y4 [
+_E E G—7) ?(;zﬂ)v RZH(%)g-i logi~r .

(6B) R = > B Ru( 2 E (nw,), R RE-(%)

= S Rﬁ( x )+ E ‘(n—n_!i)—!giRz—i(x)

Y=z f=—p

E E G- k)r = gol; logtFx .

k=1 1=k

The proof of will be given in section 4. Here we apply this
result to some special cases:

Tueorem 2. Let I,=G(D)+O0(x"?log’x), I,=H(D)+OxBlog™nx) where
0<a,pB and o, t, are two non-decreasing sequences of non-negative integers. If
g=0(og"x), h=0(log"x) then

I, I, = G(D)H(D)+O(x" loginx)
where 1/r =1/a+1/8 and 2, =Max(t,p+p—1, 1,+%, 0,+q—1, 0,-+v).

Proor. Consider the five terms of R&*(x) as given in (6) for 7 =4’
0<?<1; and note that RE(x)=O(x"*log’x) and R(x) = O(x8 log™x).

The first term yields

> vgW) R x) = O( X vt log™y[(av~!) 78 log™(av~")])

v§zt y==x

= O(x P log™x 3] vB~1log%) = O(xF ¢~ logTat¥y) .

y=x
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Similarly the second term is O(x *log”»*’x). The third term is readily
seen to be O(x~%+8(-1) Jog™*’ny), which is clearly O(x™*%) for 0 < ¢<1. The
other two terms in (6) are readily seen to be O(x * log’s+¢*?"'x) and
O(x~B1~Y JogTn+ptP~1y),

Choose ¢ so that —at= g@¢—1) i.e. ¢t =(a+£)"'8 and put —y =—at. Thus
1/r =1/a+1/8, and the rest of the proof follows now easily.

For the purpose of the next theorem we introduce the following notation:

We set P(x) = O (x™%), @ >0, if P(x) =0 **+°) for every ¢>0. Thus P(x)
= 0,(1) if P(x)=0(") for every ¢>0.

One would have liked to extend for the product of # function
g%--xg,, but it seems to involve too many computation. A somewhat less
satisfactory result can be obtained by a relatively simple induction. To this
end we first note that:

Lemma 1. Let g,(n),--, g.n) be v arithmetic functions for which g,(n)= 01)
hold, and let h = gyx---xg, be the convolution product of the g;, then h(n)= O.(1).

The proof follows by induction on 7, and first we consider the case r=2.

For a given ¢ >0 choose K> 0 such that |g;(#)| < K»*. Thus

| ()| = | 5 gi(d)g(n/d)| =( %‘ DEn* = Kn*d(n) .

Now d(n)=0.(1) by [2, Theorem 315, p. 260] and the rest of the proof is
evident.

We can prove now our next theorem.

Tueorem 3. Let Iy, = Gi(D)+0(x"), a;>0,and g,=01),i=1,2,---, 7, then

Ig, Iy = GGy -Gy + Ox™)
with 1/a=1/a;+---+1/c,.

In view of [Lemma 1|, one can use an induction process in the proof of
this theorem. We shall consider here only the case =2, where proof is
almost identical with the proof of Indeed, put g =g8.=4,
o=« and a,=pf. For a given ¢>0, and for r=2% the term of R&%(x) as'
given in (6) is

2 VTIgWRYYTx) = O X v~ 1+ (y~1x)~F+] = O(xB~D*¢)

y=zt ysat
The other terms are readily seen to be either Ox8¢~D*) or O(x~**%). Hence,
choosing —7=-—at=p¢—1), we have R&"(x) = O(x~"*) which yields Rg"(x)=
O.(x77), q.e.d.
The following is very useful in approximating functions g:
TuroreEm 4. Let g(n) be an arithmetic function satisfying:

¢ 2 = T g (2 log ek o)

psz
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such that ft‘lp(t) log¥t dt converges for all v=0, then for the power series
1

G(D) = f} roD” where 1, for v=0 are given in (7), and

yv=-p

_ (=17t = p@) logv™'t
(8a) neGenrl, A vEL

we have RE(x)= p(x) and

(8b) Rix) = | p(t) dlog™(at™) = (=1 plwe"au .

Proor. Clearly we have to deal only with the case » >0. First we note
that by substituting # log x = log(xt~!) we have:

—["log*t dllog"(xt)] = log™*x ey dun = 21 jognivy
1 g g g 0 (n+v)! g

=y! D log"x.

It follows now by [2, Theorem 4217 that for » >0,

14
I,log"x= E %& log™ Z = —jl [ S‘ 7;‘!”— log"t+p(t)]a’log”(x/t)

UET =0

14

=3 T flothdDog"(x/l‘)J

-FE (—1yt 7@;{@, log"‘”x“jp(t) dlog"t——j':,o(t) dlog"t)
v=1
=§ 7D~ log"x+§ r,D’ log"x+ N (—1y (7>log”‘”xf:p(t) dlog’t
y=0 y=1

y=1

=, 10" log™s+ [ p@dLlog(x/n],

y=-p

which proves that RE(x) :rp(z‘)dflog”(x/t)]. The second form of Rg is obtain-

ed by substituting # =—log(x/f). In particular,
CoroLrLary. If p(x) = O(x™?) for some 9 > 0, then RE(x) = O(x~?) for all n=0.

Indeed, Re(x)— o( j w(xe“)‘ﬂdu") — O(x~?) since f ey < oo,
x 0
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3. Applications.

A) Since - }z—:log xtco+0(-Y), it follows by that :

n=x
I, = D‘1+§)0 ¢, D' +0(xY), ¢, 1s the Euler constant.

In the present paper we shall denote by ({(D) this power series which
approximates I,.

Now 1x1=d, where d(n) is the number of divisors of #. Thus, I;2=1,
by [1, Theorem 4.17. In this case conditions of [Theorem 2 are satisfied with
a=8=1l,u=v=0,p=qg=1. Thus

80 I, = (D407,
In particular

E *d%& = (D7 +co+--)1+0(x™1?) = —é~ log?x+2¢, log x+(cy?+2¢,)+0(x"172) .

Further results one obtains by computing I;log"x, for n>1.
Moreover, let d,=1%---x1, thus di(n)= 3 1. Here we may apply

and obtain
Iy, =I* = {(D)*+0,(x ).
In particular,
Il =§$V"1dk(1’) = "kl!\ log"x—f——(];lf-i—)—r o logh=1x+-+cp’ +0(x~ %)
and one can readily compute the coefficients ¢,’,---, ¢y’.
B) As in examples C and D of [1, Section 10], we set u,(#)=(—1)" for

n=(ppy---p,)? and zero otherwise, e,(n) =1 for square » and zero otherwise.
Now,

z /,tign) _ E ﬂ;’:) = by +O(x~17), boz% ={(2)7!.

n=X n’=zx

Hence, implies that

I‘u’ == b0+b1D+"' +O(x—1/2) .

In this example we use the relation |x|=1=* u,, where z is the Mobius
function. Hence it follows by that

(8d) L= (D ok ) (0. D+ ) +0G)

and in particular
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Il 22 *Iﬂ—;@—l = niz (log x+c)+b,+0(x™1)

n=r

which is a better result than [1, (10D)]. (Note the misprint in 10D of [T).
C) It is well known that {%*(s){~1(2s) =3 2"™yu~¢% where v(n)=r for n=
P p,°7. Whence one readily verifies that p= 1%l =| u|*1, and p(x) = 2"™.
By the previous example it follows that is applicable and we
have

Io= (D et (St ) 06,
Thus

E 21;;11) :~7i~log'~’x—’r-~-+0(x_m)-
n=x
D) The previous examples show how relations between arithmetic func-
tions and the corresponding Dirichlet series can be utilised to obtain certain
asymptotic behaviour. The following is another example.
From the relation {(2s)7'{%s)= X d*m)n~°, it follows that 7,=1I,I*
Hence, it follows by that

L= (D7 eyt (o +BD++ ) +0.6).

In particular,
1

2
=) I = loghato a0

E) Our last example deals with the function (%) ([2, p. 2567). It follows
by [2, Theorem 306] that
> r(m)n~* = 4{(s)L(s)
where L(s) =3 y(n)n® with y(@2r-+1)=(—1)" and zero otherwise. Thus r=

4(1xy), and therefore, I, =41I,1,.
Now one readily verifies that

3= 3 o,

nsx y=@-1/2
Note that

T

ST SIS S S
It follows, therefore from that
Li=710Ftr:D+--+0x™).
Consequently yields that:
L =4D "+t )rot7. D4 )+O0G)
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which yields for example:

L1= E L(:)_ =47, log x+Ar,+cor ) +O0GE™12) = log x-+c+O0(x12) .

n=xr

4. Proof of Theorem 1.
9 I I,log"x=3 v7ig() ZJ ﬂ_lh(ﬂ) log"(av=1pu7)
BET

V=X

= Z (vu)y'gW)h(w) logtx(vu)™t = Z} vig(vy) 2 ™ () log™[(av~Hp™1]

pusz/ly

+ X /z"h(u) Z V‘Ig(V) log"[xa™ W™ )= X (wm)T'gW)h(x) logra(vw)™

usx/r v=y psEx/t
=2 +22—Z3 .
It follows from (4) that:

2= Z‘ v7igW)I, loghxy~t = 2 vigw)[ > (n—i)!"'n !k, log™ *xv~'+ Ri(ww )]

i=-q

= 2 (n—i)!"nlh, 2 v=ig) log™ (ry=H(xr~H+Sy;

i=—q

= z (n—i) 1"l h, Z( log” g1 S poig(v) logiry1+S,;

i=-q j=0 vETY

= i %—1 "' b log=~tzy=1[ Z g log’*r +R&(r) |+S
4 4 jlm—i—j)! (j— k)' * H
i=-q j=0 k=-p

2513+512+811

where

=3 -1 h, =1 — n—-t~j
Sii Eru SR v, Si;= E E '(n ]), R&(r)h; log xy 1

i=—g j=0
and

i==q j=0 k=-p
In the latter we interchange the order of summation and obtain:

n+q n-—j

a0 Se=) E G Gyt P Lo g

Jj=0 i=—-gq k=-p

Similarly one shows that.>), = S,;+S,,+S,;, with

n n—k

= -1 -1 - R 2 S VI n—j-k
SZI /,LZIIJT# k(ﬂ)Rg<x/,L )’ SZS kzp; ]!(n_‘]-‘k)! R_,(x]’ l)ék 10g 7
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n—j

J
) n—j—k =i —1
E n—j— k)l(] ! higilog™ ™ r log/'r~ix

k=-p i=-q

n+p
Spg = E
3=0

In S,; we substitute j by #—j and obtain that

4o S”‘E E E G~ k)’(n——] i1 ugelog" ey~ logh™y

j==p k=-pi=-g

which is similar to S, as given in (10), with the exception of the interval
of values which j takes.
In computing 3}; we utilise (3) and (4) as follows:

=2 X vigW)u () 1og" [ (ry ) (r~ u ]

y=r psx/r
ZE@)[ E vig) logry [ ) aoh(e) log™lay
j=0 y=ry Peyyn

n .7

E( ) 4 (J k)' & log” 7+Rg(7)][ (;njj)z)v h; log™=t=ixyr—!

= k=-p 'L-—q

+ Ry a7 | = T+ Tot To+ T,

where
— n n 1

(122) T.= (%) RERE- ™,

j=0

L] J '

Q Q !
(12b) Ty= Gt R g logr

Jj=0 k=-p

n‘ n-j '

‘ — ___n  pg 1ogh=i=ygp—1

(12¢) T.= ) FToi—i—p 1 REr Y log"~lxrt,

J=0 i=~q

n‘ J n-j '

n.: n—i— - i

(12d) =, ) E Gom T (n—i—j1 M 108" ar ™ log™™*r .

Consider now separately the sum S,,+S,,— 7T}, S;5—7T, and S,,—7T,. It
follows from (10) and (11) that:

n+q n—j J n—j n i n-j n+q n—j J
SutSu-Ti=2 % S -+3 $ ¥ 3§ =2l 30 3.
j=0i=-gqk=-p j=-» k=—pz——q Jj=0 k=-pi=~-q J=—pi=-qk=-p

In the last form we set j—k=s and i+k=¢ and one readily observes
that one obtains:

Sia+Se2— E E sln— 7S /Y E/Zigk)bgn-s-txf—l log®r

t=~(p+q) s=0 i+k=t
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> iy Tilog" iz =F(D) log"x .

t=~(p+q)

We recall that F(D) = G(D)H(D) = % D
t=—(p+qg

For the second sum we obtain:

n  n-i n n—j -1 n-—1
Siy=Te=2 2 =2 X =2 -
i=—-q j=0 j=01i=-q i=~q j=n+l
a ¢ '
11 n! L
= —— s RS, 1 1=Jpyr—1
J / (n+]) ! (Z—])! Rn+](r)h—t Og xr
=1 j=

where in the last step we have substituted j by j—#» and i by —i.
The rest of the proof of (A) of is obtained by a similar
computation of S,3—7; and from the fact that

REMx) = 301 +20— 23— F(D) log"s = Sy +Sg — Ty -(S15—T'9) +(Sas—

which have been shown to be respectively the five terms given in (6).
The proof of follows readily by computing :

(1) loghx = I[ 1}, log™x] = I [ H(D) log"x+ Ri(x)]

= I, Ri(x)+ Eu 1g(v) E z)' h; lognixyt

V=X i=—-q

= I, Rh(xn)+ E oy Il log™
i=-q

= I, Ri9+ E T WRE+ Y E T g log™
i=-q i==q k=-p

— LRI+ Y, - sy R () +IG(D)H(D)] log™s
i=-q )

n+p n-i

=2 D iy eselog

t=n+lk=-p

which proves the first part of The second part follows similarly.

5. Asymptotic results. The methods which have been used in the proof
of the Main Theorem of may yield far more:
Tureorem 5. Let g(n) be a non-negative function with the property that:

(gl) > &) =alog"x+blog" x-+o(log" %), n=1, a>0.

y=x
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Let f(x) (x=1) be a complex valued function satisfying:

M) &) =0,

@ > I ~ow),

3 At —f=ol)  as (601, ).
Then the condition

4 Fwllog™s= - > a6)| £(-5-) | +ottog™

implies that f(x) = o(1).

Proor. Without loss of generality we may assume that ¢=1.

From [1, Lemmas 6.8 and 6.97 it follows that (2) and (3) imply that fol-
lowing :

Given 4>0, one can find positive numbers x,, T and #>1 with the pro-
perty that for every x> x,, the interval (r,x7") contains a subinterval (y, yf)
such that for every z,x<y=<z=<yr=<xT, we have | f(2)| < 4.

From (1) it follows that |f(x)|< A+¢ for all x>1 and liII; sup f(x) = A.

The theorem states that A=0. Suppose A>0. Then choose 0 < 4 < A.

For ¢>0, let x, =, be such that |f(x)]<A+¢ for all x=x,. Put i;=
[log x,/log TJ]+1 and j=T[logx/log T']. For i, <:<j, let (9, y:#) be the sub-
interval of (T T%) for which |f(2)| <4 for all T' <y, <2<yt < T,

First we observe that since j=O(log x) and y, > T*:

N S e

=1 ¥, ST ISyt

=3 Clog™xy,~'—log"xy;, "™ +b log™'xy, ™' —b log™'xy,~ ¢~ +o(log™ 'xy,~*t~1)]

1=1

= nlog 3 log™ay,'+0(j log™*a)+ é o(log™xy;™)

=1 =1

=nlog t:V‘_, log™ 1(xT~¢*+D)+O(log™ 'x)+o(log™x)

i=1;

n-1 j
=g log tE (n;1>(_1),, log™=1=%x log?T E @+1)’+o(log™x)

p=0 i=‘ix
n—1
— n~1-p oy _pyo(P—1\[__1 (logx\**! ) n
=z log tE;Iog x log?T(—1) ( 0 ) FES| (log T) +O(log x)]+o(log x)
Py

= log"x log #/log T+o(log"x) = C log"x+o(log™s), C>0.
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n—1 .
Since E(—l}”<nzl>(p+1)"1=n"l, and 27] o(log™ 1xy;”") = o(log™x). The latter
p=0 -
is shown as follows:
Let R(x) be the remainder element in (g1), then |R(x)| < Hlog" 'x for all

x, and |R(x)| < 0log™x for 6 >0 and x> x; Thus, the remainder in the last
formula is

|5 R )|=H 3 log™iay,ite 3 log™iay,

1=1; 1say; =2y i=1,
= celog"x+Hlog" xlog xs/log T'= ¢ log"x+o(logx),
since the number of the integers i for which 1=<xy,”!<xs is the same as
those which satisfy xxs~!< T < x, which is [log x;3/log T'].
The proof of follows now readily as in [1, Theorem 6.1]:
Indeed, it follows by (4) and in view of the fact that 0 <4< A+e:
If(x)110g"x§K1$$§<xg(V)+(A+E) > 8w

., {xy isx

+§ E g(V)(lf ( fﬁ) l”A—6> +o(log"x) < K(log"x—log"xx,™")

=2y Y;<TYTISY
+O(log" 1x)+(A+e¢) log"x+0O(log™ x)+(4d— A—e)C log™x+o(log™x)
=[(A+e)+(4d—A—e)C] log™x-+-o0(log™x) .
Thus
| f@)] = Atet+(d—A—e)CHo(1)
and as x— co we have
limsup | f(x)| =A< A+e+(d—A—e)C

which being true for all ¢> 0 yields A< A+(4—A)C. But this is impossible
since C>0 and 4—A <0, and the proof of the theorem is concluded.

Remark 1. The preceding theorem does not yield immediately the Main
Theorem of [1, 6.1] since the latter requires that [f(x)|log x < I,|f(x)|+o(log x)
and if one chooses g(v)= A(v)v~!, then g does not satisfy (gl). Nevertheless
our theorem is applicable for g(v)= A,(v)v~! and condition (2) of [1, Theorem

6.4] yields by [1, Lemma 6.6] that |f(x)|log2x <1, |f(x)|+o(log?’y) and our
theorem yields the Main Theorem of

Remark 2. can be extended to a wider class of functions
g(n), for which one has to assume instead of (gl):

(g2) Emg(”) = G(x)+0(G(x)/log x)

with G(x) a non-decreasing function, and
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@) @IGW = D g0 |7 (-£) [ +oGa.
The proof can be carried over to this case if g(@) will satisfy a condition
similar to (x). Namely that:

(%) SIS £6)ZCCW+o(G), for some C>0.

i=4s y;<ay7 =y,
In particular, note that once we have shown that 3 A()/v =log x+c-+o(1)
y=x

([1, (7.3), p. 289]), then clearly (£2) holds for g(n) = A(n)/n, and G(x) = log x-+c.
Furthermore, (xx) is valid since 3 A@)/v=1log xy;"'—log xy,” 't ' +o0(1) =

Y <v=y;t

log t4-0(1) and the rest is easily verified.

The generality of and the fact that we have got rid of
condition (3) of [1, Theorem 6.17, enables us to modify the conditions in [1,
Theorem 9.17. Namely we have:

Tueorem 6. Let I, = H(D)+0Q), h(n) = O0n?) for & <1, then f,(x)=1I,log"x
—H(D) log™x satisfies (1) and (2) of Theorem 5.

[1, Theorem 9.17 was proved with the assumption that 7,1=0O(log).
This assumption was first used to prove condition (3) of [1, Theorem 9.1,
p. 306] which is not necessary in view of Next it was used on
[1, p. 307] but there one readily observes that it sufficies to assume that
h(n) =0@m?), & <1 since one has only to verify that

\a@)| | log't _
oL gt _ony

t=x

which is true in our case.

We conclude the paper with an extension of the last general result of
(Theorem 9.1). Namely, we show that

Tueorem 7. Let g be an arithmetic function satisfying the following condi-
tions:

I, =GD)+0(9,); L;,=0Q) and I,¢,log x=o(log x)
and let h= uxg satisfy h(n) =O0m?) for some & <1, then
I, log"x=[{"Y(D)G(D)] log™x+0(1) for n>0,
and it holds also for n=0, if

P P
M)
<Et g 22 FTG—jyT 1-ilog™x loglt = R(t)—Rix) = o(1)
Y=t j=1li=

as (¢, x)— (1, o), where {(D)7*G(D) = f} h,D".

y==p
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Proor. First we prove that RX(x)= I, log"x—[{"Y(D)G(D)] log"x = O(1) for
all =0, and to this end we use (6B). Indeed, by Theorem 1 it follows that:
Ri(x) = I,RE(x)-+0(1) = O(1,9,)+0(1) = O(1) .

Thus

LR = LI,(1, I, —{H(D)G(D)) log™x = [I;—{(D)E~H(D)G(D))] log"x+0(x™")
since I, = {(D)+0(x™*). Now,
D HDYGD)] loghx =[{{'G] log™x—n!"" A,y .
Hence, '

LR, =O0(@n+x")—n!" s

Consider the function f,(x) = R¥x)+(#!x)"'4,.;, which will satisfy I,f,=
O(¢,+x1). As in the proof of Theorem 9.2 of [1, p. 3097 one verifies that
Fa(x) satisfies (1) and (2) of Theorem 5 and (2) of [1, Theorem 6.1]. This
theorem is applicable in view of Remark 2 if we show that: f,(fx)—f.(x) = 0o(1)
as (¢, x)— (1, c0), or equivalently R:(#x)—R™x) = o(1).

Repeating the computation of [1, p. 309] we obtain

R~ R = > 2 B0 ogn —E Y z), hy log™~itx |
ysto i=~p
—[E R0). log™ - . —2 Z), /2 log"“’x]
y=z i==p
= 2 ﬁiﬁ)_ log™ i( )10th2 ). log™7 - x
@<ystz i= y=z
__z;:p jzl (n——z)' ( h logit log™~*-ix
- S e[S 5 o 5
elv=tz y=x
~ii-_p(1§n—zj);-)—'h log™~¢- Jx] ]1‘2‘: :};p i—i J)h log™~7x log’t
=4,+4,,

n

and 4, = E( IogftR _{x),

h(v) n! - nt
dn= E log™~ #Z Z (n+])'(z —jy1 f-slog"xlog™it.

r<y=ste j=1 i=j
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The latter is obtained by replacing j and ; by j—» and —:i respectively in
the corresponding part of the preceding formula.

Clearly, if 4,=0() as (¢, x)— (1, cc) then since 4, = O(log #) = 0(1), it fol-
lows that R!(#x)—RM(x)=o0(1) and our theorem is proved. For »=0,4, =0,
and 4,=0() is the condition given in the statement of the theorem. For
7 >0 we have by [2, Theorem 421, p. 346]:

E P 1ogn b f[H(u) H(x)](log 122 ) A

x<ly=te

where Hu)=ILh= > v7ihQY)= 2 (—)!"h; log 'u+R%u). Hence, by setting

v=u i==p

—i instead of i, we obtain that the last integral is equal to:

b4
— E i1, j "Tlog'u—log'x(log™xu"Y du— j I R u)— R Jlog" txu~"Y du

=1

—_— E i xh_,[(log u—log‘x) log"txu~ ] + Z G—1)!- %_J logntxu-t 108" 1Ogi*1u .

i=1

+0log™) .

The latter follows by integration by part and from the fact that R%=0(Q).
Now, the first term in the last formula is zero, and in the second term we
obtain by setting v = (log txu~!)/log t,

fmlog”txu‘l 10—#4— du = j‘ (log™1Hv™(log tx—v log #)*~'dv

1

i-1

I
AN

b
U
-

<i]1>10gn+j+1“0gw— i j o™(1—v)dv

.
-

i-——l n' 7+ -+ 1 i=(j+1) (zi;l)___.\_,, n+J -7
)(n+]+1)' log™ ¢ log x_E(n+J)'(z —j log tlog™ .

I
&

.,
<

From which one observes that:

b4
1

& .
Z (n +J)'(z —! h-slog™*t log™ix

i=1 j=1

P P
— X N+ J i-g : LY NEY
Z E_ n+j)'(z =T k_; log™ it log*x+0(log™) = O(log™) = o(1)

J=11

ds t—1 (independent of x), when # > 0.
We conclude with an application:
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The function A,= pxlog?x satisfies the requirement of our theorem.
Hence, we obtain from (5.12b) of that

14, log x= E @ log -ff— = %,; log3x—c, log2x+(c2—2¢) log x+2¢c,+0(1) ,
instead of O(1).
Hebrew University,
Jerusalem, Israel.
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