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Introduction

The term ” regular ring” will be understood in this paper in the sense
defined by Auslander-Buchsbaum [2]. It will mean namely a Noetherian
ring $R$ , such that the quotient ring $R_{\mathfrak{p}}$ of $R$ with respect to any prime ideal
$\mathfrak{p}$ of $R$ is a regular local ring. A regular intergral domain will be simply
calied a regular domain. For example every Dedekind domain’) is a one-
dimensional regular domain. As is well known, the concept of regular local
rings was introduced as a generalization of formal power-series rings with
finite numbers of variables over fields, whereas a regular ring may be con-
sidered as a generalization of a polynomial ring with a finite number of
variables over a field. In $\ulcorner\llcorner 2$], as well as in Serre [10], an important charac-
terization of regular local rings is given. (But in [2] most proofs are left
out). The following theorem, given also in [2], [10] with homological
methods and referred to as Theorem A in the following, is important for us.

THEOREM A. If $R$ is a regular local ring, then the quotient ring $R_{\mathfrak{p}}$ of $R$

with respect to any prime ideal $\mathfrak{p}$ of $R$ is also a regular local ring.
According to this theorem, the definition of the regular ring can be

restated as follows: A Notherian ring $R$ is called a regular ring if the quotient
ring R.. of $R$ with respect to any maximal ideal $\mathfrak{m}$ of $R$ is a regular local ring.

In this paper, we shall start from our latter definition of the regular
ring, and shall prove properties of regular rings using only purely ideal-
theoretical methods. Among the results proved by homological methods, we
presuppose only Theorem A above mentioned. Most of the results previously
obtained, will be proved by simpler methods in the generalized form. We
shall use, in this paper, the notations and terminology of Northcott [8].

Moreover, “ ideal will always mean a proper ideal, “ ring “ a commutative
ring with unity $e$ .

In \S 1, we shall prove that every regular ring can be expressed as a
direct sum of a finite number of regular domains.

1) Dedekind domain is an integral domain which satisfies Noether-Sono’s condi.
tion.



160 S. ENDO

In \S 2 we shall show that the polynomial ring and formal power-series
ring with a finite number of variables over a regular ring are also regular.

In \S 3 we shaIl introduce a notion of quasi-ZPE rings as a generalization
of ZPE rings in the sense of Krull [4] and prove in particular the following
results. Every regular ring $R$ is a quasi-ZPE ring if the quotient ring $R_{tlt}$

of $R$ with respect to any maximal ideal $\mathfrak{m}$ of $R$ is unramified or one-or two-
dimensional. If $R$ is a quasi-ZPE regular ring, the polynomial ring $R^{\prime}=$

$R[X_{1},\cdots, X_{n}]$ with a finite number of variables $X_{1},$ $X_{2},\cdots,$ $X_{n}$ over $R$ is also a
quasi-ZPE regular ring.

In \S 4 we shall examine on semi-local regular ring. Main results are
the following: Every maximal ideal $\iota \mathfrak{n}$ of a semi-local regular ring $R$ is
generated by $d$ elements where $d=rank\eta t$ . Every semi-local quasi-ZPE
regular domain is a ZPE ring.

In \S 5, we shall give some further results.
The writer is grateful tc Proffessor S. Iyanaga and Mr. M. Narita for

their kind advices.

\S 1. Reductions to regular domains.

First we give the following
THEOREM 1. Every regular ring is integrally closed.
This follows from the following general proposition.
$p_{ROPOSITION}1$ . A rfng $R$ is integrally closed if and only if the quotient

ring $R_{\iota \mathfrak{n}}$ of $R$ with respect to any maximal ideal $\mathfrak{m}$ of $R$ is integrally closed.
Furthermore, if $R$ is integrally closed and if $S$ is an arbitrary multiplicatively

closed set of $R$ which does not contain $0$ , the quotient ring $R_{s}$ of $R$ with respect
to $S$ is integrally closed.

PROOF. The second part can be proved easily (for example, see [1] or
[11]). Hence we have only to show the if part. Let $K$ be the total quotient
ring of $R$ and let $\alpha=b/a$ be any element of $K$ which is integral over $R$ ,

where $a,$ $b\in R$ . Denote by $\overline{a},\overline{b}$ the residues of $a,$ $b$ in $R_{1tt}$ respectively and set
$\overline{\alpha}=\overline{b}/\overline{a}$ . Since $R_{t\mathfrak{n}}$ is integrally closed, Ct is contained in $R_{\mathfrak{n}}$ . Therefore we
can put $\overline{b}/\overline{a}=\overline{r}/\overline{s},\overline{s}\not\in \mathfrak{m}/(1,\overline{r},\overline{s}\in R/\mathfrak{a}$ , where $\mathfrak{a}=\{a;as^{\prime}=0, s\in\in \mathfrak{m}, a\in R\}$ . Denote
by $s,$ $r$ the representatives of $\overline{s},\overline{r}$ in $R$, then by the definition of $\mathfrak{a}$ , we have
$s^{\prime}s\alpha=sr\in R,$ $ s^{f}s\not\in \mathfrak{n}\uparrow$ , for a suitable element $s^{\prime}\in\in\iota \mathfrak{n}$ . Now, if we set $c=\{c;c\alpha\in$

$R,$ $c\in R$ }, then $c$ is not contained in any maximal ideal of $R$ . Therefore $c=R$ .
Consequently $\alpha\in R$ . Thus $R$ is integrally $clos^{\backslash }ed$ .

Secondly we shall prove the following theorem which is mentioned with-
out proof in [2].

THEOREM 2. A ring is regular if and only if it is expressible as a direct
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sum of a finite number of regular domains.
This theorem can easily be derived from the following general proposi-

tions.
PROPOSITION 2. For any ring $R$ with only a finite number of prime ideals

$\mathfrak{p}_{1},$ $\mathfrak{p}_{2},\cdots,$ $\mathfrak{p}_{s}$ of rank $0$ in $R$ the following properties are equivalent:
1) $R$ is expressible as a direct sum of a finite number of integral domains.
2) We have $(\mathfrak{p}_{i}, \mathfrak{p}_{j})=R$ for any $i\neq j$ and $\bigcap_{i=1}^{s}r_{1_{j}}=(0)$ .
3) The quotient ring $R_{\iota \mathfrak{n}}$ of $R$ with respect to any maximal ideal $\mathfrak{m}$ of $R$ is

an integral domain.
PROOF. $1$ ) $\rightarrow 2$) By assumption we have

$R=R_{1}\oplus R_{\sim^{\prime}}\oplus\cdots\oplus R_{s}$ (direct sum)

where every R. is an integral domain. Then we have clearly $\mathfrak{p}_{i}=R_{1}\oplus\cdots\oplus(t^{i}J)$

$\oplus\cdots\oplus R_{s}$ by changing suitably the indexes of $R_{i}$ . Hence $R$ has the pro-
perty 2). $2$) $\rightarrow 1$ ). From 2) it follows directly

$(\mathfrak{p}_{i}, \mathfrak{p}_{1}\cap\cdots\cap\hat{\mathfrak{p}}_{i}\cap\cdots\cap \mathfrak{p}_{s})=R$ for any $i$ .
Now denote by $e_{i}$ an element of $R$ such that $1=a_{i}+e_{i}$ , where $a_{i}\in \mathfrak{p}_{i},$ $e_{i}\in \mathfrak{p}_{1\cap}$

$\cap^{\wedge}13_{t}\cap\cdots\cap 0_{s}$ . If we set $R_{\dot{t}}=\mathfrak{p}_{1}\cap\cdots\cap\hat{\mathfrak{p}}_{i}\cap\cdots\cap \mathfrak{p}_{s}$ , then R. is clearly a ring with
a unit element $e_{i}$ . From this we obtain easily

$R=R_{1}\oplus R_{2}\oplus\cdots\oplus R_{s}$ (direct sum).

$2)\rightarrow 3)$ . According to our assumption every maximal ideal $\mathfrak{m}$ of $R$ contains
only one $\mathfrak{p}_{i_{0}}$ of $\mathfrak{p}_{i}’ s$ . If we set $\mathfrak{a}=\{a; as=0, s\in E\mathfrak{m}, a, s\in R\}$ , then $\mathfrak{a}$ coincides
with $\mathfrak{p}_{to}$ . So R.. is an integral domain.

$3)\rightarrow 2)$ . Now set $a$ . $=\{a; as=0, s\in\in \mathfrak{m}, a, s\in R\}$ for any maximal ideal $\mathfrak{m}$ of $R$

and $\mathfrak{a}=\bigcap_{\iota \mathfrak{n}}\mathfrak{a}_{\mathfrak{m}}$
, where $\mathfrak{m}$ runs over all maximal ideals of $R$. Denote by $a$ any

element of $\mathfrak{a}$ and set $c=\{c;ca=0, c\in R\}$ . Then $c$ is not contained in any
maximal ideal of $R$. Therefore $c=R$. Hence $\mathfrak{a}=(0)$ . Since any $\mathfrak{a}_{\uparrow \mathfrak{n}}$ is a prime

ideal of $R$ coinciding with one of $\mathfrak{p}_{i}’ s$ , we have $\bigcap_{i=1}^{s}\mathfrak{p}_{i}=\bigcap_{\mathfrak{n}\iota}(t_{1\mathfrak{n}}=\mathfrak{a}=(0)$ . It is

obvious that $(\mathfrak{p}_{\dot{t}}, \mathfrak{p}_{j})=R$, for any $i\neq j$. $q$ . $e.d$ .
PROPOSITION 3 For each Noetherian ring $R$ the following statements are

2) This is a generalization of the result in [5]. In a similar way we have obvi-
ously the following: “ Let $R$ be a Noetherian ring and $\overline{R}$ be the integral closure of
$R$ . Then if $R$ has no non-zero nilpotent element, $\overline{R}$ satisfies the following conditions:

1) The quotient ring $\overline{R}$

fi of $\overline{R}$ with respect to every prime ideal $\overline{\mathfrak{p}}$ of rank 1 in $\overline{R}$ is
a discrete valuation ring. 2) Every principal ideal of $\overline{R}$ whose generator is a non $\cdot$

zero divisor of $\overline{R}$ is expressible as an intersection of a finite number of primary

ideals of rank 1 in $\overline{R.}$ If $R$ has non-zero nilpotent elements, $\overline{R}$ does not satisfy 1)

but satisfies 2) and so $\overline{R}$ is not a Noetherian ring.”
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equivalent:
1) $R$ is integrally closed.
2) $R$ is expressible as a direct sum of a finite number of integrally closed

integral domains.
3) The quotient ring $R_{\mathfrak{m}}$ of $R$ with respect to every maximaf ideal $\mathfrak{m}$ of $R$

is an integrally closed integral domain.
4) The quotient ring $R_{\mathfrak{p}}$ of $R$ with respect to every prime ideal $\mathfrak{p}$ of rank 1

in $R$ is a discrete valuation ring and every principal ideal of $R$ whose generator
is a non zero divisor of $R$ is expressible as an intersection of a finite number of
primary ideals of rank 1 in $R$ .

PROOF. The implication $3$) $\rightarrow 2$ ) $\rightarrow 1$ ) is obvious by Proposition 1 and 2.
Hence we have only to prove the implications $1$) $\rightarrow 3$) and $2$) $\Leftrightarrow 4$). $1$) $\rightarrow 3$). It
foIlows from Proposition 1 that R.. is integrally closed. Therefore it is
sufficient to show that if $R$ is an integraily ciosed local ring, $R$ is always an
integral domain. Indeed, since $R$ is integrally closed, every ideal $\mathfrak{a}$ of $R$

which contains at least one of non zero divisors of $R$ contains $\bigcap_{i=1}^{8}\mathfrak{p}_{i}$ . If we

denote by $\mathfrak{m}$ a maximal ideal of $R$ , we have $\mathfrak{m}^{k}\supset\bigcap_{i=1}^{s}\mathfrak{p}_{i}$ , for any positive integer

$k$ . So $\bigcap_{k=1}^{\infty}\mathfrak{m}^{k}\supset\bigcap_{i=1}^{s}\mathfrak{p}\wedge.\cdot$ Now, by KrulPs theorem, $\bigcap_{h=1}^{\infty}\mathfrak{m}^{k}=(0)$ . Hence $\bigcap_{i=1}^{s}\mathfrak{p}_{i}=(0)$ .
Let $K$ be the total quotient ring of $R$ . Then we have $R_{s}=K$, where $S=$

$\bigcap_{i=1}^{l}(R-\mathfrak{p}_{t})$ . Since $\bigcap_{i=1}^{s}\mathfrak{p}_{v}=(0)$ , we have, by Proposition 2,

$K=K_{1}\oplus K_{2}\oplus\cdots\oplus K_{s}$ , (direct sum) ...... I)

where every $K_{\dot{t}}$ is a field isomorphic tc $K/\mathfrak{p}_{c}K$. If we denote by $e_{i}$ a unit
element of $K_{i}$ for each $i$ , then $R$ can be decomposed as a subring of $K$ as
follows:

$R=Re_{1}+Re_{2}+\cdots\dashv- Re_{s}$ . $\cdot$ ..... II)

Since $e_{i^{2}}=e_{i},$ $e_{i}$ is integral over $R$ and so $e_{\dot{i}}\in R$. This shows
$R=Re_{1}\oplus Re_{2}\oplus\cdots\oplus Re_{s}$ (direct sum).

Since $R$ is a local ring, the number of the components in the above direct
sum should be equal to 1. Consequently $R$ is an integral domain.

$2)\rightarrow 4)$ . This can be deduced easily from the result in integrally closed
integral domains.

$4)\rightarrow 2)$ . First we show that $?\bigcap_{=1}^{s}\mathfrak{p}_{i}=(0)$ . Now set $\mathfrak{a}_{\mathfrak{p}}=\{a; as=0, s\not\in \mathfrak{p}, a, s\in R\}$

for any prime ideal $\mathfrak{p}$ of rank 1 in $R$. Then, since every $R_{\mathfrak{p}}$ is a discrete
valuation ring, $\mathfrak{a}_{\mathfrak{p}}$ coincides with one of $\mathfrak{p}_{t}’ s$ . Set

$\mathfrak{a}=\bigcap_{\mathfrak{p}}\mathfrak{a}_{\mathfrak{p}}$
where $\mathfrak{p}$ runs over

all prime ideals of rank 1 in $R$ , and denote by $a$ any element of $a$ . Further
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set $c=\{c;ca=0, c\in R\}$ . Then $c$ is not contained in any prime :deals of rank
1 in $R$ . Therefore $c$ contains at least one of non-zero divisors of $R$. Hence
$\mathfrak{a}=(0)$ . Since $\bigcap_{i=1}^{s}\mathfrak{p}_{i}=\bigcap_{\mathfrak{p}}$ Op, we have $\bigcap_{i=1}^{s}t^{\gamma_{i}}=(0)$ . Then we have the expression

I), II). We have only to prove that II) is a direct sum. Denote by $\mathfrak{a}_{\theta}$ any
element of $Re_{i}$ for every $i$ and set $\alpha=\overline{a}_{1}\oplus\overline{a}_{2}\oplus\cdots\oplus\overline{a}_{s}$ . Then $\alpha$ is an element
of $K$ Therefore we can put $\alpha=d/c,$ $d,$ $c\in R$. Obviously, for every $i,\overline{a}_{i}=$

$ de_{i}/ce,\cdot$ Hence $de_{b}\in(ce_{i})$ in $Re_{\cup}$ . Now, by assumption, $(c)$ can be decomposed
as follows:

$(c)=q_{1}^{\prime}\cap q_{2}^{\prime}\cap\cdots\cap q_{t^{\prime}}$ ,

where every $q_{j^{\prime}}$ is a primary ideal belonging to a prime ideal $\mathfrak{p}_{j^{\prime}}$ of rank 1
in $R$ . Denote by $\mathfrak{p}_{i_{1}}^{\gamma},$ $\mathfrak{p}_{t2}^{J},\cdots,$ $\mathfrak{p}_{t_{tt^{\prime}}}$ all of $\mathfrak{p}_{j}^{\prime}$ containing $l^{t_{i}}$ for every $i$ . Then
we have $(ce_{i})=q_{i_{1}}^{\prime}e_{\dot{t}}\cap q_{i_{2}}^{\prime}e_{i}\cap\cdots\cap q_{?ti^{\prime}}e_{i}$ in $Re_{i}$ . Since $de_{i}\in(ce_{i}),$ $ d\in q_{i_{1}}^{\prime}\cap q_{\dot{l}_{2^{\prime}}}\cap\cdots$

$\cap q_{i_{ii}}^{\prime}$ for every $i$. Consequently $d\in q_{1}^{\prime}\cap q_{2}^{\prime}\cap\cdots\cap q_{t^{\prime}}=(c)$ . Thus $\alpha\in R$ . This
completes our proof.

\S 2. Polynomial rings and formal power-series rings.

Nagata has already proved in [7] that the polynomial ring $R^{\prime}=R[X_{1},\rightarrow\cdot\cdot, X_{n}]$

with variables $X_{1},$ $X_{2},\cdots,$ $X_{n}$ over a Dedekind domain $R$ is a regular domain.
This result is contained in the following general theorem, which we shall
prove now by applying Theorem A in the introduction.

THEOREM 3 Let $R$ be a regular ring. Then the polynomial ring $R^{\prime}=$

$R[X_{1}, X_{2},\cdots, X_{n}]$ with variables $X_{1},$ $X_{\lrcorner}$

) $X_{n}$ over $R$ is also a regular ring.
PROOF. Without loss of generality we may assume $n=1$ and $R^{\prime}=R[X]$ .

Let $\iota \mathfrak{n}^{\prime}$ be an arbitrary maximal ideal of $R^{\prime}$ . It is sufficient to prove that
the quotient ring $R^{\prime}$

) $\mathfrak{n}^{r}$ of $R^{\prime}$ with respect to $\mathfrak{m}^{\prime}$ is a regular local ring. Set
$\mathfrak{p}=\mathfrak{m}^{\prime}\cap R$ , then $\mathfrak{p}$ is a prime ideal of $R$ . By theorem A the quotient ring $R_{\mathfrak{p}}$

of $R$ wtih respect to $\mathfrak{p}$ is a regular local ring. Since we have $R_{\iota\iota\iota^{\prime}}^{\prime}=$

$(R_{\mathfrak{p}}[X])_{\mathfrak{m}^{l}R\mathfrak{p}[X]}$ , we can suppose that $R$ is a regular local ring and that
$\mathfrak{m}=\mathfrak{m}^{\prime}\cap R$ is a maximal ideal of $R$ . Set $K=R/\mathfrak{m}$ , then $K$ is a field and we
have $K[X]=R[X]/\mathfrak{m}R[X]$ . Further, $\overline{\mathfrak{m}}^{\prime}=\iota \mathfrak{n}^{\prime}/\mathfrak{m}R[X]$ is a prime ideal of
$K[X]$ . Since $K[X]$ is a unique factorization ring, $\overline{\mathfrak{m}}^{\prime}$ is a principal ideal
which is generated by an element $\overline{f}$ of $K[X]$ . When we replace all coeffici-
ents of $\overline{f}$ by the representatives of them in $R$ , we obtain a polynomial $f$ of
$R[X]$ , and then we have $\mathfrak{m}^{\prime}=(\mathfrak{m}, f(X))$ . $AccordIngl\triangleleft\vee$ if rank $\mathfrak{m}=d$, we have

3) This theorem has been proved recently in a more general form in [3] by
homological methods. Also, after this paper had been prepared, the writer found
that in case $R$ is a regular local ring this had been proved in [9] by a similar
method as used in this paper.
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rank $\mathfrak{m}^{\prime}=d+1$ . Since $R$ is a regular local ring, $\mathfrak{m}$ is generated by $d$ elements.
So $\mathfrak{m}^{\prime}$ is generated by $d+1$ elements. Consequently $R_{\mathfrak{m}^{\prime}}^{\prime}$ is a regular local
ring. This proves our assertion.

Next we shall prove a similar theorem concerning a formal power-series
ring. In this case we need not Theorem $A$ , but it is impossible to prove
this by the same method as used in Theorem 3. We shall prove the follow-
ing proposition which is essential for a formal power-series ring.

PROPOSITION 4. Let $R^{*}=R[[X_{1}, X_{2},\cdots, X_{n}]]$ be a formal power-series ring
with rariables $X_{1},$ $X_{2},\cdots,$ $X_{n}$ over a ring $R$ and $M=\{m\}$ be the set of all maximal
ideals of R. Then $M^{*}=\{(m, X_{1}, X_{2},\cdots, X_{n})R^{*}, \mathfrak{m}\in 1\psi\}$ is the set of all maximal
ideals of $R^{*}$ .

PROOF. Without loss of generality we may assume $n=1$ . It is obvious
that every $\mathfrak{m}^{*}=(\mathfrak{m}, X)R^{*}$ is a maximal ideal of $R^{*}$ . Let $\mathfrak{m}^{*}$ be an arbitrary
maximal ideal of $R^{*}$ and let $\mathfrak{a}$ be an ideal generated by all constant terms
of power-series contained in $\mathfrak{m}^{*}$ . Then $\mathfrak{a}$ does not coincide with $R$ itself,
because, if $\mathfrak{a}=R,\overline{\mathfrak{m}}^{*}$ contains an element $f$ such that $ f=1+a_{1}X+a_{2}X^{2}+\cdots$

$+a_{n}X^{n}+\cdots$ , which is a contradiction. Now, we choose a maximal ideal $\mathfrak{m}$ of
$R$ which contains $\mathfrak{a}$ . Then we have

$\mathfrak{m}^{*}=(\iota\iota\iota, X)R^{*}\supset(\mathfrak{a}, X)R^{*}\supset\overline{\mathfrak{n}_{t^{*}}}$ .
Consequently we have $\mathfrak{m}^{*}=\overline{\mathfrak{m}}^{\{\prime}\backslash $ . The proof is complete.

THEOREM 4. Let $R$ be a regular ring. Then the formal power-series ring
$R^{*}=R[[X_{1}, X_{2},\cdots, X_{n}]]$ with variables $X_{1},$ $X_{2},\cdots,$ $X_{n}$ over $R$ is also a regular ring.

PROOF. We may again assume $n=1$ . It is sufficient to prove that the
quotient ring $R_{\mathfrak{m}^{*}}^{*}$ of $R^{*}$ with respect to any maximal ideal $111^{*}$ of $R^{*}$ is a
regular local ring. By Proposition 4 we have $\mathfrak{m}^{*}=(\mathfrak{m}, X)R^{*}$ , where $\mathfrak{m}$ is a
maximal ideal of $R$. Therefore $R_{\mathfrak{m}^{*}}^{*}$ contains $R_{\mathfrak{m}}$ . Hence $\iota \mathfrak{n}^{*}R_{\mathfrak{m}^{*}}^{*}=(\mathfrak{n}\iota, X)R_{\iota \mathfrak{n}^{\aleph}}^{*}$

$=(\iota \mathfrak{n}R_{\mathfrak{m}}, X)R_{\mathfrak{m}^{*}}^{*}$ . Since $R_{t\mathfrak{n}}$ is a regular local ring, $\mathfrak{m}R_{t\mathfrak{n}}$ is generated by $d$

elements, where rank $\mathfrak{m}=d$. Therefore $m^{*}R^{*}.*$ is generated by $d+1$ eie-
ments. On the other hand we have rank $\mathfrak{m}^{*}=d+1$ . Consequently $R_{\mathfrak{m}^{*}}^{*}$ is a
regular local ring.

$CoROLLARY$ . Suppose that $R$ is a Noetherian integrally closed ring. Then,

both $R^{\prime}$ avul $R^{*}$ as defined in Theorem 3 and 4 respectively, are also Noetherian
integrally closed ring.

PROOF. We may suppose that $R$ is a integral domain, if we apply Pro-
position 3 to this. As is well known, we have $R=\bigcap_{\mathfrak{p}}R_{\mathfrak{p}}$

, where $\mathfrak{p}$ runs over
all prime ideals of rank 1 in $R$ , and every $R_{\mathfrak{p}}$ is a discrete valuation ring.
Then both $R_{\mathfrak{p}}[X_{1}, X_{2},\cdots, X_{n}]$ and $R_{\mathfrak{p}}[[X_{1}, X_{2},\cdots, X_{n}]]$ are regular rings by
Theorem 3 and 4, and therefore they are integrally closed by Theorem 1.
On the other hand we have $R^{\prime}=R[X_{1}, X_{2},\cdots, X_{n}]=\bigcap_{\mathfrak{p}}(R_{\mathfrak{p}}[X_{1}, X_{2},\cdots, X_{n}])$ and
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$R^{*}=R[[X_{1}, X_{2},\cdots, X_{\eta}]]=\bigcap_{\mathfrak{p}}(R_{\mathfrak{p}}[[X_{1}, X_{2},\cdots, X_{n}]])$ . Consequently, both $R^{\prime}$ and
$R^{*}$ are integrally closed. This proves our assertion.

\S 3. Inversibilities of prime ideals of rank 1 in regular rings.

A unique factorization ring is called a ZPE ring according to Krull.
Now we shall define a quasi-ZPE ring as follows:
DEFIINITION. A Noetherian ring $R$ is called a quasi-ZPE ring if every prime

ideal of rank 1 in $R$ is inversible.
It is well known that unramified or one-or two-dimensional regular local

rings are ZPE ring. (See for example [1] or [11].) Analogously we shall
obtain the following

THEOREM 5 If $R$ is a regular ring whose quotient ring with respect to
any maximal ideal of it is unramified or one- or two-dimensional, then $R$ is a
quasi-ZPE ring.

In order to prove this theorem, we need the following three propositions.
PROPOSIrION5. Let $R$ be an integral domain with one maximal ideal $\mathfrak{m}$ .

Then every inversible ideal of $R$ is principal.
PROOF. Let $a$ be an arbitrary inversible ideal of $R$ . Then $\mathfrak{a}\mathfrak{m}$ is strictly

contained in $\mathfrak{a}$ . Indeed, if $\mathfrak{a}=a\mathfrak{m},$
$R=\mathfrak{a}^{-1}a=\mathfrak{a}^{-1}a\mathfrak{m}=\mathfrak{m}$ . This is obviously a

contradiction. Then we can choose an element $a$ which is not contained in
am but contained in $\mathfrak{a}$ . Set $\mathfrak{b}=\mathfrak{a}^{-1}a$ , the 6 becomes an ideal of $R$ . However,
since $a\not\in am,$ $b=\mathfrak{a}^{-1}\mathfrak{a}c[\mathfrak{m}$ . So $\mathfrak{b}$ must coincide with $R$ . Thus $a=(a)$ .

$CoROLLARY$ . Every quasi-ZPE ring is an integrallv closed ring.
PROPOSITION 6. Let $R$ be an integral domain and let $a$ be an ideal generated

by a finite number of elements. Then $a$ is inversible if and only if in the quotient
ring $R_{t(t}$ of $R$ with respect to any maximal ideal $m$ of $R$ containing $a,$ $aR$. is
principal.

PROOF. The only if part is obvious by Proposition 5, for $\mathfrak{a}$ is inversible
in the quotient ring $R_{\mathfrak{p}}$ of $R$ with respect to any prime ideal $\mathfrak{p}$ of $R$. To
prove the if part, it is sufficient to show that $\mathfrak{a}^{-1}\mathfrak{a}$ is not contained in any
maximal ideal $\mathfrak{m}$ of $R$, for we have $\mathfrak{a}^{-1}\mathfrak{a}=R$ if no maximal ideal of $R$ contains
$a^{-1}\mathfrak{a}$ . Let $\mathfrak{m}$ be an arbitrary maximal ideal of $R$. We may suppose $\mathfrak{a}\subset \mathfrak{m}$ .
By our assumption we can choose a suitable element $a$ of $\mathfrak{a}$ which generates
$aR.$ . If we put $\alpha=a^{-1}$ , we have $\alpha a\subset R_{\mathfrak{m}}$ . Hence we can write $\alpha a_{\dot{t}}=r_{i}/s_{i}$ ,

$s_{i}\not\in \mathfrak{m},$ $r_{i},$ $s_{i}\in R$ for every $i$. Set $s=\prod_{i=1}^{t}s_{i}$ , then $s\alpha \mathfrak{a}\in R$ and so $ s\alpha$ is contained

4) In case $R$ is a one- or two-dimensional, this is given without proof in [2].
The problem if every regular local ring is a ZPE ring is open. If the answer

is affirmative, we can assert according to Proposition 7 that every regular ring is a
quasi-ZPE ring (cf. p. 170).
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in $\mathfrak{a}^{-1}$ . Since $\alpha a=1$ , we have $s\alpha a=s$ . The left hand side of this $f$ ormula
is contained in $\mathfrak{a}^{-1}\mathfrak{a}$ , but the right hand side is not contained in $\mathfrak{m}$ . This
shows that $\mathfrak{a}^{-1}\mathfrak{a}=R$ . This proves our assertion.

Under the assumption that $R$ is Noetherian we have the following general
proposition from which Theorem 5 can be derived directly.

PROPOSITION 7. Let $R$ be a Noetherian ring. Then $R$ is a quasi-ZPE ring

if and only if the quotient ring $R_{t\mathfrak{n}}$ of $R$ wilh respect to any maximal ideal $\mathfrak{m}$

of $R$ is $a$ ZPE ring.
PROOF. By Proposition 3 in \S 1 we may assume that $R$ is an integral

domain. It is well known that a Noetherian integral domain is a ZPE ring
if and only if every prime ideal of rank 1 in it is principal. Hence our
assertion is an obvious consequence of Proposition 6.

As is well known, the polynomial ring $R^{\prime}=R[X_{1}, X_{2},\cdots, X_{n}]$ with a finite
number of variables $X_{1},$ $X_{2},\cdots,$ $X_{n}$ over a $ZPE$ ring $R$ is also a $ZPE$ ring.
Now, we can generalized this fact to a quasi-ZPE ring.

PROPOSITION 8. If $R$ is a quasi-ZPE ring, then the polynomial ring $R^{\prime}=$

$R[X_{1}, X_{2},\cdots, X_{n}]$ with a finife number of variables $X_{1},$ $X_{2},\cdots,$ $X_{n}$ over $R$ is also a
quasi ZPE ring.

PROOF. We may assume that $R$ is an integral domain. By Proposition 7
we have only to prove that the quotient ring $R_{\iota \mathfrak{n}^{\prime}}^{\prime}$ of $R^{\prime}$ with respect to any
maximal ideal $\mathfrak{m}^{\prime}$ of $R^{\prime}$ is a $ZPE$ ring. Set $\mathfrak{p}=\mathfrak{m}^{\prime}\cap R$, then $\mathfrak{p}$ is a prime ideal
of $R$. Denote by $\mathfrak{m}$ a maximal ideal containing $\mathfrak{p}$ , then by our assumption
$R_{m}$ is a ZPE ring, and therefore the ring $R_{\mathfrak{p}}=(R_{\mathfrak{m}})_{\mathfrak{p}Rm}$ is also a $ZPE$ ring.
Hence the polynomial ring $R_{\mathfrak{p}}[X_{1}, X_{2},\cdots, X_{n}]$ over $R_{\mathfrak{p}}$ is a ZPE ring. Also we
have $R_{\mathfrak{m}^{\prime}}^{\prime}=(R_{\mathfrak{p}}[X_{1}, X_{2},\cdots, X_{n}])_{\mathfrak{m}R\mathfrak{p}^{[x_{1},\cdots,x_{n}]}}$ . This shows that $R_{\mathfrak{n}^{\prime}}^{\prime}$ is a $ZPE$ ring,
and this proves our proposition.

Combining this proposition with Theorem 3 in \S 2, we obtain the follow-
ing

THEOREM 6. If $R$ is a quasi-ZPE regular ring, then the polynominal ring
$R^{\prime}=R[X_{1}, X_{2},\cdots, X_{n}]$ with a finite number of variables $X_{1},$ $X_{2},\cdots,$ $X_{n}$ over $R$ is a
quasi-ZPE regular ring.

By this theorem we can find quasi-ZPE regular rings which do not
satisfy the condition in Theorem 5. (For example, the polynomial ring
$R^{\prime}=R[X_{1}, X_{2},\cdots, X_{n}]$ with a finite number of variables $X_{1},$ $X_{2},\cdots,$ $X_{n}$ over a
general Dedekind domain $R$ is always a $n+1$ dimensional quasi ZPE regular
ring.)

\S 4. Semi-local regular rings.

It is well known that the completion of a regular local ring is a regular
local ring. Similarly we have the following
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THEOREM 7. If $R$ is a semi-local regular ring, then the completion $R^{*}$ of $R$

is also a semi-local regular ring.
PROOF. Let $\mathfrak{m}_{1},$ $\mathfrak{m}_{2},\cdots,$ $\mathfrak{m}_{t}$ be all maximal ideals of $R$ . Then we have

$R/(\mathfrak{m}_{1}\cap \mathfrak{m}_{3}\cap\cdots\cap \mathfrak{m}_{t})^{k}\cong R/\mathfrak{m}_{1}^{k}\oplus R/\mathfrak{m}_{2}^{k}\oplus\cdots\oplus R/\mathfrak{m}_{c^{k}}$

$R.../\mathfrak{m}_{I}^{k}R_{\mathfrak{m}_{1}}\oplus R_{\uparrow \mathfrak{n}}./\mathfrak{m}_{2}^{k}R_{\mathfrak{m}_{2}}\oplus\cdots\oplus R_{t\mathfrak{n}_{t}}/\mathfrak{m}_{t^{k}}R_{n_{t}}$ (direct sum).

for every positive integer $k$ . Now set $R_{i}=R_{1n_{i}}$ and let $R_{i^{*}}$ be the completion
of $R_{i}$ . Then have

$R^{*}=R_{1}^{*}\oplus R_{2^{*}}\oplus\cdots\oplus R_{t^{*}}$ (direct sum).

Since all $R_{i}$ are regular local rings, all $R_{i^{*}}$ are also regular local rings.
Consequently $R^{*}$ is a semi-local regular ring according to Theorem 2.

Furthermore, as is well known, every semi-local Dedekind domain is a
principal ideal domain (for example, see [1] or [4]). This fact can be
generalized to semi-local regular rings as follows:

THEOREM 8. Let $R$ be a semi-local regular ring and let $\mathfrak{m}$ be any maximal
ideal of R. Let $d=rank\mathfrak{m}$ . Then $\mathfrak{m}$ is generated by $d$ elements in $R$.

This theorem can be obtained easily from the following proposition which
holds in general semi-local rings.

PROPOSI $\prime rION9$ . Let $R$ be a semi-local ring and let $q$ be a primary ideal
belonging to an arbitrary maximal ideal $\mathfrak{m}$ of R. If $qR_{111}$ is generated in $R_{\mathfrak{n}\iota}$

by $s$ elements, then $q$ is generated in $R$ by $s$ elements.
PROOF. Denote by $\mathfrak{m}_{1},$ $\mathfrak{m}_{2},\cdots,$ $\mathfrak{m}_{t}$ all maximal ideals of $R$. When $t=1$ , our

assertion is obvious. Therefore we suppose $t>1$ . Further without loss of
generality, we may suppose $\mathfrak{m}=\mathfrak{m}_{1}$ . Since $R$ is Noetherian, we can set $q=$

$(u_{i}, u_{2},\cdots, u_{r})$ by choosing a finite number of elements $u_{1},$ $u_{2},\cdots,$ $u_{r}$ of $R$. If
$r\leqq s$ , our proposition is true. Accordingly suppose $r>s$ . Now we shall
show that all $u_{i}$ can be chosen not to be contained in $\mathfrak{m}_{2},$ $\mathfrak{m}_{3}\cdots,$ $\mathfrak{n}\iota_{t}$ . There
exists a positive integer $k$ such that $u_{1}$ is not contained in $m_{2},$ $\mathfrak{m}_{3},\cdots,$ $\mathfrak{n}\iota_{k}$ but
contained in $\mathfrak{m}_{k+1},\cdots,$ $\iota \mathfrak{n}_{t}$ , if we change suitably the indexes of $\iota \mathfrak{n}_{i}’ s$ . If $k=t,$ $u_{1}$

is an element as is required. Therefore we suppose $k<t$ . Since $(u_{2}, u_{3},\cdots, u_{r})$

$\not\subset \mathfrak{m}_{k+1},$ $\mathfrak{m}_{k+2},\cdots,\mathfrak{m}_{t)}$ there exists an element $a_{i}$ for every $i(k+1\leqq i\leqq t)$ which
is not in $\mathfrak{m}_{i}$ but in $(u_{2},\cdots, u_{r})$ . On the other hand we can take an element $b_{i}$

for every $i(k+1\leqq i\leqq t)$ which is not in $r\mathfrak{n}_{i}$ but in $\mathfrak{m}_{1}\cap\cdots\cap \mathfrak{m}_{i}\cap\cdots\cap\iota \mathfrak{n}_{t}$ . Set
$d_{i}=a_{i}b_{i}$ and $e=\sum_{i\subset k+1}^{t}d_{i}$ . Then $e$ is contained in $(u_{2}, u_{3},\cdots, u_{\gamma})_{\cap}\iota \mathfrak{n}_{2}\cap\cdots\cap \mathfrak{m}_{k}$ but

not contained in $\mathfrak{m}_{k+1},\cdots,$ $\mathfrak{m}_{t}$ . Set $u_{1}^{\prime}=u_{1}+e$ . Then we have $q=(u_{1}^{\prime}, u_{2},\cdots, u_{\gamma})$

and $u_{1^{\prime}}$ is not contained in $\iota \mathfrak{n}_{2},$ $\mathfrak{m}_{3},\cdots,$ $\mathfrak{m}_{t}$ . By repeating this procedure we can
take a base of $q$ none of which base elements is contained in $\mathfrak{m}_{2},$ $\mathfrak{m}_{3},\cdots,$ $\mathfrak{m}_{t}$ .
Now let $(u_{1}, u_{2},\cdots, u_{\gamma})$ be such a base of ({ in $R$ . Since $qR_{\mathfrak{n}\tau}$ is generated by $s$

elements, $qR_{n}$ is generated by suitable $s$ elements $u_{i_{1}},$ $u_{i_{2}},\cdots,$ $u_{i_{S}}$ of $u_{i}’ s$ . That is
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$qR_{1\mathfrak{n}}=(u_{1}, u_{i_{2}}, u_{2s},\cdots, u_{j_{S}})R_{\mathfrak{m}}$ .
Set $\mathfrak{a}=(u_{i_{1}}, u_{i_{2}},\cdots, u_{i_{S}})$ in $R$ . Then $\mathfrak{a}$ is an ideal of $R$ such that $a(\ddagger m_{3},\cdots,$ $m_{t}$

and $aR_{\mathfrak{m}}=qR_{\mathfrak{m}}$ . So $\mathfrak{a}$ must coincide with $q$ . This proves our proposition.
If we set $m=q$ , then Theorem 8 can be derived from this.
COROLLARY 1. If $R$ is a semi-local regular ring and if we denofe by $m,,$ $\mathfrak{m}_{2}$ ,

$\mathfrak{m}_{t}$ au maximal ideals of $R$ , then the Jacobson radical $\mathfrak{a}=\bigcap_{i=1}^{t}\tau \mathfrak{n}_{f}$ is generated

by $d$ elements, where $d=\dim R$ .
PROOF. According to Proposition 9 we have $m_{i}=(u_{i_{1}},\cdots, u_{\dot{x}d\tau})$ where $d_{i}=$

rank $\mathfrak{m}_{i}$ and for every fixed $i$ any $u_{ij}$ is not contained in $\mathfrak{m}_{1},\cdots,\hat{\mathfrak{m}}_{i},\cdots,$
$\mathfrak{m}_{t}$ . If

$d>d_{i}$ , we choose an element $v_{i}$ such that $v_{i}\in \mathfrak{m}_{i},$
$\not\in \mathfrak{m}_{i},\cdots,\hat{\mathfrak{m}}_{i},\cdots,$

$\mathfrak{m}_{t}$ and set
$a$

$u_{i,a\iota+1}=u_{i,di+2}=\cdots=u_{i,l}(=v_{l}$ . Furthermore set $w=i=11Iu_{ij}$ and $c=(w_{1}, w_{2},\cdots, w_{a})$ .
Then $cR_{\mathfrak{m}i}=qRt\mathfrak{n}_{i}$ for every $i$ . This shows $\mathfrak{a}=c=(w_{\perp}, w_{2},\cdots, w_{\zeta}t)$ .

COROLLARY 2. Let $R$ be a semi-local ring any of which maximal ideals is
of the same rank $d$ equal to $dim$ R. Then $R$ is a regular ring if and only if
the Jacobson radical of $R$ is generated by $d$ elements.

PROOF. This follows immediately from Corollary 1.
On the other hand we can also assert the following theorem as another

generalization of the fact described before Theorem 8.
THEOREM 9. Let $R$ be a semi-local regular ring whose quolient ring with

respect to any maximal ideal of it is unramified or one-or two-dimensional. Then
every prime ideal of rank 1 in $R$ is a principal ideal.

Since $R$ may be supposed to be an integral domain, we have only to
prove that $R$ is a $ZPE$ ring, in case $R$ is an integral domain. To prove this,
we begin with the following two propositions.

PROPOSITION 10. If $R$ is an integral domain which has a finite number $oJ$

maximal ideals of it, then every inversible ideal of $R$ is principal.
This is a slight generalization of the proposition 5.
PROOF. Let $\mathfrak{m}_{1},$ $\mathfrak{m}-$)’ $\cdots,$ $m_{s}$ be all maximal ideals of $R$ and let $\mathfrak{a}$ be any

inversible ideal of $R$ . Then every $a\mathfrak{n}1_{i}$ is strictly contained in $\mathfrak{a}$ . If there
exists now an element $a$ in $a$ which is not in any one of $a\mathfrak{m}_{i}$ , we have easily
$\mathfrak{a}=(a)$ . Accordingly, it is sufficient to prove the existence of such an element.
Obviously there exists an element $b_{i}$ which is not contained in $m_{i}$ , but in

$\wedge$

$\mathfrak{m}_{1}\cap \mathfrak{m}_{2}\cap\cdots\cap\hat{\mathfrak{m}}_{i}\cap\cdots\cap \mathfrak{m}_{s}$ . Then $ab_{i}$ is not contained in $a\mathfrak{m}_{i}$ , but in $\mathfrak{a}\mathfrak{m}_{1}\cap\cdots\cap a\mathfrak{m}_{i}$

$\cap\cdots\cap \mathfrak{a}\mathfrak{m}_{s}$ , and therefore we can choose a suitable element $a_{i}$ in $\mathfrak{a}b_{i}$ which is

not contained in $\mathfrak{a}\mathfrak{m}_{i}$ . Set $a=\sum_{i=1}^{8}a_{i}$ , then this is an element which satisfies

the above condition.
When we connect this proposition with Proposition 7, the following

general proposition can be obtained.
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PROPOSITION 11’ Let $R$ be a semi-local integral domain. Then $R$ is a $ZPE$

ring if and only if the quotient ring of $R$ with respect to any maximal ideal of
$R$ is a $ZPE$ ring.

Theorem 9 is a corollary to this proposition.

\S 5. Some further results.

It is well known that if $R$ is a Dedekind domain every ideal of $R$ is
generated by 2 elements (for example see [12]). Here we give a generaliza-
tion of this fact to regular rings.

THEOREM 10. Let $R$ be a $d$ dimensional regular ring and let $\mathfrak{m}$ be any
maximal ideal of R. Then $\mathfrak{m}$ is generated by $d+1$ or less elements.

PROOF. Set $s=rank\mathfrak{m}$ , then obviously $s\leqq d$. Since $R$ is a regular ring,
we can choose $s$ elements $u_{f},$ $u_{2},\cdots,$ $u_{s}$ from $\mathfrak{m}$ satisfying the following condi-
tions: 1) $\mathfrak{m}R_{\mathfrak{m}}=(u_{1}, u_{2},\cdots, u_{s})R_{\mathfrak{n}\iota}$ . 2) rank $(u_{1}, u_{2},\cdots, u_{s})=s$ in $R$. If $\mathfrak{m}\neq(u_{1},$ $u_{2}$ ,

$u_{s})$ , then there exists a primary decomposition of $(u_{1}, u_{2},\cdots, u_{s})$ in $R$ as
follows:

$(u_{\rfloor}, u_{2},\cdots, u_{s})=\mathfrak{m}\cap q_{1}^{(s)}\cap q_{2}^{(s)}\cap\cdots\cap q_{t_{0}}^{(s)}$ ,

where every $q_{i}^{(s)}$ is a primary ideal belonging to a prime ideal $q_{\iota}^{(s)}$ of rank $s$

in $R$ . Further we take an element $u_{s+1}$ from $\mathfrak{m}$ which is not contained in
any $\mathfrak{p}_{i^{(S)}}$ . Then, if any $\mathfrak{p}_{i}^{(s)}$ is maximal in $R$, we obtain immediately $\mathfrak{m}=(u_{1},$ $u_{2}$ ,

$u_{s+1})$ . Hence our theorem holds in this case. On the other hand, if $\mathfrak{m}\neq$

$(u_{1}, u_{2},\cdots, u_{s+1})$ , we have $d>s$ and at least one of $\mathfrak{p}_{i}^{(s)}’ s$ is not maximai in $R$.
Then we also have a primary decomposition of $(u_{1}, u_{2},\cdots, u_{s}, u_{s+1})$ as follows:

$(u_{4}, u_{2},\cdots, u_{s}, u_{s+1})=\iota \mathfrak{n}\cap q_{1}^{(s+1)}\cap q_{2}^{(s+1)}\cap\cdots\cap q_{t_{1}}^{(s+1)}$ ,

where every $Q_{i}^{(s+1)}$ is a primary ideal belonging to a prime ideai $\mathfrak{p}_{t}^{(s+1)}$ of rank
$s+1$ or more in $R$ . We choose again an element $u_{s+2}$ from $\mathfrak{m}$ which is not
contained in any $\mathfrak{p}_{i}^{ts+1)}$ . By repeating this procedure $d-s+1$ times we obtain
finally $\mathfrak{m}=(u_{J}, u_{2},\cdots, u_{s},\cdots, u_{a+1})$ . This proves our assertion.

We say that a ring $R^{\prime}$ dominates a ring $R$ , if the following conditions
are satisfied: 1) $R^{\prime}\supset R$. 2) $\dim R^{\prime}=\dim$ R. 3) If $\mathfrak{m}$ is any maximal ideal
of $R$, then $\mathfrak{m}R^{\prime}$ is a maximal ideal of $R^{\prime}$ .

Now we give the following
THEOREM 11. Let $R$ be $a$ one dimensional regular ring. Then there exists

always at least one one dimensional regular ring $R^{\prime}$ dominating $R$ such that for
every prime ideal $\mathfrak{p}$ of rank 1 in $R\mathfrak{p}R^{\prime}$ is a principal prime ideal in $R^{\prime}$ , that is,

5) This proposition has already been obtained by Akizuki-Nagata [1] by a differ-
ent method.
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such that any element of $R$ is expressible as the products of a finite number of
prime elements of $R^{\prime}$ in $R^{\prime}$ .

PROOF. By Theorem 1, 5 and 9 we may assume $R$ is a non $ZPE$ Dedekind
domain with an infinite number of prime ideals. Now, according to Theorem
10, any non principal prime ideal $\mathfrak{p}$ of $R$ is generated by 2 elements. Hence
we can set $\mathfrak{p}=(p_{1},p_{2})$ .

Denote by $X,$ $Y$ two variables over $R$ and set $\overline{R}=R[X, Y]$ . Further put
$\overline{S}=\bigcap_{\mathfrak{p}*}(\overline{R}-\mathfrak{p}\overline{R})$ , where $\mathfrak{p}^{*}$ runs over all prime ideals of $R$ and all prime ideals
of rank 1 in $R[X]$ . Then the quotient ring $\overline{R}_{\overline{s}}$ of $\overline{R}$ with respect to $\overline{S}$ is a
ring as is required. For, we can show easily that $\mathfrak{p}\overline{R}_{s}^{\rightarrow}=(p_{1}X+p_{2}Y)\overline{R}_{\overline{s}}$ and
$\overline{R}_{s}^{\sim}$ is a Dedekind dcmain.

University of Tokyo.
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Added in proof. In the course of reading the proofs, the auther was informed
that M. Auslander succeeded to prove that every regular local ring is a ZPE ring
(cf. Footnote on p. 165).
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